+++ /dev/null
-/******************************************************************************************[Main.C]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#include <ctime>
-#include <cstring>
-#include <stdint.h>
-#include <errno.h>
-
-#include <signal.h>
-#include <zlib.h>
-
-#include "Solver.h"
-
-/*************************************************************************************/
-#ifdef _MSC_VER
-#include <ctime>
-
-static inline double cpuTime(void) {
- return (double)clock() / CLOCKS_PER_SEC; }
-#else
-
-#include <sys/time.h>
-#include <sys/resource.h>
-#include <unistd.h>
-
-static inline double cpuTime(void) {
- struct rusage ru;
- getrusage(RUSAGE_SELF, &ru);
- return (double)ru.ru_utime.tv_sec + (double)ru.ru_utime.tv_usec / 1000000; }
-#endif
-
-
-#if defined(__linux__)
-static inline int memReadStat(int field)
-{
- char name[256];
- pid_t pid = getpid();
- sprintf(name, "/proc/%d/statm", pid);
- FILE* in = fopen(name, "rb");
- if (in == NULL) return 0;
- int value;
- for (; field >= 0; field--)
- fscanf(in, "%d", &value);
- fclose(in);
- return value;
-}
-static inline uint64_t memUsed() { return (uint64_t)memReadStat(0) * (uint64_t)getpagesize(); }
-
-
-#elif defined(__FreeBSD__)
-static inline uint64_t memUsed(void) {
- struct rusage ru;
- getrusage(RUSAGE_SELF, &ru);
- return ru.ru_maxrss*1024; }
-
-
-#else
-static inline uint64_t memUsed() { return 0; }
-#endif
-
-#if defined(__linux__)
-#include <fpu_control.h>
-#endif
-
-//=================================================================================================
-// DIMACS Parser:
-
-#define CHUNK_LIMIT 1048576
-
-class StreamBuffer {
- gzFile in;
- char buf[CHUNK_LIMIT];
- int pos;
- int size;
-
- void assureLookahead() {
- if (pos >= size) {
- pos = 0;
- size = gzread(in, buf, sizeof(buf)); } }
-
-public:
- StreamBuffer(gzFile i) : in(i), pos(0), size(0) {
- assureLookahead(); }
-
- int operator * () { return (pos >= size) ? EOF : buf[pos]; }
- void operator ++ () { pos++; assureLookahead(); }
-};
-
-//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-template<class B>
-static void skipWhitespace(B& in) {
- while ((*in >= 9 && *in <= 13) || *in == 32)
- ++in; }
-
-template<class B>
-static void skipLine(B& in) {
- for (;;){
- if (*in == EOF || *in == '\0') return;
- if (*in == '\n') { ++in; return; }
- ++in; } }
-
-template<class B>
-static int parseInt(B& in) {
- int val = 0;
- bool neg = false;
- skipWhitespace(in);
- if (*in == '-') neg = true, ++in;
- else if (*in == '+') ++in;
- if (*in < '0' || *in > '9') reportf("PARSE ERROR! Unexpected char: %c\n", *in), exit(3);
- while (*in >= '0' && *in <= '9')
- val = val*10 + (*in - '0'),
- ++in;
- return neg ? -val : val; }
-
-template<class B>
-static void readClause(B& in, Solver& S, vec<Lit>& lits) {
- int parsed_lit, var;
- lits.clear();
- for (;;){
- parsed_lit = parseInt(in);
- if (parsed_lit == 0) break;
- var = abs(parsed_lit)-1;
- while (var >= S.nVars()) S.newVar();
- lits.push( (parsed_lit > 0) ? Lit(var) : ~Lit(var) );
- }
-}
-
-template<class B>
-static bool match(B& in, char* str) {
- for (; *str != 0; ++str, ++in)
- if (*str != *in)
- return false;
- return true;
-}
-
-
-template<class B>
-static void parse_DIMACS_main(B& in, Solver& S) {
- vec<Lit> lits;
- for (;;){
- skipWhitespace(in);
- if (*in == EOF)
- break;
- else if (*in == 'p'){
- if (match(in, "p cnf")){
- int vars = parseInt(in);
- int clauses = parseInt(in);
- reportf("| Number of variables: %-12d |\n", vars);
- reportf("| Number of clauses: %-12d |\n", clauses);
- }else{
- reportf("PARSE ERROR! Unexpected char: %c\n", *in), exit(3);
- }
- } else if (*in == 'c' || *in == 'p')
- skipLine(in);
- else
- readClause(in, S, lits),
- S.addClause(lits);
- }
-}
-
-// Inserts problem into solver.
-//
-static void parse_DIMACS(gzFile input_stream, Solver& S) {
- StreamBuffer in(input_stream);
- parse_DIMACS_main(in, S); }
-
-
-//=================================================================================================
-
-
-void printStats(Solver& solver)
-{
- double cpu_time = cpuTime();
- uint64_t mem_used = memUsed();
- reportf("restarts : %lld\n", solver.starts);
- reportf("conflicts : %-12lld (%.0f /sec)\n", solver.conflicts , solver.conflicts /cpu_time);
- reportf("decisions : %-12lld (%4.2f %% random) (%.0f /sec)\n", solver.decisions, (float)solver.rnd_decisions*100 / (float)solver.decisions, solver.decisions /cpu_time);
- reportf("propagations : %-12lld (%.0f /sec)\n", solver.propagations, solver.propagations/cpu_time);
- reportf("conflict literals : %-12lld (%4.2f %% deleted)\n", solver.tot_literals, (solver.max_literals - solver.tot_literals)*100 / (double)solver.max_literals);
- if (mem_used != 0) reportf("Memory used : %.2f MB\n", mem_used / 1048576.0);
- reportf("CPU time : %g s\n", cpu_time);
-}
-
-Solver* solver;
-static void SIGINT_handler(int signum) {
- reportf("\n"); reportf("*** INTERRUPTED ***\n");
- printStats(*solver);
- reportf("\n"); reportf("*** INTERRUPTED ***\n");
- exit(1); }
-
-
-//=================================================================================================
-// Main:
-
-void printUsage(char** argv)
-{
- reportf("USAGE: %s [options] <input-file> <result-output-file>\n\n where input may be either in plain or gzipped DIMACS.\n\n", argv[0]);
- reportf("OPTIONS:\n\n");
- reportf(" -polarity-mode = {true,false,rnd}\n");
- reportf(" -decay = <num> [ 0 - 1 ]\n");
- reportf(" -rnd-freq = <num> [ 0 - 1 ]\n");
- reportf(" -verbosity = {0,1,2}\n");
- reportf("\n");
-}
-
-
-const char* hasPrefix(const char* str, const char* prefix)
-{
- int len = strlen(prefix);
- if (strncmp(str, prefix, len) == 0)
- return str + len;
- else
- return NULL;
-}
-
-
-int main(int argc, char** argv)
-{
- Solver S;
- S.verbosity = 1;
-
-
- int i, j;
- const char* value;
- for (i = j = 0; i < argc; i++){
- if ((value = hasPrefix(argv[i], "-polarity-mode="))){
- if (strcmp(value, "true") == 0)
- S.polarity_mode = Solver::polarity_true;
- else if (strcmp(value, "false") == 0)
- S.polarity_mode = Solver::polarity_false;
- else if (strcmp(value, "rnd") == 0)
- S.polarity_mode = Solver::polarity_rnd;
- else{
- reportf("ERROR! unknown polarity-mode %s\n", value);
- exit(0); }
-
- }else if ((value = hasPrefix(argv[i], "-rnd-freq="))){
- double rnd;
- if (sscanf(value, "%lf", &rnd) <= 0 || rnd < 0 || rnd > 1){
- reportf("ERROR! illegal rnd-freq constant %s\n", value);
- exit(0); }
- S.random_var_freq = rnd;
-
- }else if ((value = hasPrefix(argv[i], "-decay="))){
- double decay;
- if (sscanf(value, "%lf", &decay) <= 0 || decay <= 0 || decay > 1){
- reportf("ERROR! illegal decay constant %s\n", value);
- exit(0); }
- S.var_decay = 1 / decay;
-
- }else if ((value = hasPrefix(argv[i], "-verbosity="))){
- int verbosity = (int)strtol(value, NULL, 10);
- if (verbosity == 0 && errno == EINVAL){
- reportf("ERROR! illegal verbosity level %s\n", value);
- exit(0); }
- S.verbosity = verbosity;
-
- }else if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "-help") == 0 || strcmp(argv[i], "--help") == 0){
- printUsage(argv);
- exit(0);
-
- }else if (strncmp(argv[i], "-", 1) == 0){
- reportf("ERROR! unknown flag %s\n", argv[i]);
- exit(0);
-
- }else
- argv[j++] = argv[i];
- }
- argc = j;
-
-
- reportf("This is MiniSat 2.0 beta\n");
-#if defined(__linux__)
- fpu_control_t oldcw, newcw;
- _FPU_GETCW(oldcw); newcw = (oldcw & ~_FPU_EXTENDED) | _FPU_DOUBLE; _FPU_SETCW(newcw);
- reportf("WARNING: for repeatability, setting FPU to use double precision\n");
-#endif
- double cpu_time = cpuTime();
-
- solver = &S;
- signal(SIGINT,SIGINT_handler);
- signal(SIGHUP,SIGINT_handler);
-
- if (argc == 1)
- reportf("Reading from standard input... Use '-h' or '--help' for help.\n");
-
- gzFile in = (argc == 1) ? gzdopen(0, "rb") : gzopen(argv[1], "rb");
- if (in == NULL)
- reportf("ERROR! Could not open file: %s\n", argc == 1 ? "<stdin>" : argv[1]), exit(1);
-
- reportf("============================[ Problem Statistics ]=============================\n");
- reportf("| |\n");
-
- parse_DIMACS(in, S);
- gzclose(in);
- FILE* res = (argc >= 3) ? fopen(argv[2], "wb") : NULL;
-
- double parse_time = cpuTime() - cpu_time;
- reportf("| Parsing time: %-12.2f s |\n", parse_time);
-
- if (!S.simplify()){
- reportf("Solved by unit propagation\n");
- if (res != NULL) fprintf(res, "UNSAT\n"), fclose(res);
- printf("UNSATISFIABLE\n");
- exit(20);
- }
-
- bool ret = S.solve();
- printStats(S);
- reportf("\n");
- printf(ret ? "SATISFIABLE\n" : "UNSATISFIABLE\n");
- if (res != NULL){
- if (ret){
- fprintf(res, "SAT\n");
- for (int i = 0; i < S.nVars(); i++)
- if (S.model[i] != l_Undef)
- fprintf(res, "%s%s%d", (i==0)?"":" ", (S.model[i]==l_True)?"":"-", i+1);
- fprintf(res, " 0\n");
- }else
- fprintf(res, "UNSAT\n");
- fclose(res);
- }
-
-#ifdef NDEBUG
- exit(ret ? 10 : 20); // (faster than "return", which will invoke the destructor for 'Solver')
-#endif
-}
--- /dev/null
+/******************************************************************************************[Main.C]
+MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#include <ctime>
+#include <cstring>
+#include <stdint.h>
+#include <errno.h>
+
+#include <signal.h>
+#include <zlib.h>
+
+#include "Solver.h"
+
+/*************************************************************************************/
+#ifdef _MSC_VER
+#include <ctime>
+
+static inline double cpuTime(void) {
+ return (double)clock() / CLOCKS_PER_SEC; }
+#else
+
+#include <sys/time.h>
+#include <sys/resource.h>
+#include <unistd.h>
+
+static inline double cpuTime(void) {
+ struct rusage ru;
+ getrusage(RUSAGE_SELF, &ru);
+ return (double)ru.ru_utime.tv_sec + (double)ru.ru_utime.tv_usec / 1000000; }
+#endif
+
+
+#if defined(__linux__)
+static inline int memReadStat(int field)
+{
+ char name[256];
+ pid_t pid = getpid();
+ sprintf(name, "/proc/%d/statm", pid);
+ FILE* in = fopen(name, "rb");
+ if (in == NULL) return 0;
+ int value;
+ for (; field >= 0; field--)
+ fscanf(in, "%d", &value);
+ fclose(in);
+ return value;
+}
+static inline uint64_t memUsed() { return (uint64_t)memReadStat(0) * (uint64_t)getpagesize(); }
+
+
+#elif defined(__FreeBSD__)
+static inline uint64_t memUsed(void) {
+ struct rusage ru;
+ getrusage(RUSAGE_SELF, &ru);
+ return ru.ru_maxrss*1024; }
+
+
+#else
+static inline uint64_t memUsed() { return 0; }
+#endif
+
+#if defined(__linux__)
+#include <fpu_control.h>
+#endif
+
+//=================================================================================================
+// DIMACS Parser:
+
+#define CHUNK_LIMIT 1048576
+
+class StreamBuffer {
+ gzFile in;
+ char buf[CHUNK_LIMIT];
+ int pos;
+ int size;
+
+ void assureLookahead() {
+ if (pos >= size) {
+ pos = 0;
+ size = gzread(in, buf, sizeof(buf)); } }
+
+public:
+ StreamBuffer(gzFile i) : in(i), pos(0), size(0) {
+ assureLookahead(); }
+
+ int operator * () { return (pos >= size) ? EOF : buf[pos]; }
+ void operator ++ () { pos++; assureLookahead(); }
+};
+
+//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+
+template<class B>
+static void skipWhitespace(B& in) {
+ while ((*in >= 9 && *in <= 13) || *in == 32)
+ ++in; }
+
+template<class B>
+static void skipLine(B& in) {
+ for (;;){
+ if (*in == EOF || *in == '\0') return;
+ if (*in == '\n') { ++in; return; }
+ ++in; } }
+
+template<class B>
+static int parseInt(B& in) {
+ int val = 0;
+ bool neg = false;
+ skipWhitespace(in);
+ if (*in == '-') neg = true, ++in;
+ else if (*in == '+') ++in;
+ if (*in < '0' || *in > '9') reportf("PARSE ERROR! Unexpected char: %c\n", *in), exit(3);
+ while (*in >= '0' && *in <= '9')
+ val = val*10 + (*in - '0'),
+ ++in;
+ return neg ? -val : val; }
+
+template<class B>
+static void readClause(B& in, Solver& S, vec<Lit>& lits) {
+ int parsed_lit, var;
+ lits.clear();
+ for (;;){
+ parsed_lit = parseInt(in);
+ if (parsed_lit == 0) break;
+ var = abs(parsed_lit)-1;
+ while (var >= S.nVars()) S.newVar();
+ lits.push( (parsed_lit > 0) ? Lit(var) : ~Lit(var) );
+ }
+}
+
+template<class B>
+static bool match(B& in, char* str) {
+ for (; *str != 0; ++str, ++in)
+ if (*str != *in)
+ return false;
+ return true;
+}
+
+
+template<class B>
+static void parse_DIMACS_main(B& in, Solver& S) {
+ vec<Lit> lits;
+ for (;;){
+ skipWhitespace(in);
+ if (*in == EOF)
+ break;
+ else if (*in == 'p'){
+ if (match(in, "p cnf")){
+ int vars = parseInt(in);
+ int clauses = parseInt(in);
+ reportf("| Number of variables: %-12d |\n", vars);
+ reportf("| Number of clauses: %-12d |\n", clauses);
+ }else{
+ reportf("PARSE ERROR! Unexpected char: %c\n", *in), exit(3);
+ }
+ } else if (*in == 'c' || *in == 'p')
+ skipLine(in);
+ else
+ readClause(in, S, lits),
+ S.addClause(lits);
+ }
+}
+
+// Inserts problem into solver.
+//
+static void parse_DIMACS(gzFile input_stream, Solver& S) {
+ StreamBuffer in(input_stream);
+ parse_DIMACS_main(in, S); }
+
+
+//=================================================================================================
+
+
+void printStats(Solver& solver)
+{
+ double cpu_time = cpuTime();
+ uint64_t mem_used = memUsed();
+ reportf("restarts : %lld\n", solver.starts);
+ reportf("conflicts : %-12lld (%.0f /sec)\n", solver.conflicts , solver.conflicts /cpu_time);
+ reportf("decisions : %-12lld (%4.2f %% random) (%.0f /sec)\n", solver.decisions, (float)solver.rnd_decisions*100 / (float)solver.decisions, solver.decisions /cpu_time);
+ reportf("propagations : %-12lld (%.0f /sec)\n", solver.propagations, solver.propagations/cpu_time);
+ reportf("conflict literals : %-12lld (%4.2f %% deleted)\n", solver.tot_literals, (solver.max_literals - solver.tot_literals)*100 / (double)solver.max_literals);
+ if (mem_used != 0) reportf("Memory used : %.2f MB\n", mem_used / 1048576.0);
+ reportf("CPU time : %g s\n", cpu_time);
+}
+
+Solver* solver;
+static void SIGINT_handler(int signum) {
+ reportf("\n"); reportf("*** INTERRUPTED ***\n");
+ printStats(*solver);
+ reportf("\n"); reportf("*** INTERRUPTED ***\n");
+ exit(1); }
+
+
+//=================================================================================================
+// Main:
+
+void printUsage(char** argv)
+{
+ reportf("USAGE: %s [options] <input-file> <result-output-file>\n\n where input may be either in plain or gzipped DIMACS.\n\n", argv[0]);
+ reportf("OPTIONS:\n\n");
+ reportf(" -polarity-mode = {true,false,rnd}\n");
+ reportf(" -decay = <num> [ 0 - 1 ]\n");
+ reportf(" -rnd-freq = <num> [ 0 - 1 ]\n");
+ reportf(" -verbosity = {0,1,2}\n");
+ reportf("\n");
+}
+
+
+const char* hasPrefix(const char* str, const char* prefix)
+{
+ int len = strlen(prefix);
+ if (strncmp(str, prefix, len) == 0)
+ return str + len;
+ else
+ return NULL;
+}
+
+
+int main(int argc, char** argv)
+{
+ Solver S;
+ S.verbosity = 1;
+
+
+ int i, j;
+ const char* value;
+ for (i = j = 0; i < argc; i++){
+ if ((value = hasPrefix(argv[i], "-polarity-mode="))){
+ if (strcmp(value, "true") == 0)
+ S.polarity_mode = Solver::polarity_true;
+ else if (strcmp(value, "false") == 0)
+ S.polarity_mode = Solver::polarity_false;
+ else if (strcmp(value, "rnd") == 0)
+ S.polarity_mode = Solver::polarity_rnd;
+ else{
+ reportf("ERROR! unknown polarity-mode %s\n", value);
+ exit(0); }
+
+ }else if ((value = hasPrefix(argv[i], "-rnd-freq="))){
+ double rnd;
+ if (sscanf(value, "%lf", &rnd) <= 0 || rnd < 0 || rnd > 1){
+ reportf("ERROR! illegal rnd-freq constant %s\n", value);
+ exit(0); }
+ S.random_var_freq = rnd;
+
+ }else if ((value = hasPrefix(argv[i], "-decay="))){
+ double decay;
+ if (sscanf(value, "%lf", &decay) <= 0 || decay <= 0 || decay > 1){
+ reportf("ERROR! illegal decay constant %s\n", value);
+ exit(0); }
+ S.var_decay = 1 / decay;
+
+ }else if ((value = hasPrefix(argv[i], "-verbosity="))){
+ int verbosity = (int)strtol(value, NULL, 10);
+ if (verbosity == 0 && errno == EINVAL){
+ reportf("ERROR! illegal verbosity level %s\n", value);
+ exit(0); }
+ S.verbosity = verbosity;
+
+ }else if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "-help") == 0 || strcmp(argv[i], "--help") == 0){
+ printUsage(argv);
+ exit(0);
+
+ }else if (strncmp(argv[i], "-", 1) == 0){
+ reportf("ERROR! unknown flag %s\n", argv[i]);
+ exit(0);
+
+ }else
+ argv[j++] = argv[i];
+ }
+ argc = j;
+
+
+ reportf("This is MiniSat 2.0 beta\n");
+#if defined(__linux__)
+ fpu_control_t oldcw, newcw;
+ _FPU_GETCW(oldcw); newcw = (oldcw & ~_FPU_EXTENDED) | _FPU_DOUBLE; _FPU_SETCW(newcw);
+ reportf("WARNING: for repeatability, setting FPU to use double precision\n");
+#endif
+ double cpu_time = cpuTime();
+
+ solver = &S;
+ signal(SIGINT,SIGINT_handler);
+ signal(SIGHUP,SIGINT_handler);
+
+ if (argc == 1)
+ reportf("Reading from standard input... Use '-h' or '--help' for help.\n");
+
+ gzFile in = (argc == 1) ? gzdopen(0, "rb") : gzopen(argv[1], "rb");
+ if (in == NULL)
+ reportf("ERROR! Could not open file: %s\n", argc == 1 ? "<stdin>" : argv[1]), exit(1);
+
+ reportf("============================[ Problem Statistics ]=============================\n");
+ reportf("| |\n");
+
+ parse_DIMACS(in, S);
+ gzclose(in);
+ FILE* res = (argc >= 3) ? fopen(argv[2], "wb") : NULL;
+
+ double parse_time = cpuTime() - cpu_time;
+ reportf("| Parsing time: %-12.2f s |\n", parse_time);
+
+ if (!S.simplify()){
+ reportf("Solved by unit propagation\n");
+ if (res != NULL) fprintf(res, "UNSAT\n"), fclose(res);
+ printf("UNSATISFIABLE\n");
+ exit(20);
+ }
+
+ bool ret = S.solve();
+ printStats(S);
+ reportf("\n");
+ printf(ret ? "SATISFIABLE\n" : "UNSATISFIABLE\n");
+ if (res != NULL){
+ if (ret){
+ fprintf(res, "SAT\n");
+ for (int i = 0; i < S.nVars(); i++)
+ if (S.model[i] != l_Undef)
+ fprintf(res, "%s%s%d", (i==0)?"":" ", (S.model[i]==l_True)?"":"-", i+1);
+ fprintf(res, " 0\n");
+ }else
+ fprintf(res, "UNSAT\n");
+ fclose(res);
+ }
+
+#ifdef NDEBUG
+ exit(ret ? 10 : 20); // (faster than "return", which will invoke the destructor for 'Solver')
+#endif
+}
+++ /dev/null
-/****************************************************************************************[Solver.C]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#include "Solver.h"
-#include "Sort.h"
-#include "prop/sat.h"
-#include <cmath>
-
-//=================================================================================================
-// Constructor/Destructor:
-
-namespace CVC4 {
-namespace prop {
-namespace minisat {
-
-Clause* Solver::lazy_reason = reinterpret_cast<Clause*>(1);
-
-Clause* Solver::getReason(Lit l)
-{
- if (reason[var(l)] != lazy_reason) return reason[var(l)];
- // Get the explanation from the theory
- SatClause explanation;
- if (value(l) == l_True) {
- proxy->explainPropagation(l, explanation);
- assert(explanation[0] == l);
- } else {
- proxy->explainPropagation(~l, explanation);
- assert(explanation[0] == ~l);
- }
- Clause* real_reason = Clause_new(explanation, true);
- reason[var(l)] = real_reason;
- // Add it to the database
- learnts.push(real_reason);
- attachClause(*real_reason);
- return real_reason;
-}
-
-Solver::Solver(SatSolver* proxy, context::Context* context) :
-
- // SMT stuff
- proxy(proxy)
- , context(context)
-
- // Parameters: (formerly in 'SearchParams')
- , var_decay(1 / 0.95), clause_decay(1 / 0.999), random_var_freq(0.02)
- , restart_first(100), restart_inc(1.5), learntsize_factor((double)1/(double)3), learntsize_inc(1.1)
-
- // More parameters:
- //
- , expensive_ccmin (true)
- , polarity_mode (polarity_false)
- , verbosity (0)
-
- // Statistics: (formerly in 'SolverStats')
- //
- , starts(0), decisions(0), rnd_decisions(0), propagations(0), conflicts(0)
- , clauses_literals(0), learnts_literals(0), max_literals(0), tot_literals(0)
-
- , ok (true)
- , cla_inc (1)
- , var_inc (1)
- , qhead (0)
- , simpDB_assigns (-1)
- , simpDB_props (0)
- , order_heap (VarOrderLt(activity))
- , random_seed (91648253)
- , progress_estimate(0)
- , remove_satisfied (true)
-{}
-
-
-Solver::~Solver()
-{
- for (int i = 0; i < learnts.size(); i++) free(learnts[i]);
- for (int i = 0; i < clauses.size(); i++) free(clauses[i]);
-}
-
-
-//=================================================================================================
-// Minor methods:
-
-
-// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be
-// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
-//
-Var Solver::newVar(bool sign, bool dvar, bool theoryAtom)
-{
- int v = nVars();
- watches .push(); // (list for positive literal)
- watches .push(); // (list for negative literal)
- reason .push(NULL);
- assigns .push(toInt(l_Undef));
- level .push(-1);
- activity .push(0);
- seen .push(0);
-
- theory .push(theoryAtom);
-
- polarity .push((char)sign);
- decision_var.push((char)dvar);
-
- insertVarOrder(v);
- return v;
-}
-
-
-bool Solver::addClause(vec<Lit>& ps, ClauseType type)
-{
- assert(decisionLevel() == 0);
-
- if (!ok)
- return false;
- else{
- // Check if clause is satisfied and remove false/duplicate literals:
- sort(ps);
- Lit p; int i, j;
- for (i = j = 0, p = lit_Undef; i < ps.size(); i++)
- if (value(ps[i]) == l_True || ps[i] == ~p)
- return true;
- else if (value(ps[i]) != l_False && ps[i] != p)
- ps[j++] = p = ps[i];
- ps.shrink(i - j);
- }
-
- if (ps.size() == 0)
- return ok = false;
- else if (ps.size() == 1){
- assert(type != CLAUSE_LEMMA);
- assert(value(ps[0]) == l_Undef);
- uncheckedEnqueue(ps[0]);
- return ok = (propagate(CHECK_WITHOUTH_PROPAGATION_QUICK) == NULL);
- }else{
- Clause* c = Clause_new(ps, false);
- clauses.push(c);
- if (type == CLAUSE_LEMMA) lemmas.push(c);
- attachClause(*c);
- }
-
- return true;
-
-}
-
-
-void Solver::attachClause(Clause& c) {
- assert(c.size() > 1);
- watches[toInt(~c[0])].push(&c);
- watches[toInt(~c[1])].push(&c);
- if (c.learnt()) learnts_literals += c.size();
- else clauses_literals += c.size(); }
-
-
-void Solver::detachClause(Clause& c) {
- Debug("minisat") << "Solver::detachClause(" << c << ")" << std::endl;
- assert(c.size() > 1);
- assert(find(watches[toInt(~c[0])], &c));
- assert(find(watches[toInt(~c[1])], &c));
- remove(watches[toInt(~c[0])], &c);
- remove(watches[toInt(~c[1])], &c);
- if (c.learnt()) learnts_literals -= c.size();
- else clauses_literals -= c.size(); }
-
-
-void Solver::removeClause(Clause& c) {
- Debug("minisat") << "Solver::removeClause(" << c << ")" << std::endl;
- detachClause(c);
- free(&c);
-}
-
-
-bool Solver::satisfied(const Clause& c) const {
- for (int i = 0; i < c.size(); i++)
- if (value(c[i]) == l_True)
- return true;
- return false; }
-
-
-// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
-//
-void Solver::cancelUntil(int level) {
- if (decisionLevel() > level){
- // Pop the SMT context
- for (int l = trail_lim.size() - level; l > 0; --l)
- context->pop();
- // Now the minisat stuff
- for (int c = trail.size()-1; c >= trail_lim[level]; c--) {
- Var x = var(trail[c]);
- assigns[x] = toInt(l_Undef);
- insertVarOrder(x);
- }
- qhead = trail_lim[level];
- trail.shrink(trail.size() - trail_lim[level]);
- trail_lim.shrink(trail_lim.size() - level);
- // We can erase the lemmas now
- for (int c = lemmas.size() - 1; c >= lemmas_lim[level]; c--) {
- // TODO: can_erase[lemma[c]] = true;
- }
- lemmas.shrink(lemmas.size() - lemmas_lim[level]);
- lemmas_lim.shrink(lemmas_lim.size() - level);
- }
-}
-
-
-//=================================================================================================
-// Major methods:
-
-
-Lit Solver::pickBranchLit(int polarity_mode, double random_var_freq)
-{
- Var next = var_Undef;
-
- // Random decision:
- if (drand(random_seed) < random_var_freq && !order_heap.empty()){
- next = order_heap[irand(random_seed,order_heap.size())];
- if (toLbool(assigns[next]) == l_Undef && decision_var[next])
- rnd_decisions++; }
-
- // Activity based decision:
- while (next == var_Undef || toLbool(assigns[next]) != l_Undef || !decision_var[next])
- if (order_heap.empty()){
- next = var_Undef;
- break;
- }else
- next = order_heap.removeMin();
-
- bool sign = false;
- switch (polarity_mode){
- case polarity_true: sign = false; break;
- case polarity_false: sign = true; break;
- case polarity_user: sign = polarity[next]; break;
- case polarity_rnd: sign = irand(random_seed, 2); break;
- default: assert(false); }
-
- return next == var_Undef ? lit_Undef : Lit(next, sign);
-}
-
-
-/*_________________________________________________________________________________________________
-|
-| analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&) -> [void]
-|
-| Description:
-| Analyze conflict and produce a reason clause.
-|
-| Pre-conditions:
-| * 'out_learnt' is assumed to be cleared.
-| * Current decision level must be greater than root level.
-|
-| Post-conditions:
-| * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
-|
-| Effect:
-| Will undo part of the trail, upto but not beyond the assumption of the current decision level.
-|________________________________________________________________________________________________@*/
-void Solver::analyze(Clause* confl, vec<Lit>& out_learnt, int& out_btlevel)
-{
- int pathC = 0;
- Lit p = lit_Undef;
-
- // Generate conflict clause:
- //
- out_learnt.push(); // (leave room for the asserting literal)
- int index = trail.size() - 1;
- out_btlevel = 0;
-
- do{
- assert(confl != NULL); // (otherwise should be UIP)
- Clause& c = *confl;
-
- if (c.learnt())
- claBumpActivity(c);
-
- for (int j = (p == lit_Undef) ? 0 : 1; j < c.size(); j++){
- Lit q = c[j];
-
- if (!seen[var(q)] && level[var(q)] > 0){
- varBumpActivity(var(q));
- seen[var(q)] = 1;
- if (level[var(q)] >= decisionLevel())
- pathC++;
- else{
- out_learnt.push(q);
- if (level[var(q)] > out_btlevel)
- out_btlevel = level[var(q)];
- }
- }
- }
-
- // Select next clause to look at:
- while (!seen[var(trail[index--])]);
- p = trail[index+1];
- confl = getReason(p);
- seen[var(p)] = 0;
- pathC--;
-
- }while (pathC > 0);
- out_learnt[0] = ~p;
-
- // Simplify conflict clause:
- //
- int i, j;
- if (expensive_ccmin){
- uint32_t abstract_level = 0;
- for (i = 1; i < out_learnt.size(); i++)
- abstract_level |= abstractLevel(var(out_learnt[i])); // (maintain an abstraction of levels involved in conflict)
-
- out_learnt.copyTo(analyze_toclear);
- for (i = j = 1; i < out_learnt.size(); i++)
- if (getReason(out_learnt[i]) == NULL || !litRedundant(out_learnt[i], abstract_level))
- out_learnt[j++] = out_learnt[i];
- }else{
- out_learnt.copyTo(analyze_toclear);
- for (i = j = 1; i < out_learnt.size(); i++){
- Clause& c = *getReason(out_learnt[i]);
- for (int k = 1; k < c.size(); k++)
- if (!seen[var(c[k])] && level[var(c[k])] > 0){
- out_learnt[j++] = out_learnt[i];
- break; }
- }
- }
- max_literals += out_learnt.size();
- out_learnt.shrink(i - j);
- tot_literals += out_learnt.size();
-
- // Find correct backtrack level:
- //
- if (out_learnt.size() == 1)
- out_btlevel = 0;
- else{
- int max_i = 1;
- for (int i = 2; i < out_learnt.size(); i++)
- if (level[var(out_learnt[i])] > level[var(out_learnt[max_i])])
- max_i = i;
- Lit p = out_learnt[max_i];
- out_learnt[max_i] = out_learnt[1];
- out_learnt[1] = p;
- out_btlevel = level[var(p)];
- }
-
-
- for (int j = 0; j < analyze_toclear.size(); j++) seen[var(analyze_toclear[j])] = 0; // ('seen[]' is now cleared)
-}
-
-
-// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is
-// visiting literals at levels that cannot be removed later.
-bool Solver::litRedundant(Lit p, uint32_t abstract_levels)
-{
- analyze_stack.clear(); analyze_stack.push(p);
- int top = analyze_toclear.size();
- while (analyze_stack.size() > 0){
- assert(getReason(analyze_stack.last()) != NULL);
- Clause& c = *reason[var(analyze_stack.last())]; analyze_stack.pop();
-
- for (int i = 1; i < c.size(); i++){
- Lit p = c[i];
- if (!seen[var(p)] && level[var(p)] > 0){
- if (getReason(p) != NULL && (abstractLevel(var(p)) & abstract_levels) != 0){
- seen[var(p)] = 1;
- analyze_stack.push(p);
- analyze_toclear.push(p);
- }else{
- for (int j = top; j < analyze_toclear.size(); j++)
- seen[var(analyze_toclear[j])] = 0;
- analyze_toclear.shrink(analyze_toclear.size() - top);
- return false;
- }
- }
- }
- }
-
- return true;
-}
-
-
-/*_________________________________________________________________________________________________
-|
-| analyzeFinal : (p : Lit) -> [void]
-|
-| Description:
-| Specialized analysis procedure to express the final conflict in terms of assumptions.
-| Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
-| stores the result in 'out_conflict'.
-|________________________________________________________________________________________________@*/
-void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
-{
- out_conflict.clear();
- out_conflict.push(p);
-
- if (decisionLevel() == 0)
- return;
-
- seen[var(p)] = 1;
-
- for (int i = trail.size()-1; i >= trail_lim[0]; i--){
- Var x = var(trail[i]);
- if (seen[x]){
- if (reason[x] == NULL){
- assert(level[x] > 0);
- out_conflict.push(~trail[i]);
- }else{
- Clause& c = *reason[x];
- for (int j = 1; j < c.size(); j++)
- if (level[var(c[j])] > 0)
- seen[var(c[j])] = 1;
- }
- seen[x] = 0;
- }
- }
-
- seen[var(p)] = 0;
-}
-
-
-void Solver::uncheckedEnqueue(Lit p, Clause* from)
-{
- assert(value(p) == l_Undef);
- assigns [var(p)] = toInt(lbool(!sign(p))); // <<== abstract but not uttermost efficient
- level [var(p)] = decisionLevel();
- reason [var(p)] = from;
- // Added for phase-caching
- polarity [var(p)] = sign(p);
- trail.push(p);
-
- if (theory[var(p)] && from != lazy_reason) {
- // Enqueue to the theory
- proxy->enqueueTheoryLiteral(p);
- }
-}
-
-
-Clause* Solver::propagate(TheoryCheckType type)
-{
- Clause* confl = NULL;
-
- // If this is the final check, no need for Boolean propagation and
- // theory propagation
- if (type == CHECK_WITHOUTH_PROPAGATION_FINAL) {
- return theoryCheck(theory::Theory::FULL_EFFORT);
- }
-
- // The effort we will be using to theory check
- theory::Theory::Effort effort = type == CHECK_WITHOUTH_PROPAGATION_QUICK ?
- theory::Theory::QUICK_CHECK : theory::Theory::STANDARD;
-
- // Keep running until we have checked everything, we
- // have no conflict and no new literals have been asserted
- bool new_assertions;
- do {
- new_assertions = false;
- while(qhead < trail.size()) {
- confl = propagateBool();
- if (confl != NULL) break;
- confl = theoryCheck(effort);
- if (confl != NULL) break;
- }
-
- if (confl == NULL && type == CHECK_WITH_PROPAGATION_STANDARD) {
- new_assertions = propagateTheory();
- if (!new_assertions) break;
- }
- } while (new_assertions);
-
- return confl;
-}
-
-bool Solver::propagateTheory() {
- std::vector<Lit> propagatedLiterals;
- proxy->theoryPropagate(propagatedLiterals);
- const unsigned i_end = propagatedLiterals.size();
- for (unsigned i = 0; i < i_end; ++ i) {
- uncheckedEnqueue(propagatedLiterals[i], lazy_reason);
- }
- proxy->clearPropagatedLiterals();
- return propagatedLiterals.size() > 0;
-}
-
-/*_________________________________________________________________________________________________
-|
-| theoryCheck: [void] -> [Clause*]
-|
-| Description:
-| Checks all enqueued theory facts for satisfiability. If a conflict arises, the conflicting
-| clause is returned, otherwise NULL.
-|
-| Note: the propagation queue might be NOT empty
-|________________________________________________________________________________________________@*/
-Clause* Solver::theoryCheck(theory::Theory::Effort effort)
-{
- Clause* c = NULL;
- SatClause clause;
- proxy->theoryCheck(effort, clause);
- int clause_size = clause.size();
- Assert(clause_size != 1, "Can't handle unit clause explanations");
- if(clause_size > 0) {
- // Find the max level of the conflict
- int max_level = 0;
- for (int i = 0; i < clause_size; ++i) {
- int current_level = level[var(clause[i])];
- Debug("minisat") << "Literal: " << clause[i] << " with reason " << reason[var(clause[i])] << " at level " << current_level << std::endl;
- Assert(toLbool(assigns[var(clause[i])]) != l_Undef, "Got an unassigned literal in conflict!");
- if (current_level > max_level) max_level = current_level;
- }
- // If smaller than the decision level then pop back so we can analyse
- Debug("minisat") << "Max-level is " << max_level << " in decision level " << decisionLevel() << std::endl;
- Assert(max_level <= decisionLevel(), "What is going on, can't get literals of a higher level as conflict!");
- if (max_level < decisionLevel()) {
- Debug("minisat") << "Max-level is " << max_level << " in decision level " << decisionLevel() << std::endl;
- cancelUntil(max_level);
- }
- // Create the new clause and attach all the information
- c = Clause_new(clause, true);
- learnts.push(c);
- attachClause(*c);
- }
- return c;
-}
-
-/*_________________________________________________________________________________________________
-|
-| propagateBool : [void] -> [Clause*]
-|
-| Description:
-| Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
-| otherwise NULL.
-|
-| Post-conditions:
-| * the propagation queue is empty, even if there was a conflict.
-|________________________________________________________________________________________________@*/
-Clause* Solver::propagateBool()
-{
- Clause* confl = NULL;
- int num_props = 0;
-
- while (qhead < trail.size()){
- Lit p = trail[qhead++]; // 'p' is enqueued fact to propagate.
- vec<Clause*>& ws = watches[toInt(p)];
- Clause **i, **j, **end;
- num_props++;
-
- for (i = j = (Clause**)ws, end = i + ws.size(); i != end;){
- Clause& c = **i++;
-
- // Make sure the false literal is data[1]:
- Lit false_lit = ~p;
- if (c[0] == false_lit)
- c[0] = c[1], c[1] = false_lit;
-
- assert(c[1] == false_lit);
-
- // If 0th watch is true, then clause is already satisfied.
- Lit first = c[0];
- if (value(first) == l_True){
- *j++ = &c;
- }else{
- // Look for new watch:
- for (int k = 2; k < c.size(); k++)
- if (value(c[k]) != l_False){
- c[1] = c[k]; c[k] = false_lit;
- watches[toInt(~c[1])].push(&c);
- goto FoundWatch; }
-
- // Did not find watch -- clause is unit under assignment:
- *j++ = &c;
- if (value(first) == l_False){
- confl = &c;
- qhead = trail.size();
- // Copy the remaining watches:
- while (i < end)
- *j++ = *i++;
- }else
- uncheckedEnqueue(first, &c);
- }
- FoundWatch:;
- }
- ws.shrink(i - j);
- }
- propagations += num_props;
- simpDB_props -= num_props;
-
- return confl;
-}
-
-/*_________________________________________________________________________________________________
-|
-| reduceDB : () -> [void]
-|
-| Description:
-| Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
-| clauses are clauses that are reason to some assignment. Binary clauses are never removed.
-|________________________________________________________________________________________________@*/
-struct reduceDB_lt { bool operator () (Clause* x, Clause* y) { return x->size() > 2 && (y->size() == 2 || x->activity() < y->activity()); } };
-void Solver::reduceDB()
-{
- int i, j;
- double extra_lim = cla_inc / learnts.size(); // Remove any clause below this activity
-
- sort(learnts, reduceDB_lt());
- for (i = j = 0; i < learnts.size() / 2; i++){
- if (learnts[i]->size() > 2 && !locked(*learnts[i]))
- removeClause(*learnts[i]);
- else
- learnts[j++] = learnts[i];
- }
- for (; i < learnts.size(); i++){
- if (learnts[i]->size() > 2 && !locked(*learnts[i]) && learnts[i]->activity() < extra_lim)
- removeClause(*learnts[i]);
- else
- learnts[j++] = learnts[i];
- }
- learnts.shrink(i - j);
-}
-
-
-void Solver::removeSatisfied(vec<Clause*>& cs)
-{
- int i,j;
- for (i = j = 0; i < cs.size(); i++){
- if (satisfied(*cs[i]))
- removeClause(*cs[i]);
- else
- cs[j++] = cs[i];
- }
- cs.shrink(i - j);
-}
-
-
-/*_________________________________________________________________________________________________
-|
-| simplify : [void] -> [bool]
-|
-| Description:
-| Simplify the clause database according to the current top-level assigment. Currently, the only
-| thing done here is the removal of satisfied clauses, but more things can be put here.
-|________________________________________________________________________________________________@*/
-bool Solver::simplify()
-{
- assert(decisionLevel() == 0);
-
- if (!ok || propagate(CHECK_WITHOUTH_PROPAGATION_QUICK) != NULL)
- return ok = false;
-
- if (nAssigns() == simpDB_assigns || (simpDB_props > 0))
- return true;
-
- // Remove satisfied clauses:
- removeSatisfied(learnts);
- if (remove_satisfied) // Can be turned off.
- removeSatisfied(clauses);
-
- // Remove fixed variables from the variable heap:
- order_heap.filter(VarFilter(*this));
-
- simpDB_assigns = nAssigns();
- simpDB_props = clauses_literals + learnts_literals; // (shouldn't depend on stats really, but it will do for now)
-
- return true;
-}
-
-
-/*_________________________________________________________________________________________________
-|
-| search : (nof_conflicts : int) (nof_learnts : int) (params : const SearchParams&) -> [lbool]
-|
-| Description:
-| Search for a model the specified number of conflicts, keeping the number of learnt clauses
-| below the provided limit. NOTE! Use negative value for 'nof_conflicts' or 'nof_learnts' to
-| indicate infinity.
-|
-| Output:
-| 'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
-| all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
-| if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
-|________________________________________________________________________________________________@*/
-lbool Solver::search(int nof_conflicts, int nof_learnts)
-{
- assert(ok);
- int backtrack_level;
- int conflictC = 0;
- vec<Lit> learnt_clause;
-
- starts++;
-
- bool first = true;
- TheoryCheckType check_type = CHECK_WITH_PROPAGATION_STANDARD;
- for (;;){
- Clause* confl = propagate(check_type);
- if (confl != NULL){
- // CONFLICT
- conflicts++; conflictC++;
- if (decisionLevel() == 0) return l_False;
-
- first = false;
-
- learnt_clause.clear();
- analyze(confl, learnt_clause, backtrack_level);
- cancelUntil(backtrack_level);
- assert(value(learnt_clause[0]) == l_Undef);
-
- if (learnt_clause.size() == 1){
- uncheckedEnqueue(learnt_clause[0]);
- }else{
- Clause* c = Clause_new(learnt_clause, true);
- learnts.push(c);
- attachClause(*c);
- claBumpActivity(*c);
- uncheckedEnqueue(learnt_clause[0], c);
- }
-
- varDecayActivity();
- claDecayActivity();
-
- // We have a conflict so, we are going back to standard checks
- check_type = CHECK_WITH_PROPAGATION_STANDARD;
-
- }else{
- // NO CONFLICT
-
- // If this was a final check, we are satisfiable
- if (check_type == CHECK_WITHOUTH_PROPAGATION_FINAL)
- return l_True;
-
- if (nof_conflicts >= 0 && conflictC >= nof_conflicts){
- // Reached bound on number of conflicts:
- progress_estimate = progressEstimate();
- cancelUntil(0);
- return l_Undef; }
-
- // Simplify the set of problem clauses:
- if (decisionLevel() == 0 && !simplify())
- return l_False;
-
- if (nof_learnts >= 0 && learnts.size()-nAssigns() >= nof_learnts)
- // Reduce the set of learnt clauses:
- reduceDB();
-
- Lit next = lit_Undef;
- while (decisionLevel() < assumptions.size()){
- // Perform user provided assumption:
- Lit p = assumptions[decisionLevel()];
- if (value(p) == l_True){
- // Dummy decision level:
- newDecisionLevel();
- }else if (value(p) == l_False){
- analyzeFinal(~p, conflict);
- return l_False;
- }else{
- next = p;
- break;
- }
- }
-
- if (next == lit_Undef){
- // New variable decision:
- decisions++;
- next = pickBranchLit(polarity_mode, random_var_freq);
-
- if (next == lit_Undef) {
- // We need to do a full theory check to confirm
- check_type = CHECK_WITHOUTH_PROPAGATION_FINAL;
- continue;
- }
- }
-
- // Increase decision level and enqueue 'next'
- assert(value(next) == l_Undef);
- newDecisionLevel();
- uncheckedEnqueue(next);
- }
- }
-}
-
-
-double Solver::progressEstimate() const
-{
- double progress = 0;
- double F = 1.0 / nVars();
-
- for (int i = 0; i <= decisionLevel(); i++){
- int beg = i == 0 ? 0 : trail_lim[i - 1];
- int end = i == decisionLevel() ? trail.size() : trail_lim[i];
- progress += pow(F, i) * (end - beg);
- }
-
- return progress / nVars();
-}
-
-
-bool Solver::solve(const vec<Lit>& assumps)
-{
- model.clear();
- conflict.clear();
-
- if (!ok) return false;
-
- assumps.copyTo(assumptions);
-
- double nof_conflicts = restart_first;
- double nof_learnts = nClauses() * learntsize_factor;
- lbool status = l_Undef;
-
- if (verbosity >= 1){
- reportf("============================[ Search Statistics ]==============================\n");
- reportf("| Conflicts | ORIGINAL | LEARNT | Progress |\n");
- reportf("| | Vars Clauses Literals | Limit Clauses Lit/Cl | |\n");
- reportf("===============================================================================\n");
- }
-
- // Search:
- while (status == l_Undef){
- if (verbosity >= 1)
- reportf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n", (int)conflicts, order_heap.size(), nClauses(), (int)clauses_literals, (int)nof_learnts, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100), fflush(stdout);
- status = search((int)nof_conflicts, (int)nof_learnts);
- nof_conflicts *= restart_inc;
- nof_learnts *= learntsize_inc;
- }
-
- if (verbosity >= 1)
- reportf("===============================================================================\n");
-
-
- if (status == l_True){
- // Extend & copy model:
- model.growTo(nVars());
- for (int i = 0; i < nVars(); i++) model[i] = value(i);
-#ifndef NDEBUG
- verifyModel();
-#endif
- }else{
- assert(status == l_False);
- if (conflict.size() == 0)
- ok = false;
- }
-
- cancelUntil(0);
- return status == l_True;
-}
-
-//=================================================================================================
-// Debug methods:
-
-
-void Solver::verifyModel()
-{
- bool failed = false;
- for (int i = 0; i < clauses.size(); i++){
- assert(clauses[i]->mark() == 0);
- Clause& c = *clauses[i];
- for (int j = 0; j < c.size(); j++)
- if (modelValue(c[j]) == l_True)
- goto next;
-
- reportf("unsatisfied clause: ");
- printClause(*clauses[i]);
- reportf("\n");
- failed = true;
- next:;
- }
-
- assert(!failed);
-
- if(verbosity >= 1)
- reportf("Verified %d original clauses.\n", clauses.size());
-}
-
-
-void Solver::checkLiteralCount()
-{
- // Check that sizes are calculated correctly:
- int cnt = 0;
- for (int i = 0; i < clauses.size(); i++)
- if (clauses[i]->mark() == 0)
- cnt += clauses[i]->size();
-
- if ((int)clauses_literals != cnt){
- fprintf(stderr, "literal count: %d, real value = %d\n", (int)clauses_literals, cnt);
- assert((int)clauses_literals == cnt);
- }
-}
-
-}/* CVC4::prop::minisat namespace */
-}/* CVC4::prop namespace */
-}/* CVC4 namespace */
-
--- /dev/null
+/****************************************************************************************[Solver.C]
+MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#include "Solver.h"
+#include "Sort.h"
+#include "prop/sat.h"
+#include <cmath>
+
+//=================================================================================================
+// Constructor/Destructor:
+
+namespace CVC4 {
+namespace prop {
+namespace minisat {
+
+Clause* Solver::lazy_reason = reinterpret_cast<Clause*>(1);
+
+Clause* Solver::getReason(Lit l)
+{
+ if (reason[var(l)] != lazy_reason) return reason[var(l)];
+ // Get the explanation from the theory
+ SatClause explanation;
+ if (value(l) == l_True) {
+ proxy->explainPropagation(l, explanation);
+ assert(explanation[0] == l);
+ } else {
+ proxy->explainPropagation(~l, explanation);
+ assert(explanation[0] == ~l);
+ }
+ Clause* real_reason = Clause_new(explanation, true);
+ reason[var(l)] = real_reason;
+ // Add it to the database
+ learnts.push(real_reason);
+ attachClause(*real_reason);
+ return real_reason;
+}
+
+Solver::Solver(SatSolver* proxy, context::Context* context) :
+
+ // SMT stuff
+ proxy(proxy)
+ , context(context)
+
+ // Parameters: (formerly in 'SearchParams')
+ , var_decay(1 / 0.95), clause_decay(1 / 0.999), random_var_freq(0.02)
+ , restart_first(100), restart_inc(1.5), learntsize_factor((double)1/(double)3), learntsize_inc(1.1)
+
+ // More parameters:
+ //
+ , expensive_ccmin (true)
+ , polarity_mode (polarity_false)
+ , verbosity (0)
+
+ // Statistics: (formerly in 'SolverStats')
+ //
+ , starts(0), decisions(0), rnd_decisions(0), propagations(0), conflicts(0)
+ , clauses_literals(0), learnts_literals(0), max_literals(0), tot_literals(0)
+
+ , ok (true)
+ , cla_inc (1)
+ , var_inc (1)
+ , qhead (0)
+ , simpDB_assigns (-1)
+ , simpDB_props (0)
+ , order_heap (VarOrderLt(activity))
+ , random_seed (91648253)
+ , progress_estimate(0)
+ , remove_satisfied (true)
+{}
+
+
+Solver::~Solver()
+{
+ for (int i = 0; i < learnts.size(); i++) free(learnts[i]);
+ for (int i = 0; i < clauses.size(); i++) free(clauses[i]);
+}
+
+
+//=================================================================================================
+// Minor methods:
+
+
+// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be
+// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
+//
+Var Solver::newVar(bool sign, bool dvar, bool theoryAtom)
+{
+ int v = nVars();
+ watches .push(); // (list for positive literal)
+ watches .push(); // (list for negative literal)
+ reason .push(NULL);
+ assigns .push(toInt(l_Undef));
+ level .push(-1);
+ activity .push(0);
+ seen .push(0);
+
+ theory .push(theoryAtom);
+
+ polarity .push((char)sign);
+ decision_var.push((char)dvar);
+
+ insertVarOrder(v);
+ return v;
+}
+
+
+bool Solver::addClause(vec<Lit>& ps, ClauseType type)
+{
+ assert(decisionLevel() == 0);
+
+ if (!ok)
+ return false;
+ else{
+ // Check if clause is satisfied and remove false/duplicate literals:
+ sort(ps);
+ Lit p; int i, j;
+ for (i = j = 0, p = lit_Undef; i < ps.size(); i++)
+ if (value(ps[i]) == l_True || ps[i] == ~p)
+ return true;
+ else if (value(ps[i]) != l_False && ps[i] != p)
+ ps[j++] = p = ps[i];
+ ps.shrink(i - j);
+ }
+
+ if (ps.size() == 0)
+ return ok = false;
+ else if (ps.size() == 1){
+ assert(type != CLAUSE_LEMMA);
+ assert(value(ps[0]) == l_Undef);
+ uncheckedEnqueue(ps[0]);
+ return ok = (propagate(CHECK_WITHOUTH_PROPAGATION_QUICK) == NULL);
+ }else{
+ Clause* c = Clause_new(ps, false);
+ clauses.push(c);
+ if (type == CLAUSE_LEMMA) lemmas.push(c);
+ attachClause(*c);
+ }
+
+ return true;
+
+}
+
+
+void Solver::attachClause(Clause& c) {
+ assert(c.size() > 1);
+ watches[toInt(~c[0])].push(&c);
+ watches[toInt(~c[1])].push(&c);
+ if (c.learnt()) learnts_literals += c.size();
+ else clauses_literals += c.size(); }
+
+
+void Solver::detachClause(Clause& c) {
+ Debug("minisat") << "Solver::detachClause(" << c << ")" << std::endl;
+ assert(c.size() > 1);
+ assert(find(watches[toInt(~c[0])], &c));
+ assert(find(watches[toInt(~c[1])], &c));
+ remove(watches[toInt(~c[0])], &c);
+ remove(watches[toInt(~c[1])], &c);
+ if (c.learnt()) learnts_literals -= c.size();
+ else clauses_literals -= c.size(); }
+
+
+void Solver::removeClause(Clause& c) {
+ Debug("minisat") << "Solver::removeClause(" << c << ")" << std::endl;
+ detachClause(c);
+ free(&c);
+}
+
+
+bool Solver::satisfied(const Clause& c) const {
+ for (int i = 0; i < c.size(); i++)
+ if (value(c[i]) == l_True)
+ return true;
+ return false; }
+
+
+// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
+//
+void Solver::cancelUntil(int level) {
+ if (decisionLevel() > level){
+ // Pop the SMT context
+ for (int l = trail_lim.size() - level; l > 0; --l)
+ context->pop();
+ // Now the minisat stuff
+ for (int c = trail.size()-1; c >= trail_lim[level]; c--) {
+ Var x = var(trail[c]);
+ assigns[x] = toInt(l_Undef);
+ insertVarOrder(x);
+ }
+ qhead = trail_lim[level];
+ trail.shrink(trail.size() - trail_lim[level]);
+ trail_lim.shrink(trail_lim.size() - level);
+ // We can erase the lemmas now
+ for (int c = lemmas.size() - 1; c >= lemmas_lim[level]; c--) {
+ // TODO: can_erase[lemma[c]] = true;
+ }
+ lemmas.shrink(lemmas.size() - lemmas_lim[level]);
+ lemmas_lim.shrink(lemmas_lim.size() - level);
+ }
+}
+
+
+//=================================================================================================
+// Major methods:
+
+
+Lit Solver::pickBranchLit(int polarity_mode, double random_var_freq)
+{
+ Var next = var_Undef;
+
+ // Random decision:
+ if (drand(random_seed) < random_var_freq && !order_heap.empty()){
+ next = order_heap[irand(random_seed,order_heap.size())];
+ if (toLbool(assigns[next]) == l_Undef && decision_var[next])
+ rnd_decisions++; }
+
+ // Activity based decision:
+ while (next == var_Undef || toLbool(assigns[next]) != l_Undef || !decision_var[next])
+ if (order_heap.empty()){
+ next = var_Undef;
+ break;
+ }else
+ next = order_heap.removeMin();
+
+ bool sign = false;
+ switch (polarity_mode){
+ case polarity_true: sign = false; break;
+ case polarity_false: sign = true; break;
+ case polarity_user: sign = polarity[next]; break;
+ case polarity_rnd: sign = irand(random_seed, 2); break;
+ default: assert(false); }
+
+ return next == var_Undef ? lit_Undef : Lit(next, sign);
+}
+
+
+/*_________________________________________________________________________________________________
+|
+| analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&) -> [void]
+|
+| Description:
+| Analyze conflict and produce a reason clause.
+|
+| Pre-conditions:
+| * 'out_learnt' is assumed to be cleared.
+| * Current decision level must be greater than root level.
+|
+| Post-conditions:
+| * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
+|
+| Effect:
+| Will undo part of the trail, upto but not beyond the assumption of the current decision level.
+|________________________________________________________________________________________________@*/
+void Solver::analyze(Clause* confl, vec<Lit>& out_learnt, int& out_btlevel)
+{
+ int pathC = 0;
+ Lit p = lit_Undef;
+
+ // Generate conflict clause:
+ //
+ out_learnt.push(); // (leave room for the asserting literal)
+ int index = trail.size() - 1;
+ out_btlevel = 0;
+
+ do{
+ assert(confl != NULL); // (otherwise should be UIP)
+ Clause& c = *confl;
+
+ if (c.learnt())
+ claBumpActivity(c);
+
+ for (int j = (p == lit_Undef) ? 0 : 1; j < c.size(); j++){
+ Lit q = c[j];
+
+ if (!seen[var(q)] && level[var(q)] > 0){
+ varBumpActivity(var(q));
+ seen[var(q)] = 1;
+ if (level[var(q)] >= decisionLevel())
+ pathC++;
+ else{
+ out_learnt.push(q);
+ if (level[var(q)] > out_btlevel)
+ out_btlevel = level[var(q)];
+ }
+ }
+ }
+
+ // Select next clause to look at:
+ while (!seen[var(trail[index--])]);
+ p = trail[index+1];
+ confl = getReason(p);
+ seen[var(p)] = 0;
+ pathC--;
+
+ }while (pathC > 0);
+ out_learnt[0] = ~p;
+
+ // Simplify conflict clause:
+ //
+ int i, j;
+ if (expensive_ccmin){
+ uint32_t abstract_level = 0;
+ for (i = 1; i < out_learnt.size(); i++)
+ abstract_level |= abstractLevel(var(out_learnt[i])); // (maintain an abstraction of levels involved in conflict)
+
+ out_learnt.copyTo(analyze_toclear);
+ for (i = j = 1; i < out_learnt.size(); i++)
+ if (getReason(out_learnt[i]) == NULL || !litRedundant(out_learnt[i], abstract_level))
+ out_learnt[j++] = out_learnt[i];
+ }else{
+ out_learnt.copyTo(analyze_toclear);
+ for (i = j = 1; i < out_learnt.size(); i++){
+ Clause& c = *getReason(out_learnt[i]);
+ for (int k = 1; k < c.size(); k++)
+ if (!seen[var(c[k])] && level[var(c[k])] > 0){
+ out_learnt[j++] = out_learnt[i];
+ break; }
+ }
+ }
+ max_literals += out_learnt.size();
+ out_learnt.shrink(i - j);
+ tot_literals += out_learnt.size();
+
+ // Find correct backtrack level:
+ //
+ if (out_learnt.size() == 1)
+ out_btlevel = 0;
+ else{
+ int max_i = 1;
+ for (int i = 2; i < out_learnt.size(); i++)
+ if (level[var(out_learnt[i])] > level[var(out_learnt[max_i])])
+ max_i = i;
+ Lit p = out_learnt[max_i];
+ out_learnt[max_i] = out_learnt[1];
+ out_learnt[1] = p;
+ out_btlevel = level[var(p)];
+ }
+
+
+ for (int j = 0; j < analyze_toclear.size(); j++) seen[var(analyze_toclear[j])] = 0; // ('seen[]' is now cleared)
+}
+
+
+// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is
+// visiting literals at levels that cannot be removed later.
+bool Solver::litRedundant(Lit p, uint32_t abstract_levels)
+{
+ analyze_stack.clear(); analyze_stack.push(p);
+ int top = analyze_toclear.size();
+ while (analyze_stack.size() > 0){
+ assert(getReason(analyze_stack.last()) != NULL);
+ Clause& c = *reason[var(analyze_stack.last())]; analyze_stack.pop();
+
+ for (int i = 1; i < c.size(); i++){
+ Lit p = c[i];
+ if (!seen[var(p)] && level[var(p)] > 0){
+ if (getReason(p) != NULL && (abstractLevel(var(p)) & abstract_levels) != 0){
+ seen[var(p)] = 1;
+ analyze_stack.push(p);
+ analyze_toclear.push(p);
+ }else{
+ for (int j = top; j < analyze_toclear.size(); j++)
+ seen[var(analyze_toclear[j])] = 0;
+ analyze_toclear.shrink(analyze_toclear.size() - top);
+ return false;
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+
+/*_________________________________________________________________________________________________
+|
+| analyzeFinal : (p : Lit) -> [void]
+|
+| Description:
+| Specialized analysis procedure to express the final conflict in terms of assumptions.
+| Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
+| stores the result in 'out_conflict'.
+|________________________________________________________________________________________________@*/
+void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
+{
+ out_conflict.clear();
+ out_conflict.push(p);
+
+ if (decisionLevel() == 0)
+ return;
+
+ seen[var(p)] = 1;
+
+ for (int i = trail.size()-1; i >= trail_lim[0]; i--){
+ Var x = var(trail[i]);
+ if (seen[x]){
+ if (reason[x] == NULL){
+ assert(level[x] > 0);
+ out_conflict.push(~trail[i]);
+ }else{
+ Clause& c = *reason[x];
+ for (int j = 1; j < c.size(); j++)
+ if (level[var(c[j])] > 0)
+ seen[var(c[j])] = 1;
+ }
+ seen[x] = 0;
+ }
+ }
+
+ seen[var(p)] = 0;
+}
+
+
+void Solver::uncheckedEnqueue(Lit p, Clause* from)
+{
+ assert(value(p) == l_Undef);
+ assigns [var(p)] = toInt(lbool(!sign(p))); // <<== abstract but not uttermost efficient
+ level [var(p)] = decisionLevel();
+ reason [var(p)] = from;
+ // Added for phase-caching
+ polarity [var(p)] = sign(p);
+ trail.push(p);
+
+ if (theory[var(p)] && from != lazy_reason) {
+ // Enqueue to the theory
+ proxy->enqueueTheoryLiteral(p);
+ }
+}
+
+
+Clause* Solver::propagate(TheoryCheckType type)
+{
+ Clause* confl = NULL;
+
+ // If this is the final check, no need for Boolean propagation and
+ // theory propagation
+ if (type == CHECK_WITHOUTH_PROPAGATION_FINAL) {
+ return theoryCheck(theory::Theory::FULL_EFFORT);
+ }
+
+ // The effort we will be using to theory check
+ theory::Theory::Effort effort = type == CHECK_WITHOUTH_PROPAGATION_QUICK ?
+ theory::Theory::QUICK_CHECK : theory::Theory::STANDARD;
+
+ // Keep running until we have checked everything, we
+ // have no conflict and no new literals have been asserted
+ bool new_assertions;
+ do {
+ new_assertions = false;
+ while(qhead < trail.size()) {
+ confl = propagateBool();
+ if (confl != NULL) break;
+ confl = theoryCheck(effort);
+ if (confl != NULL) break;
+ }
+
+ if (confl == NULL && type == CHECK_WITH_PROPAGATION_STANDARD) {
+ new_assertions = propagateTheory();
+ if (!new_assertions) break;
+ }
+ } while (new_assertions);
+
+ return confl;
+}
+
+bool Solver::propagateTheory() {
+ std::vector<Lit> propagatedLiterals;
+ proxy->theoryPropagate(propagatedLiterals);
+ const unsigned i_end = propagatedLiterals.size();
+ for (unsigned i = 0; i < i_end; ++ i) {
+ uncheckedEnqueue(propagatedLiterals[i], lazy_reason);
+ }
+ proxy->clearPropagatedLiterals();
+ return propagatedLiterals.size() > 0;
+}
+
+/*_________________________________________________________________________________________________
+|
+| theoryCheck: [void] -> [Clause*]
+|
+| Description:
+| Checks all enqueued theory facts for satisfiability. If a conflict arises, the conflicting
+| clause is returned, otherwise NULL.
+|
+| Note: the propagation queue might be NOT empty
+|________________________________________________________________________________________________@*/
+Clause* Solver::theoryCheck(theory::Theory::Effort effort)
+{
+ Clause* c = NULL;
+ SatClause clause;
+ proxy->theoryCheck(effort, clause);
+ int clause_size = clause.size();
+ Assert(clause_size != 1, "Can't handle unit clause explanations");
+ if(clause_size > 0) {
+ // Find the max level of the conflict
+ int max_level = 0;
+ for (int i = 0; i < clause_size; ++i) {
+ int current_level = level[var(clause[i])];
+ Debug("minisat") << "Literal: " << clause[i] << " with reason " << reason[var(clause[i])] << " at level " << current_level << std::endl;
+ Assert(toLbool(assigns[var(clause[i])]) != l_Undef, "Got an unassigned literal in conflict!");
+ if (current_level > max_level) max_level = current_level;
+ }
+ // If smaller than the decision level then pop back so we can analyse
+ Debug("minisat") << "Max-level is " << max_level << " in decision level " << decisionLevel() << std::endl;
+ Assert(max_level <= decisionLevel(), "What is going on, can't get literals of a higher level as conflict!");
+ if (max_level < decisionLevel()) {
+ Debug("minisat") << "Max-level is " << max_level << " in decision level " << decisionLevel() << std::endl;
+ cancelUntil(max_level);
+ }
+ // Create the new clause and attach all the information
+ c = Clause_new(clause, true);
+ learnts.push(c);
+ attachClause(*c);
+ }
+ return c;
+}
+
+/*_________________________________________________________________________________________________
+|
+| propagateBool : [void] -> [Clause*]
+|
+| Description:
+| Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
+| otherwise NULL.
+|
+| Post-conditions:
+| * the propagation queue is empty, even if there was a conflict.
+|________________________________________________________________________________________________@*/
+Clause* Solver::propagateBool()
+{
+ Clause* confl = NULL;
+ int num_props = 0;
+
+ while (qhead < trail.size()){
+ Lit p = trail[qhead++]; // 'p' is enqueued fact to propagate.
+ vec<Clause*>& ws = watches[toInt(p)];
+ Clause **i, **j, **end;
+ num_props++;
+
+ for (i = j = (Clause**)ws, end = i + ws.size(); i != end;){
+ Clause& c = **i++;
+
+ // Make sure the false literal is data[1]:
+ Lit false_lit = ~p;
+ if (c[0] == false_lit)
+ c[0] = c[1], c[1] = false_lit;
+
+ assert(c[1] == false_lit);
+
+ // If 0th watch is true, then clause is already satisfied.
+ Lit first = c[0];
+ if (value(first) == l_True){
+ *j++ = &c;
+ }else{
+ // Look for new watch:
+ for (int k = 2; k < c.size(); k++)
+ if (value(c[k]) != l_False){
+ c[1] = c[k]; c[k] = false_lit;
+ watches[toInt(~c[1])].push(&c);
+ goto FoundWatch; }
+
+ // Did not find watch -- clause is unit under assignment:
+ *j++ = &c;
+ if (value(first) == l_False){
+ confl = &c;
+ qhead = trail.size();
+ // Copy the remaining watches:
+ while (i < end)
+ *j++ = *i++;
+ }else
+ uncheckedEnqueue(first, &c);
+ }
+ FoundWatch:;
+ }
+ ws.shrink(i - j);
+ }
+ propagations += num_props;
+ simpDB_props -= num_props;
+
+ return confl;
+}
+
+/*_________________________________________________________________________________________________
+|
+| reduceDB : () -> [void]
+|
+| Description:
+| Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
+| clauses are clauses that are reason to some assignment. Binary clauses are never removed.
+|________________________________________________________________________________________________@*/
+struct reduceDB_lt { bool operator () (Clause* x, Clause* y) { return x->size() > 2 && (y->size() == 2 || x->activity() < y->activity()); } };
+void Solver::reduceDB()
+{
+ int i, j;
+ double extra_lim = cla_inc / learnts.size(); // Remove any clause below this activity
+
+ sort(learnts, reduceDB_lt());
+ for (i = j = 0; i < learnts.size() / 2; i++){
+ if (learnts[i]->size() > 2 && !locked(*learnts[i]))
+ removeClause(*learnts[i]);
+ else
+ learnts[j++] = learnts[i];
+ }
+ for (; i < learnts.size(); i++){
+ if (learnts[i]->size() > 2 && !locked(*learnts[i]) && learnts[i]->activity() < extra_lim)
+ removeClause(*learnts[i]);
+ else
+ learnts[j++] = learnts[i];
+ }
+ learnts.shrink(i - j);
+}
+
+
+void Solver::removeSatisfied(vec<Clause*>& cs)
+{
+ int i,j;
+ for (i = j = 0; i < cs.size(); i++){
+ if (satisfied(*cs[i]))
+ removeClause(*cs[i]);
+ else
+ cs[j++] = cs[i];
+ }
+ cs.shrink(i - j);
+}
+
+
+/*_________________________________________________________________________________________________
+|
+| simplify : [void] -> [bool]
+|
+| Description:
+| Simplify the clause database according to the current top-level assigment. Currently, the only
+| thing done here is the removal of satisfied clauses, but more things can be put here.
+|________________________________________________________________________________________________@*/
+bool Solver::simplify()
+{
+ assert(decisionLevel() == 0);
+
+ if (!ok || propagate(CHECK_WITHOUTH_PROPAGATION_QUICK) != NULL)
+ return ok = false;
+
+ if (nAssigns() == simpDB_assigns || (simpDB_props > 0))
+ return true;
+
+ // Remove satisfied clauses:
+ removeSatisfied(learnts);
+ if (remove_satisfied) // Can be turned off.
+ removeSatisfied(clauses);
+
+ // Remove fixed variables from the variable heap:
+ order_heap.filter(VarFilter(*this));
+
+ simpDB_assigns = nAssigns();
+ simpDB_props = clauses_literals + learnts_literals; // (shouldn't depend on stats really, but it will do for now)
+
+ return true;
+}
+
+
+/*_________________________________________________________________________________________________
+|
+| search : (nof_conflicts : int) (nof_learnts : int) (params : const SearchParams&) -> [lbool]
+|
+| Description:
+| Search for a model the specified number of conflicts, keeping the number of learnt clauses
+| below the provided limit. NOTE! Use negative value for 'nof_conflicts' or 'nof_learnts' to
+| indicate infinity.
+|
+| Output:
+| 'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
+| all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
+| if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
+|________________________________________________________________________________________________@*/
+lbool Solver::search(int nof_conflicts, int nof_learnts)
+{
+ assert(ok);
+ int backtrack_level;
+ int conflictC = 0;
+ vec<Lit> learnt_clause;
+
+ starts++;
+
+ bool first = true;
+ TheoryCheckType check_type = CHECK_WITH_PROPAGATION_STANDARD;
+ for (;;){
+ Clause* confl = propagate(check_type);
+ if (confl != NULL){
+ // CONFLICT
+ conflicts++; conflictC++;
+ if (decisionLevel() == 0) return l_False;
+
+ first = false;
+
+ learnt_clause.clear();
+ analyze(confl, learnt_clause, backtrack_level);
+ cancelUntil(backtrack_level);
+ assert(value(learnt_clause[0]) == l_Undef);
+
+ if (learnt_clause.size() == 1){
+ uncheckedEnqueue(learnt_clause[0]);
+ }else{
+ Clause* c = Clause_new(learnt_clause, true);
+ learnts.push(c);
+ attachClause(*c);
+ claBumpActivity(*c);
+ uncheckedEnqueue(learnt_clause[0], c);
+ }
+
+ varDecayActivity();
+ claDecayActivity();
+
+ // We have a conflict so, we are going back to standard checks
+ check_type = CHECK_WITH_PROPAGATION_STANDARD;
+
+ }else{
+ // NO CONFLICT
+
+ // If this was a final check, we are satisfiable
+ if (check_type == CHECK_WITHOUTH_PROPAGATION_FINAL)
+ return l_True;
+
+ if (nof_conflicts >= 0 && conflictC >= nof_conflicts){
+ // Reached bound on number of conflicts:
+ progress_estimate = progressEstimate();
+ cancelUntil(0);
+ return l_Undef; }
+
+ // Simplify the set of problem clauses:
+ if (decisionLevel() == 0 && !simplify())
+ return l_False;
+
+ if (nof_learnts >= 0 && learnts.size()-nAssigns() >= nof_learnts)
+ // Reduce the set of learnt clauses:
+ reduceDB();
+
+ Lit next = lit_Undef;
+ while (decisionLevel() < assumptions.size()){
+ // Perform user provided assumption:
+ Lit p = assumptions[decisionLevel()];
+ if (value(p) == l_True){
+ // Dummy decision level:
+ newDecisionLevel();
+ }else if (value(p) == l_False){
+ analyzeFinal(~p, conflict);
+ return l_False;
+ }else{
+ next = p;
+ break;
+ }
+ }
+
+ if (next == lit_Undef){
+ // New variable decision:
+ decisions++;
+ next = pickBranchLit(polarity_mode, random_var_freq);
+
+ if (next == lit_Undef) {
+ // We need to do a full theory check to confirm
+ check_type = CHECK_WITHOUTH_PROPAGATION_FINAL;
+ continue;
+ }
+ }
+
+ // Increase decision level and enqueue 'next'
+ assert(value(next) == l_Undef);
+ newDecisionLevel();
+ uncheckedEnqueue(next);
+ }
+ }
+}
+
+
+double Solver::progressEstimate() const
+{
+ double progress = 0;
+ double F = 1.0 / nVars();
+
+ for (int i = 0; i <= decisionLevel(); i++){
+ int beg = i == 0 ? 0 : trail_lim[i - 1];
+ int end = i == decisionLevel() ? trail.size() : trail_lim[i];
+ progress += pow(F, i) * (end - beg);
+ }
+
+ return progress / nVars();
+}
+
+
+bool Solver::solve(const vec<Lit>& assumps)
+{
+ model.clear();
+ conflict.clear();
+
+ if (!ok) return false;
+
+ assumps.copyTo(assumptions);
+
+ double nof_conflicts = restart_first;
+ double nof_learnts = nClauses() * learntsize_factor;
+ lbool status = l_Undef;
+
+ if (verbosity >= 1){
+ reportf("============================[ Search Statistics ]==============================\n");
+ reportf("| Conflicts | ORIGINAL | LEARNT | Progress |\n");
+ reportf("| | Vars Clauses Literals | Limit Clauses Lit/Cl | |\n");
+ reportf("===============================================================================\n");
+ }
+
+ // Search:
+ while (status == l_Undef){
+ if (verbosity >= 1)
+ reportf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n", (int)conflicts, order_heap.size(), nClauses(), (int)clauses_literals, (int)nof_learnts, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100), fflush(stdout);
+ status = search((int)nof_conflicts, (int)nof_learnts);
+ nof_conflicts *= restart_inc;
+ nof_learnts *= learntsize_inc;
+ }
+
+ if (verbosity >= 1)
+ reportf("===============================================================================\n");
+
+
+ if (status == l_True){
+ // Extend & copy model:
+ model.growTo(nVars());
+ for (int i = 0; i < nVars(); i++) model[i] = value(i);
+#ifndef NDEBUG
+ verifyModel();
+#endif
+ }else{
+ assert(status == l_False);
+ if (conflict.size() == 0)
+ ok = false;
+ }
+
+ cancelUntil(0);
+ return status == l_True;
+}
+
+//=================================================================================================
+// Debug methods:
+
+
+void Solver::verifyModel()
+{
+ bool failed = false;
+ for (int i = 0; i < clauses.size(); i++){
+ assert(clauses[i]->mark() == 0);
+ Clause& c = *clauses[i];
+ for (int j = 0; j < c.size(); j++)
+ if (modelValue(c[j]) == l_True)
+ goto next;
+
+ reportf("unsatisfied clause: ");
+ printClause(*clauses[i]);
+ reportf("\n");
+ failed = true;
+ next:;
+ }
+
+ assert(!failed);
+
+ if(verbosity >= 1)
+ reportf("Verified %d original clauses.\n", clauses.size());
+}
+
+
+void Solver::checkLiteralCount()
+{
+ // Check that sizes are calculated correctly:
+ int cnt = 0;
+ for (int i = 0; i < clauses.size(); i++)
+ if (clauses[i]->mark() == 0)
+ cnt += clauses[i]->size();
+
+ if ((int)clauses_literals != cnt){
+ fprintf(stderr, "literal count: %d, real value = %d\n", (int)clauses_literals, cnt);
+ assert((int)clauses_literals == cnt);
+ }
+}
+
+}/* CVC4::prop::minisat namespace */
+}/* CVC4::prop namespace */
+}/* CVC4 namespace */
+
+++ /dev/null
-/******************************************************************************************[Main.C]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#include <ctime>
-#include <cstring>
-#include <stdint.h>
-#include <errno.h>
-
-#include <signal.h>
-#include <zlib.h>
-
-#include "SimpSolver.h"
-
-/*************************************************************************************/
-#ifdef _MSC_VER
-#include <ctime>
-
-static inline double cpuTime(void) {
- return (double)clock() / CLOCKS_PER_SEC; }
-#else
-
-#include <sys/time.h>
-#include <sys/resource.h>
-#include <unistd.h>
-
-static inline double cpuTime(void) {
- struct rusage ru;
- getrusage(RUSAGE_SELF, &ru);
- return (double)ru.ru_utime.tv_sec + (double)ru.ru_utime.tv_usec / 1000000; }
-#endif
-
-
-#if defined(__linux__)
-static inline int memReadStat(int field)
-{
- char name[256];
- pid_t pid = getpid();
- sprintf(name, "/proc/%d/statm", pid);
- FILE* in = fopen(name, "rb");
- if (in == NULL) return 0;
- int value;
- for (; field >= 0; field--)
- fscanf(in, "%d", &value);
- fclose(in);
- return value;
-}
-static inline uint64_t memUsed() { return (uint64_t)memReadStat(0) * (uint64_t)getpagesize(); }
-
-
-#elif defined(__FreeBSD__)
-static inline uint64_t memUsed(void) {
- struct rusage ru;
- getrusage(RUSAGE_SELF, &ru);
- return ru.ru_maxrss*1024; }
-
-
-#else
-static inline uint64_t memUsed() { return 0; }
-#endif
-
-#if defined(__linux__)
-#include <fpu_control.h>
-#endif
-
-
-//=================================================================================================
-// DIMACS Parser:
-
-#define CHUNK_LIMIT 1048576
-
-class StreamBuffer {
- gzFile in;
- char buf[CHUNK_LIMIT];
- int pos;
- int size;
-
- void assureLookahead() {
- if (pos >= size) {
- pos = 0;
- size = gzread(in, buf, sizeof(buf)); } }
-
-public:
- StreamBuffer(gzFile i) : in(i), pos(0), size(0) {
- assureLookahead(); }
-
- int operator * () { return (pos >= size) ? EOF : buf[pos]; }
- void operator ++ () { pos++; assureLookahead(); }
-};
-
-//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-template<class B>
-static void skipWhitespace(B& in) {
- while ((*in >= 9 && *in <= 13) || *in == 32)
- ++in; }
-
-template<class B>
-static void skipLine(B& in) {
- for (;;){
- if (*in == EOF || *in == '\0') return;
- if (*in == '\n') { ++in; return; }
- ++in; } }
-
-template<class B>
-static int parseInt(B& in) {
- int val = 0;
- bool neg = false;
- skipWhitespace(in);
- if (*in == '-') neg = true, ++in;
- else if (*in == '+') ++in;
- if (*in < '0' || *in > '9') reportf("PARSE ERROR! Unexpected char: %c\n", *in), exit(3);
- while (*in >= '0' && *in <= '9')
- val = val*10 + (*in - '0'),
- ++in;
- return neg ? -val : val; }
-
-template<class B>
-static void readClause(B& in, SimpSolver& S, vec<Lit>& lits) {
- int parsed_lit, var;
- lits.clear();
- for (;;){
- parsed_lit = parseInt(in);
- if (parsed_lit == 0) break;
- var = abs(parsed_lit)-1;
- while (var >= S.nVars()) S.newVar();
- lits.push( (parsed_lit > 0) ? Lit(var) : ~Lit(var) );
- }
-}
-
-template<class B>
-static bool match(B& in, char* str) {
- for (; *str != 0; ++str, ++in)
- if (*str != *in)
- return false;
- return true;
-}
-
-
-template<class B>
-static void parse_DIMACS_main(B& in, SimpSolver& S) {
- vec<Lit> lits;
- for (;;){
- skipWhitespace(in);
- if (*in == EOF) break;
- else if (*in == 'p'){
- if (match(in, "p cnf")){
- int vars = parseInt(in);
- int clauses = parseInt(in);
- reportf("| Number of variables: %-12d |\n", vars);
- reportf("| Number of clauses: %-12d |\n", clauses);
-
- // SATRACE'06 hack
- if (clauses > 4000000)
- S.eliminate(true);
- }else{
- reportf("PARSE ERROR! Unexpected char: %c\n", *in), exit(3);
- }
- } else if (*in == 'c' || *in == 'p')
- skipLine(in);
- else{
- readClause(in, S, lits);
- S.addClause(lits); }
- }
-}
-
-// Inserts problem into solver.
-//
-static void parse_DIMACS(gzFile input_stream, SimpSolver& S) {
- StreamBuffer in(input_stream);
- parse_DIMACS_main(in, S); }
-
-
-//=================================================================================================
-
-
-void printStats(Solver& S)
-{
- double cpu_time = cpuTime();
- uint64_t mem_used = memUsed();
- reportf("restarts : %lld\n", S.starts);
- reportf("conflicts : %-12lld (%.0f /sec)\n", S.conflicts , S.conflicts /cpu_time);
- reportf("decisions : %-12lld (%4.2f %% random) (%.0f /sec)\n", S.decisions, (float)S.rnd_decisions*100 / (float)S.decisions, S.decisions /cpu_time);
- reportf("propagations : %-12lld (%.0f /sec)\n", S.propagations, S.propagations/cpu_time);
- reportf("conflict literals : %-12lld (%4.2f %% deleted)\n", S.tot_literals, (S.max_literals - S.tot_literals)*100 / (double)S.max_literals);
- if (mem_used != 0) reportf("Memory used : %.2f MB\n", mem_used / 1048576.0);
- reportf("CPU time : %g s\n", cpu_time);
-}
-
-SimpSolver* solver;
-static void SIGINT_handler(int signum) {
- reportf("\n"); reportf("*** INTERRUPTED ***\n");
- printStats(*solver);
- reportf("\n"); reportf("*** INTERRUPTED ***\n");
- exit(1); }
-
-
-//=================================================================================================
-// Main:
-
-void printUsage(char** argv)
-{
- reportf("USAGE: %s [options] <input-file> <result-output-file>\n\n where input may be either in plain or gzipped DIMACS.\n\n", argv[0]);
- reportf("OPTIONS:\n\n");
- reportf(" -pre = {none,once}\n");
- reportf(" -asymm\n");
- reportf(" -rcheck\n");
- reportf(" -grow = <num> [ >0 ]\n");
- reportf(" -polarity-mode = {true,false,rnd}\n");
- reportf(" -decay = <num> [ 0 - 1 ]\n");
- reportf(" -rnd-freq = <num> [ 0 - 1 ]\n");
- reportf(" -dimacs = <output-file>\n");
- reportf(" -verbosity = {0,1,2}\n");
- reportf("\n");
-}
-
-typedef enum { pre_none, pre_once, pre_repeat } preprocessMode;
-
-const char* hasPrefix(const char* str, const char* prefix)
-{
- int len = strlen(prefix);
- if (strncmp(str, prefix, len) == 0)
- return str + len;
- else
- return NULL;
-}
-
-
-int main(int argc, char** argv)
-{
- reportf("This is MiniSat 2.0 beta\n");
-#if defined(__linux__)
- fpu_control_t oldcw, newcw;
- _FPU_GETCW(oldcw); newcw = (oldcw & ~_FPU_EXTENDED) | _FPU_DOUBLE; _FPU_SETCW(newcw);
- reportf("WARNING: for repeatability, setting FPU to use double precision\n");
-#endif
- preprocessMode pre = pre_once;
- const char* dimacs = NULL;
- const char* freeze = NULL;
- SimpSolver S;
- S.verbosity = 1;
-
- // This just grew and grew, and I didn't have time to do sensible argument parsing yet :)
- //
- int i, j;
- const char* value;
- for (i = j = 0; i < argc; i++){
- if ((value = hasPrefix(argv[i], "-polarity-mode="))){
- if (strcmp(value, "true") == 0)
- S.polarity_mode = Solver::polarity_true;
- else if (strcmp(value, "false") == 0)
- S.polarity_mode = Solver::polarity_false;
- else if (strcmp(value, "rnd") == 0)
- S.polarity_mode = Solver::polarity_rnd;
- else{
- reportf("ERROR! unknown polarity-mode %s\n", value);
- exit(0); }
-
- }else if ((value = hasPrefix(argv[i], "-rnd-freq="))){
- double rnd;
- if (sscanf(value, "%lf", &rnd) <= 0 || rnd < 0 || rnd > 1){
- reportf("ERROR! illegal rnd-freq constant %s\n", value);
- exit(0); }
- S.random_var_freq = rnd;
-
- }else if ((value = hasPrefix(argv[i], "-decay="))){
- double decay;
- if (sscanf(value, "%lf", &decay) <= 0 || decay <= 0 || decay > 1){
- reportf("ERROR! illegal decay constant %s\n", value);
- exit(0); }
- S.var_decay = 1 / decay;
-
- }else if ((value = hasPrefix(argv[i], "-verbosity="))){
- int verbosity = (int)strtol(value, NULL, 10);
- if (verbosity == 0 && errno == EINVAL){
- reportf("ERROR! illegal verbosity level %s\n", value);
- exit(0); }
- S.verbosity = verbosity;
-
- }else if ((value = hasPrefix(argv[i], "-pre="))){
- if (strcmp(value, "none") == 0)
- pre = pre_none;
- else if (strcmp(value, "once") == 0)
- pre = pre_once;
- else if (strcmp(value, "repeat") == 0){
- pre = pre_repeat;
- reportf("ERROR! preprocessing mode \"repeat\" is not supported at the moment.\n");
- exit(0);
- }else{
- reportf("ERROR! unknown preprocessing mode %s\n", value);
- exit(0); }
- }else if (strcmp(argv[i], "-asymm") == 0){
- S.asymm_mode = true;
- }else if (strcmp(argv[i], "-rcheck") == 0){
- S.redundancy_check = true;
- }else if ((value = hasPrefix(argv[i], "-grow="))){
- int grow = (int)strtol(value, NULL, 10);
- if (grow == 0 && errno == EINVAL){
- reportf("ERROR! illegal grow constant %s\n", &argv[i][6]);
- exit(0); }
- S.grow = grow;
- }else if ((value = hasPrefix(argv[i], "-dimacs="))){
- dimacs = value;
- }else if ((value = hasPrefix(argv[i], "-freeze="))){
- freeze = value;
- }else if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "-help") == 0){
- printUsage(argv);
- exit(0);
- }else if (strncmp(argv[i], "-", 1) == 0){
- reportf("ERROR! unknown flag %s\n", argv[i]);
- exit(0);
- }else
- argv[j++] = argv[i];
- }
- argc = j;
-
- double cpu_time = cpuTime();
-
- if (pre == pre_none)
- S.eliminate(true);
-
- solver = &S;
- signal(SIGINT,SIGINT_handler);
- signal(SIGHUP,SIGINT_handler);
-
- if (argc == 1)
- reportf("Reading from standard input... Use '-h' or '--help' for help.\n");
-
- gzFile in = (argc == 1) ? gzdopen(0, "rb") : gzopen(argv[1], "rb");
- if (in == NULL)
- reportf("ERROR! Could not open file: %s\n", argc == 1 ? "<stdin>" : argv[1]), exit(1);
-
- reportf("============================[ Problem Statistics ]=============================\n");
- reportf("| |\n");
-
- parse_DIMACS(in, S);
- gzclose(in);
- FILE* res = (argc >= 3) ? fopen(argv[2], "wb") : NULL;
-
-
- double parse_time = cpuTime() - cpu_time;
- reportf("| Parsing time: %-12.2f s |\n", parse_time);
-
- /*HACK: Freeze variables*/
- if (freeze != NULL && pre != pre_none){
- int count = 0;
- FILE* in = fopen(freeze, "rb");
- for(;;){
- Var x;
- fscanf(in, "%d", &x);
- if (x == 0) break;
- x--;
-
- /**/assert(S.n_occ[toInt(Lit(x))] + S.n_occ[toInt(~Lit(x))] != 0);
- /**/assert(S.value(x) == l_Undef);
- S.setFrozen(x, true);
- count++;
- }
- fclose(in);
- reportf("| Frozen vars : %-12.0f |\n", (double)count);
- }
- /*END*/
-
- if (!S.simplify()){
- reportf("Solved by unit propagation\n");
- if (res != NULL) fprintf(res, "UNSAT\n"), fclose(res);
- printf("UNSATISFIABLE\n");
- exit(20);
- }
-
- if (dimacs){
- if (pre != pre_none)
- S.eliminate(true);
- reportf("==============================[ Writing DIMACS ]===============================\n");
- S.toDimacs(dimacs);
- printStats(S);
- exit(0);
- }else{
- bool ret = S.solve(true, true);
- printStats(S);
- reportf("\n");
-
- printf(ret ? "SATISFIABLE\n" : "UNSATISFIABLE\n");
- if (res != NULL){
- if (ret){
- fprintf(res, "SAT\n");
- for (int i = 0; i < S.nVars(); i++)
- if (S.model[i] != l_Undef)
- fprintf(res, "%s%s%d", (i==0)?"":" ", (S.model[i]==l_True)?"":"-", i+1);
- fprintf(res, " 0\n");
- }else
- fprintf(res, "UNSAT\n");
- fclose(res);
- }
-#ifdef NDEBUG
- exit(ret ? 10 : 20); // (faster than "return", which will invoke the destructor for 'Solver')
-#endif
- }
-
-}
--- /dev/null
+/******************************************************************************************[Main.C]
+MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#include <ctime>
+#include <cstring>
+#include <stdint.h>
+#include <errno.h>
+
+#include <signal.h>
+#include <zlib.h>
+
+#include "SimpSolver.h"
+
+/*************************************************************************************/
+#ifdef _MSC_VER
+#include <ctime>
+
+static inline double cpuTime(void) {
+ return (double)clock() / CLOCKS_PER_SEC; }
+#else
+
+#include <sys/time.h>
+#include <sys/resource.h>
+#include <unistd.h>
+
+static inline double cpuTime(void) {
+ struct rusage ru;
+ getrusage(RUSAGE_SELF, &ru);
+ return (double)ru.ru_utime.tv_sec + (double)ru.ru_utime.tv_usec / 1000000; }
+#endif
+
+
+#if defined(__linux__)
+static inline int memReadStat(int field)
+{
+ char name[256];
+ pid_t pid = getpid();
+ sprintf(name, "/proc/%d/statm", pid);
+ FILE* in = fopen(name, "rb");
+ if (in == NULL) return 0;
+ int value;
+ for (; field >= 0; field--)
+ fscanf(in, "%d", &value);
+ fclose(in);
+ return value;
+}
+static inline uint64_t memUsed() { return (uint64_t)memReadStat(0) * (uint64_t)getpagesize(); }
+
+
+#elif defined(__FreeBSD__)
+static inline uint64_t memUsed(void) {
+ struct rusage ru;
+ getrusage(RUSAGE_SELF, &ru);
+ return ru.ru_maxrss*1024; }
+
+
+#else
+static inline uint64_t memUsed() { return 0; }
+#endif
+
+#if defined(__linux__)
+#include <fpu_control.h>
+#endif
+
+
+//=================================================================================================
+// DIMACS Parser:
+
+#define CHUNK_LIMIT 1048576
+
+class StreamBuffer {
+ gzFile in;
+ char buf[CHUNK_LIMIT];
+ int pos;
+ int size;
+
+ void assureLookahead() {
+ if (pos >= size) {
+ pos = 0;
+ size = gzread(in, buf, sizeof(buf)); } }
+
+public:
+ StreamBuffer(gzFile i) : in(i), pos(0), size(0) {
+ assureLookahead(); }
+
+ int operator * () { return (pos >= size) ? EOF : buf[pos]; }
+ void operator ++ () { pos++; assureLookahead(); }
+};
+
+//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+
+template<class B>
+static void skipWhitespace(B& in) {
+ while ((*in >= 9 && *in <= 13) || *in == 32)
+ ++in; }
+
+template<class B>
+static void skipLine(B& in) {
+ for (;;){
+ if (*in == EOF || *in == '\0') return;
+ if (*in == '\n') { ++in; return; }
+ ++in; } }
+
+template<class B>
+static int parseInt(B& in) {
+ int val = 0;
+ bool neg = false;
+ skipWhitespace(in);
+ if (*in == '-') neg = true, ++in;
+ else if (*in == '+') ++in;
+ if (*in < '0' || *in > '9') reportf("PARSE ERROR! Unexpected char: %c\n", *in), exit(3);
+ while (*in >= '0' && *in <= '9')
+ val = val*10 + (*in - '0'),
+ ++in;
+ return neg ? -val : val; }
+
+template<class B>
+static void readClause(B& in, SimpSolver& S, vec<Lit>& lits) {
+ int parsed_lit, var;
+ lits.clear();
+ for (;;){
+ parsed_lit = parseInt(in);
+ if (parsed_lit == 0) break;
+ var = abs(parsed_lit)-1;
+ while (var >= S.nVars()) S.newVar();
+ lits.push( (parsed_lit > 0) ? Lit(var) : ~Lit(var) );
+ }
+}
+
+template<class B>
+static bool match(B& in, char* str) {
+ for (; *str != 0; ++str, ++in)
+ if (*str != *in)
+ return false;
+ return true;
+}
+
+
+template<class B>
+static void parse_DIMACS_main(B& in, SimpSolver& S) {
+ vec<Lit> lits;
+ for (;;){
+ skipWhitespace(in);
+ if (*in == EOF) break;
+ else if (*in == 'p'){
+ if (match(in, "p cnf")){
+ int vars = parseInt(in);
+ int clauses = parseInt(in);
+ reportf("| Number of variables: %-12d |\n", vars);
+ reportf("| Number of clauses: %-12d |\n", clauses);
+
+ // SATRACE'06 hack
+ if (clauses > 4000000)
+ S.eliminate(true);
+ }else{
+ reportf("PARSE ERROR! Unexpected char: %c\n", *in), exit(3);
+ }
+ } else if (*in == 'c' || *in == 'p')
+ skipLine(in);
+ else{
+ readClause(in, S, lits);
+ S.addClause(lits); }
+ }
+}
+
+// Inserts problem into solver.
+//
+static void parse_DIMACS(gzFile input_stream, SimpSolver& S) {
+ StreamBuffer in(input_stream);
+ parse_DIMACS_main(in, S); }
+
+
+//=================================================================================================
+
+
+void printStats(Solver& S)
+{
+ double cpu_time = cpuTime();
+ uint64_t mem_used = memUsed();
+ reportf("restarts : %lld\n", S.starts);
+ reportf("conflicts : %-12lld (%.0f /sec)\n", S.conflicts , S.conflicts /cpu_time);
+ reportf("decisions : %-12lld (%4.2f %% random) (%.0f /sec)\n", S.decisions, (float)S.rnd_decisions*100 / (float)S.decisions, S.decisions /cpu_time);
+ reportf("propagations : %-12lld (%.0f /sec)\n", S.propagations, S.propagations/cpu_time);
+ reportf("conflict literals : %-12lld (%4.2f %% deleted)\n", S.tot_literals, (S.max_literals - S.tot_literals)*100 / (double)S.max_literals);
+ if (mem_used != 0) reportf("Memory used : %.2f MB\n", mem_used / 1048576.0);
+ reportf("CPU time : %g s\n", cpu_time);
+}
+
+SimpSolver* solver;
+static void SIGINT_handler(int signum) {
+ reportf("\n"); reportf("*** INTERRUPTED ***\n");
+ printStats(*solver);
+ reportf("\n"); reportf("*** INTERRUPTED ***\n");
+ exit(1); }
+
+
+//=================================================================================================
+// Main:
+
+void printUsage(char** argv)
+{
+ reportf("USAGE: %s [options] <input-file> <result-output-file>\n\n where input may be either in plain or gzipped DIMACS.\n\n", argv[0]);
+ reportf("OPTIONS:\n\n");
+ reportf(" -pre = {none,once}\n");
+ reportf(" -asymm\n");
+ reportf(" -rcheck\n");
+ reportf(" -grow = <num> [ >0 ]\n");
+ reportf(" -polarity-mode = {true,false,rnd}\n");
+ reportf(" -decay = <num> [ 0 - 1 ]\n");
+ reportf(" -rnd-freq = <num> [ 0 - 1 ]\n");
+ reportf(" -dimacs = <output-file>\n");
+ reportf(" -verbosity = {0,1,2}\n");
+ reportf("\n");
+}
+
+typedef enum { pre_none, pre_once, pre_repeat } preprocessMode;
+
+const char* hasPrefix(const char* str, const char* prefix)
+{
+ int len = strlen(prefix);
+ if (strncmp(str, prefix, len) == 0)
+ return str + len;
+ else
+ return NULL;
+}
+
+
+int main(int argc, char** argv)
+{
+ reportf("This is MiniSat 2.0 beta\n");
+#if defined(__linux__)
+ fpu_control_t oldcw, newcw;
+ _FPU_GETCW(oldcw); newcw = (oldcw & ~_FPU_EXTENDED) | _FPU_DOUBLE; _FPU_SETCW(newcw);
+ reportf("WARNING: for repeatability, setting FPU to use double precision\n");
+#endif
+ preprocessMode pre = pre_once;
+ const char* dimacs = NULL;
+ const char* freeze = NULL;
+ SimpSolver S;
+ S.verbosity = 1;
+
+ // This just grew and grew, and I didn't have time to do sensible argument parsing yet :)
+ //
+ int i, j;
+ const char* value;
+ for (i = j = 0; i < argc; i++){
+ if ((value = hasPrefix(argv[i], "-polarity-mode="))){
+ if (strcmp(value, "true") == 0)
+ S.polarity_mode = Solver::polarity_true;
+ else if (strcmp(value, "false") == 0)
+ S.polarity_mode = Solver::polarity_false;
+ else if (strcmp(value, "rnd") == 0)
+ S.polarity_mode = Solver::polarity_rnd;
+ else{
+ reportf("ERROR! unknown polarity-mode %s\n", value);
+ exit(0); }
+
+ }else if ((value = hasPrefix(argv[i], "-rnd-freq="))){
+ double rnd;
+ if (sscanf(value, "%lf", &rnd) <= 0 || rnd < 0 || rnd > 1){
+ reportf("ERROR! illegal rnd-freq constant %s\n", value);
+ exit(0); }
+ S.random_var_freq = rnd;
+
+ }else if ((value = hasPrefix(argv[i], "-decay="))){
+ double decay;
+ if (sscanf(value, "%lf", &decay) <= 0 || decay <= 0 || decay > 1){
+ reportf("ERROR! illegal decay constant %s\n", value);
+ exit(0); }
+ S.var_decay = 1 / decay;
+
+ }else if ((value = hasPrefix(argv[i], "-verbosity="))){
+ int verbosity = (int)strtol(value, NULL, 10);
+ if (verbosity == 0 && errno == EINVAL){
+ reportf("ERROR! illegal verbosity level %s\n", value);
+ exit(0); }
+ S.verbosity = verbosity;
+
+ }else if ((value = hasPrefix(argv[i], "-pre="))){
+ if (strcmp(value, "none") == 0)
+ pre = pre_none;
+ else if (strcmp(value, "once") == 0)
+ pre = pre_once;
+ else if (strcmp(value, "repeat") == 0){
+ pre = pre_repeat;
+ reportf("ERROR! preprocessing mode \"repeat\" is not supported at the moment.\n");
+ exit(0);
+ }else{
+ reportf("ERROR! unknown preprocessing mode %s\n", value);
+ exit(0); }
+ }else if (strcmp(argv[i], "-asymm") == 0){
+ S.asymm_mode = true;
+ }else if (strcmp(argv[i], "-rcheck") == 0){
+ S.redundancy_check = true;
+ }else if ((value = hasPrefix(argv[i], "-grow="))){
+ int grow = (int)strtol(value, NULL, 10);
+ if (grow == 0 && errno == EINVAL){
+ reportf("ERROR! illegal grow constant %s\n", &argv[i][6]);
+ exit(0); }
+ S.grow = grow;
+ }else if ((value = hasPrefix(argv[i], "-dimacs="))){
+ dimacs = value;
+ }else if ((value = hasPrefix(argv[i], "-freeze="))){
+ freeze = value;
+ }else if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "-help") == 0){
+ printUsage(argv);
+ exit(0);
+ }else if (strncmp(argv[i], "-", 1) == 0){
+ reportf("ERROR! unknown flag %s\n", argv[i]);
+ exit(0);
+ }else
+ argv[j++] = argv[i];
+ }
+ argc = j;
+
+ double cpu_time = cpuTime();
+
+ if (pre == pre_none)
+ S.eliminate(true);
+
+ solver = &S;
+ signal(SIGINT,SIGINT_handler);
+ signal(SIGHUP,SIGINT_handler);
+
+ if (argc == 1)
+ reportf("Reading from standard input... Use '-h' or '--help' for help.\n");
+
+ gzFile in = (argc == 1) ? gzdopen(0, "rb") : gzopen(argv[1], "rb");
+ if (in == NULL)
+ reportf("ERROR! Could not open file: %s\n", argc == 1 ? "<stdin>" : argv[1]), exit(1);
+
+ reportf("============================[ Problem Statistics ]=============================\n");
+ reportf("| |\n");
+
+ parse_DIMACS(in, S);
+ gzclose(in);
+ FILE* res = (argc >= 3) ? fopen(argv[2], "wb") : NULL;
+
+
+ double parse_time = cpuTime() - cpu_time;
+ reportf("| Parsing time: %-12.2f s |\n", parse_time);
+
+ /*HACK: Freeze variables*/
+ if (freeze != NULL && pre != pre_none){
+ int count = 0;
+ FILE* in = fopen(freeze, "rb");
+ for(;;){
+ Var x;
+ fscanf(in, "%d", &x);
+ if (x == 0) break;
+ x--;
+
+ /**/assert(S.n_occ[toInt(Lit(x))] + S.n_occ[toInt(~Lit(x))] != 0);
+ /**/assert(S.value(x) == l_Undef);
+ S.setFrozen(x, true);
+ count++;
+ }
+ fclose(in);
+ reportf("| Frozen vars : %-12.0f |\n", (double)count);
+ }
+ /*END*/
+
+ if (!S.simplify()){
+ reportf("Solved by unit propagation\n");
+ if (res != NULL) fprintf(res, "UNSAT\n"), fclose(res);
+ printf("UNSATISFIABLE\n");
+ exit(20);
+ }
+
+ if (dimacs){
+ if (pre != pre_none)
+ S.eliminate(true);
+ reportf("==============================[ Writing DIMACS ]===============================\n");
+ S.toDimacs(dimacs);
+ printStats(S);
+ exit(0);
+ }else{
+ bool ret = S.solve(true, true);
+ printStats(S);
+ reportf("\n");
+
+ printf(ret ? "SATISFIABLE\n" : "UNSATISFIABLE\n");
+ if (res != NULL){
+ if (ret){
+ fprintf(res, "SAT\n");
+ for (int i = 0; i < S.nVars(); i++)
+ if (S.model[i] != l_Undef)
+ fprintf(res, "%s%s%d", (i==0)?"":" ", (S.model[i]==l_True)?"":"-", i+1);
+ fprintf(res, " 0\n");
+ }else
+ fprintf(res, "UNSAT\n");
+ fclose(res);
+ }
+#ifdef NDEBUG
+ exit(ret ? 10 : 20); // (faster than "return", which will invoke the destructor for 'Solver')
+#endif
+ }
+
+}
+++ /dev/null
-/************************************************************************************[SimpSolver.C]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#include "Sort.h"
-#include "SimpSolver.h"
-
-
-//=================================================================================================
-// Constructor/Destructor:
-
-namespace CVC4 {
-namespace prop {
-namespace minisat {
-
-SimpSolver::SimpSolver(SatSolver* proxy, context::Context* context) :
- Solver(proxy, context)
- , grow (0)
- , asymm_mode (false)
- , redundancy_check (false)
- , merges (0)
- , asymm_lits (0)
- , remembered_clauses (0)
- , elimorder (1)
- , use_simplification (true)
- , elim_heap (ElimLt(n_occ))
- , bwdsub_assigns (0)
-{
- vec<Lit> dummy(1,lit_Undef);
- bwdsub_tmpunit = Clause_new(dummy);
- remove_satisfied = false;
-}
-
-
-SimpSolver::~SimpSolver()
-{
- free(bwdsub_tmpunit);
-
- // NOTE: elimtable.size() might be lower than nVars() at the moment
- for (int i = 0; i < elimtable.size(); i++)
- for (int j = 0; j < elimtable[i].eliminated.size(); j++)
- free(elimtable[i].eliminated[j]);
-}
-
-
-Var SimpSolver::newVar(bool sign, bool dvar, bool theoryAtom) {
- Var v = Solver::newVar(sign, dvar,theoryAtom);
-
- if (use_simplification){
- n_occ .push(0);
- n_occ .push(0);
- occurs .push();
- frozen .push((char)theoryAtom);
- touched .push(0);
- elim_heap.insert(v);
- elimtable.push();
- }
- return v; }
-
-
-
-bool SimpSolver::solve(const vec<Lit>& assumps, bool do_simp, bool turn_off_simp) {
- vec<Var> extra_frozen;
- bool result = true;
-
- do_simp &= use_simplification;
-
- if (do_simp){
- // Assumptions must be temporarily frozen to run variable elimination:
- for (int i = 0; i < assumps.size(); i++){
- Var v = var(assumps[i]);
-
- // If an assumption has been eliminated, remember it.
- if (isEliminated(v))
- remember(v);
-
- if (!frozen[v]){
- // Freeze and store.
- setFrozen(v, true);
- extra_frozen.push(v);
- } }
-
- result = eliminate(turn_off_simp);
- }
-
- if (result)
- result = Solver::solve(assumps);
-
- if (result) {
- extendModel();
-#ifndef NDEBUG
- verifyModel();
-#endif
- }
-
- if (do_simp)
- // Unfreeze the assumptions that were frozen:
- for (int i = 0; i < extra_frozen.size(); i++)
- setFrozen(extra_frozen[i], false);
-
- return result;
-}
-
-
-
-bool SimpSolver::addClause(vec<Lit>& ps, ClauseType type)
-{
- for (int i = 0; i < ps.size(); i++)
- if (isEliminated(var(ps[i])))
- remember(var(ps[i]));
-
- int nclauses = clauses.size();
-
- if (redundancy_check && implied(ps))
- return true;
-
- if (!Solver::addClause(ps, type))
- return false;
-
- if (use_simplification && clauses.size() == nclauses + 1){
- Clause& c = *clauses.last();
-
- subsumption_queue.insert(&c);
-
- for (int i = 0; i < c.size(); i++){
- assert(occurs.size() > var(c[i]));
- assert(!find(occurs[var(c[i])], &c));
-
- occurs[var(c[i])].push(&c);
- n_occ[toInt(c[i])]++;
- touched[var(c[i])] = 1;
- assert(elimtable[var(c[i])].order == 0);
- if (elim_heap.inHeap(var(c[i])))
- elim_heap.increase_(var(c[i]));
- }
- }
-
- return true;
-}
-
-
-void SimpSolver::removeClause(Clause& c)
-{
- Debug("minisat") << "SimpSolver::removeClause(" << c << ")" << std::endl;
- assert(!c.learnt());
-
- if (use_simplification)
- for (int i = 0; i < c.size(); i++){
- n_occ[toInt(c[i])]--;
- updateElimHeap(var(c[i]));
- }
-
- detachClause(c);
- c.mark(1);
-}
-
-
-bool SimpSolver::strengthenClause(Clause& c, Lit l)
-{
- assert(decisionLevel() == 0);
- assert(c.mark() == 0);
- assert(!c.learnt());
- assert(find(watches[toInt(~c[0])], &c));
- assert(find(watches[toInt(~c[1])], &c));
-
- // FIX: this is too inefficient but would be nice to have (properly implemented)
- // if (!find(subsumption_queue, &c))
- subsumption_queue.insert(&c);
-
- // If l is watched, delete it from watcher list and watch a new literal
- if (c[0] == l || c[1] == l){
- Lit other = c[0] == l ? c[1] : c[0];
- if (c.size() == 2){
- removeClause(c);
- c.strengthen(l);
- }else{
- c.strengthen(l);
- remove(watches[toInt(~l)], &c);
-
- // Add a watch for the correct literal
- watches[toInt(~(c[1] == other ? c[0] : c[1]))].push(&c);
-
- // !! this version assumes that remove does not change the order !!
- //watches[toInt(~c[1])].push(&c);
- clauses_literals -= 1;
- }
- }
- else{
- c.strengthen(l);
- clauses_literals -= 1;
- }
-
- // if subsumption-indexing is active perform the necessary updates
- if (use_simplification){
- remove(occurs[var(l)], &c);
- n_occ[toInt(l)]--;
- updateElimHeap(var(l));
- }
-
- return c.size() == 1 ? enqueue(c[0]) && propagate(CHECK_WITHOUTH_PROPAGATION_QUICK) == NULL : true;
-}
-
-
-// Returns FALSE if clause is always satisfied ('out_clause' should not be used).
-bool SimpSolver::merge(const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause)
-{
- merges++;
- out_clause.clear();
-
- bool ps_smallest = _ps.size() < _qs.size();
- const Clause& ps = ps_smallest ? _qs : _ps;
- const Clause& qs = ps_smallest ? _ps : _qs;
-
- for (int i = 0; i < qs.size(); i++){
- if (var(qs[i]) != v){
- for (int j = 0; j < ps.size(); j++)
- if (var(ps[j]) == var(qs[i])) {
- if (ps[j] == ~qs[i])
- return false;
- else
- goto next;
- }
- out_clause.push(qs[i]);
- }
- next:;
- }
-
- for (int i = 0; i < ps.size(); i++)
- if (var(ps[i]) != v)
- out_clause.push(ps[i]);
-
- return true;
-}
-
-
-// Returns FALSE if clause is always satisfied.
-bool SimpSolver::merge(const Clause& _ps, const Clause& _qs, Var v)
-{
- merges++;
-
- bool ps_smallest = _ps.size() < _qs.size();
- const Clause& ps = ps_smallest ? _qs : _ps;
- const Clause& qs = ps_smallest ? _ps : _qs;
- const Lit* __ps = (const Lit*)ps;
- const Lit* __qs = (const Lit*)qs;
-
- for (int i = 0; i < qs.size(); i++){
- if (var(__qs[i]) != v){
- for (int j = 0; j < ps.size(); j++)
- if (var(__ps[j]) == var(__qs[i])) {
- if (__ps[j] == ~__qs[i])
- return false;
- else
- goto next;
- }
- }
- next:;
- }
-
- return true;
-}
-
-
-void SimpSolver::gatherTouchedClauses()
-{
- //fprintf(stderr, "Gathering clauses for backwards subsumption\n");
- int ntouched = 0;
- for (int i = 0; i < touched.size(); i++)
- if (touched[i]){
- const vec<Clause*>& cs = getOccurs(i);
- ntouched++;
- for (int j = 0; j < cs.size(); j++)
- if (cs[j]->mark() == 0){
- subsumption_queue.insert(cs[j]);
- cs[j]->mark(2);
- }
- touched[i] = 0;
- }
-
- //fprintf(stderr, "Touched variables %d of %d yields %d clauses to check\n", ntouched, touched.size(), clauses.size());
- for (int i = 0; i < subsumption_queue.size(); i++)
- subsumption_queue[i]->mark(0);
-}
-
-
-bool SimpSolver::implied(const vec<Lit>& c)
-{
- assert(decisionLevel() == 0);
-
- trail_lim.push(trail.size());
- for (int i = 0; i < c.size(); i++)
- if (value(c[i]) == l_True){
- cancelUntil(0);
- return false;
- }else if (value(c[i]) != l_False){
- assert(value(c[i]) == l_Undef);
- uncheckedEnqueue(~c[i]);
- }
-
- bool result = propagate(CHECK_WITHOUTH_PROPAGATION_QUICK) != NULL;
- cancelUntil(0);
- return result;
-}
-
-
-// Backward subsumption + backward subsumption resolution
-bool SimpSolver::backwardSubsumptionCheck(bool verbose)
-{
- int cnt = 0;
- int subsumed = 0;
- int deleted_literals = 0;
- assert(decisionLevel() == 0);
-
- while (subsumption_queue.size() > 0 || bwdsub_assigns < trail.size()){
-
- // Check top-level assignments by creating a dummy clause and placing it in the queue:
- if (subsumption_queue.size() == 0 && bwdsub_assigns < trail.size()){
- Lit l = trail[bwdsub_assigns++];
- (*bwdsub_tmpunit)[0] = l;
- bwdsub_tmpunit->calcAbstraction();
- assert(bwdsub_tmpunit->mark() == 0);
- subsumption_queue.insert(bwdsub_tmpunit); }
-
- Clause& c = *subsumption_queue.peek(); subsumption_queue.pop();
-
- if (c.mark()) continue;
-
- if (verbose && verbosity >= 2 && cnt++ % 1000 == 0)
- reportf("subsumption left: %10d (%10d subsumed, %10d deleted literals)\r", subsumption_queue.size(), subsumed, deleted_literals);
-
- assert(c.size() > 1 || value(c[0]) == l_True); // Unit-clauses should have been propagated before this point.
-
- // Find best variable to scan:
- Var best = var(c[0]);
- for (int i = 1; i < c.size(); i++)
- if (occurs[var(c[i])].size() < occurs[best].size())
- best = var(c[i]);
-
- // Search all candidates:
- vec<Clause*>& _cs = getOccurs(best);
- Clause** cs = (Clause**)_cs;
-
- for (int j = 0; j < _cs.size(); j++)
- if (c.mark())
- break;
- else if (!cs[j]->mark() && cs[j] != &c){
- Lit l = c.subsumes(*cs[j]);
-
- if (l == lit_Undef)
- subsumed++, removeClause(*cs[j]);
- else if (l != lit_Error){
- deleted_literals++;
-
- if (!strengthenClause(*cs[j], ~l))
- return false;
-
- // Did current candidate get deleted from cs? Then check candidate at index j again:
- if (var(l) == best)
- j--;
- }
- }
- }
-
- return true;
-}
-
-
-bool SimpSolver::asymm(Var v, Clause& c)
-{
- assert(decisionLevel() == 0);
-
- if (c.mark() || satisfied(c)) return true;
-
- trail_lim.push(trail.size());
- Lit l = lit_Undef;
- for (int i = 0; i < c.size(); i++)
- if (var(c[i]) != v && value(c[i]) != l_False)
- uncheckedEnqueue(~c[i]);
- else
- l = c[i];
-
- if (propagate(CHECK_WITHOUTH_PROPAGATION_QUICK) != NULL){
- cancelUntil(0);
- asymm_lits++;
- if (!strengthenClause(c, l))
- return false;
- }else
- cancelUntil(0);
-
- return true;
-}
-
-
-bool SimpSolver::asymmVar(Var v)
-{
- assert(!frozen[v]);
- assert(use_simplification);
-
- vec<Clause*> pos, neg;
- const vec<Clause*>& cls = getOccurs(v);
-
- if (value(v) != l_Undef || cls.size() == 0)
- return true;
-
- for (int i = 0; i < cls.size(); i++)
- if (!asymm(v, *cls[i]))
- return false;
-
- return backwardSubsumptionCheck();
-}
-
-
-void SimpSolver::verifyModel()
-{
- bool failed = false;
- int cnt = 0;
- // NOTE: elimtable.size() might be lower than nVars() at the moment
- for (int i = 0; i < elimtable.size(); i++)
- if (elimtable[i].order > 0)
- for (int j = 0; j < elimtable[i].eliminated.size(); j++){
- cnt++;
- Clause& c = *elimtable[i].eliminated[j];
- for (int k = 0; k < c.size(); k++)
- if (modelValue(c[k]) == l_True)
- goto next;
-
- reportf("unsatisfied clause: ");
- printClause(*elimtable[i].eliminated[j]);
- reportf("\n");
- failed = true;
- next:;
- }
-
- assert(!failed);
- reportf("Verified %d eliminated clauses.\n", cnt);
-}
-
-
-bool SimpSolver::eliminateVar(Var v, bool fail)
-{
- if (!fail && asymm_mode && !asymmVar(v)) return false;
-
- const vec<Clause*>& cls = getOccurs(v);
-
-// if (value(v) != l_Undef || cls.size() == 0) return true;
- if (value(v) != l_Undef) return true;
-
- // Split the occurrences into positive and negative:
- vec<Clause*> pos, neg;
- for (int i = 0; i < cls.size(); i++)
- (find(*cls[i], Lit(v)) ? pos : neg).push(cls[i]);
-
- // Check if number of clauses decreases:
- int cnt = 0;
- for (int i = 0; i < pos.size(); i++)
- for (int j = 0; j < neg.size(); j++)
- if (merge(*pos[i], *neg[j], v) && ++cnt > cls.size() + grow)
- return true;
-
- // Delete and store old clauses:
- setDecisionVar(v, false);
- elimtable[v].order = elimorder++;
- assert(elimtable[v].eliminated.size() == 0);
- for (int i = 0; i < cls.size(); i++){
- elimtable[v].eliminated.push(Clause_new(*cls[i]));
- removeClause(*cls[i]); }
-
- // Produce clauses in cross product:
- int top = clauses.size();
- vec<Lit> resolvent;
- for (int i = 0; i < pos.size(); i++)
- for (int j = 0; j < neg.size(); j++)
- if (merge(*pos[i], *neg[j], v, resolvent) && !addClause(resolvent, CLAUSE_CONFLICT))
- return false;
-
- // DEBUG: For checking that a clause set is saturated with respect to variable elimination.
- // If the clause set is expected to be saturated at this point, this constitutes an
- // error.
- if (fail){
- reportf("eliminated var %d, %d <= %d\n", v+1, cnt, cls.size());
- reportf("previous clauses:\n");
- for (int i = 0; i < cls.size(); i++){
- printClause(*cls[i]); reportf("\n"); }
- reportf("new clauses:\n");
- for (int i = top; i < clauses.size(); i++){
- printClause(*clauses[i]); reportf("\n"); }
- assert(0); }
-
- return backwardSubsumptionCheck();
-}
-
-
-void SimpSolver::remember(Var v)
-{
- assert(decisionLevel() == 0);
- assert(isEliminated(v));
-
- vec<Lit> clause;
-
- // Re-activate variable:
- elimtable[v].order = 0;
- setDecisionVar(v, true); // Not good if the variable wasn't a decision variable before. Not sure how to fix this right now.
-
- if (use_simplification)
- updateElimHeap(v);
-
- // Reintroduce all old clauses which may implicitly remember other clauses:
- for (int i = 0; i < elimtable[v].eliminated.size(); i++){
- Clause& c = *elimtable[v].eliminated[i];
- clause.clear();
- for (int j = 0; j < c.size(); j++)
- clause.push(c[j]);
-
- remembered_clauses++;
- check(addClause(clause, CLAUSE_PROBLEM));
- free(&c);
- }
-
- elimtable[v].eliminated.clear();
-}
-
-
-void SimpSolver::extendModel()
-{
- vec<Var> vs;
-
- // NOTE: elimtable.size() might be lower than nVars() at the moment
- for (int v = 0; v < elimtable.size(); v++)
- if (elimtable[v].order > 0)
- vs.push(v);
-
- sort(vs, ElimOrderLt(elimtable));
-
- for (int i = 0; i < vs.size(); i++){
- Var v = vs[i];
- Lit l = lit_Undef;
-
- for (int j = 0; j < elimtable[v].eliminated.size(); j++){
- Clause& c = *elimtable[v].eliminated[j];
-
- for (int k = 0; k < c.size(); k++)
- if (var(c[k]) == v)
- l = c[k];
- else if (modelValue(c[k]) != l_False)
- goto next;
-
- assert(l != lit_Undef);
- model[v] = lbool(!sign(l));
- break;
-
- next:;
- }
-
- if (model[v] == l_Undef)
- model[v] = l_True;
- }
-}
-
-
-bool SimpSolver::eliminate(bool turn_off_elim)
-{
- if (!ok || !use_simplification)
- return ok;
-
- // Main simplification loop:
- //assert(subsumption_queue.size() == 0);
- //gatherTouchedClauses();
- while (subsumption_queue.size() > 0 || elim_heap.size() > 0){
-
- //fprintf(stderr, "subsumption phase: (%d)\n", subsumption_queue.size());
- if (!backwardSubsumptionCheck(true))
- return false;
-
- //fprintf(stderr, "elimination phase:\n (%d)", elim_heap.size());
- for (int cnt = 0; !elim_heap.empty(); cnt++){
- Var elim = elim_heap.removeMin();
-
- if (verbosity >= 2 && cnt % 100 == 0)
- reportf("elimination left: %10d\r", elim_heap.size());
-
- if (!frozen[elim] && !eliminateVar(elim))
- return false;
- }
-
- assert(subsumption_queue.size() == 0);
- gatherTouchedClauses();
- }
-
- // Cleanup:
- cleanUpClauses();
- order_heap.filter(VarFilter(*this));
-
-#ifdef INVARIANTS
- // Check that no more subsumption is possible:
- reportf("Checking that no more subsumption is possible\n");
- for (int i = 0; i < clauses.size(); i++){
- if (i % 1000 == 0)
- reportf("left %10d\r", clauses.size() - i);
-
- assert(clauses[i]->mark() == 0);
- for (int j = 0; j < i; j++)
- assert(clauses[i]->subsumes(*clauses[j]) == lit_Error);
- }
- reportf("done.\n");
-
- // Check that no more elimination is possible:
- reportf("Checking that no more elimination is possible\n");
- for (int i = 0; i < nVars(); i++)
- if (!frozen[i]) eliminateVar(i, true);
- reportf("done.\n");
- checkLiteralCount();
-#endif
-
- // If no more simplification is needed, free all simplification-related data structures:
- if (turn_off_elim){
- use_simplification = false;
- touched.clear(true);
- occurs.clear(true);
- n_occ.clear(true);
- subsumption_queue.clear(true);
- elim_heap.clear(true);
- remove_satisfied = true;
- }
-
-
- return true;
-}
-
-
-void SimpSolver::cleanUpClauses()
-{
- int i , j;
- vec<Var> dirty;
- for (i = 0; i < clauses.size(); i++)
- if (clauses[i]->mark() == 1){
- Clause& c = *clauses[i];
- for (int k = 0; k < c.size(); k++)
- if (!seen[var(c[k])]){
- seen[var(c[k])] = 1;
- dirty.push(var(c[k]));
- } }
-
- for (i = 0; i < dirty.size(); i++){
- cleanOcc(dirty[i]);
- seen[dirty[i]] = 0; }
-
- for (i = j = 0; i < clauses.size(); i++)
- if (clauses[i]->mark() == 1)
- free(clauses[i]);
- else
- clauses[j++] = clauses[i];
- clauses.shrink(i - j);
-}
-
-
-//=================================================================================================
-// Convert to DIMACS:
-
-
-void SimpSolver::toDimacs(FILE* f, Clause& c)
-{
- if (satisfied(c)) return;
-
- for (int i = 0; i < c.size(); i++)
- if (value(c[i]) != l_False)
- fprintf(f, "%s%d ", sign(c[i]) ? "-" : "", var(c[i])+1);
- fprintf(f, "0\n");
-}
-
-
-void SimpSolver::toDimacs(const char* file)
-{
- assert(decisionLevel() == 0);
- FILE* f = fopen(file, "wr");
- if (f != NULL){
-
- // Cannot use removeClauses here because it is not safe
- // to deallocate them at this point. Could be improved.
- int cnt = 0;
- for (int i = 0; i < clauses.size(); i++)
- if (!satisfied(*clauses[i]))
- cnt++;
-
- fprintf(f, "p cnf %d %d\n", nVars(), cnt);
-
- for (int i = 0; i < clauses.size(); i++)
- toDimacs(f, *clauses[i]);
-
- fprintf(stderr, "Wrote %d clauses...\n", clauses.size());
- }else
- fprintf(stderr, "could not open file %s\n", file);
-}
-
-}/* CVC4::prop::minisat namespace */
-}/* CVC4::prop namespace */
-}/* CVC4 namespace */
--- /dev/null
+/************************************************************************************[SimpSolver.C]
+MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#include "Sort.h"
+#include "SimpSolver.h"
+
+
+//=================================================================================================
+// Constructor/Destructor:
+
+namespace CVC4 {
+namespace prop {
+namespace minisat {
+
+SimpSolver::SimpSolver(SatSolver* proxy, context::Context* context) :
+ Solver(proxy, context)
+ , grow (0)
+ , asymm_mode (false)
+ , redundancy_check (false)
+ , merges (0)
+ , asymm_lits (0)
+ , remembered_clauses (0)
+ , elimorder (1)
+ , use_simplification (true)
+ , elim_heap (ElimLt(n_occ))
+ , bwdsub_assigns (0)
+{
+ vec<Lit> dummy(1,lit_Undef);
+ bwdsub_tmpunit = Clause_new(dummy);
+ remove_satisfied = false;
+}
+
+
+SimpSolver::~SimpSolver()
+{
+ free(bwdsub_tmpunit);
+
+ // NOTE: elimtable.size() might be lower than nVars() at the moment
+ for (int i = 0; i < elimtable.size(); i++)
+ for (int j = 0; j < elimtable[i].eliminated.size(); j++)
+ free(elimtable[i].eliminated[j]);
+}
+
+
+Var SimpSolver::newVar(bool sign, bool dvar, bool theoryAtom) {
+ Var v = Solver::newVar(sign, dvar,theoryAtom);
+
+ if (use_simplification){
+ n_occ .push(0);
+ n_occ .push(0);
+ occurs .push();
+ frozen .push((char)theoryAtom);
+ touched .push(0);
+ elim_heap.insert(v);
+ elimtable.push();
+ }
+ return v; }
+
+
+
+bool SimpSolver::solve(const vec<Lit>& assumps, bool do_simp, bool turn_off_simp) {
+ vec<Var> extra_frozen;
+ bool result = true;
+
+ do_simp &= use_simplification;
+
+ if (do_simp){
+ // Assumptions must be temporarily frozen to run variable elimination:
+ for (int i = 0; i < assumps.size(); i++){
+ Var v = var(assumps[i]);
+
+ // If an assumption has been eliminated, remember it.
+ if (isEliminated(v))
+ remember(v);
+
+ if (!frozen[v]){
+ // Freeze and store.
+ setFrozen(v, true);
+ extra_frozen.push(v);
+ } }
+
+ result = eliminate(turn_off_simp);
+ }
+
+ if (result)
+ result = Solver::solve(assumps);
+
+ if (result) {
+ extendModel();
+#ifndef NDEBUG
+ verifyModel();
+#endif
+ }
+
+ if (do_simp)
+ // Unfreeze the assumptions that were frozen:
+ for (int i = 0; i < extra_frozen.size(); i++)
+ setFrozen(extra_frozen[i], false);
+
+ return result;
+}
+
+
+
+bool SimpSolver::addClause(vec<Lit>& ps, ClauseType type)
+{
+ for (int i = 0; i < ps.size(); i++)
+ if (isEliminated(var(ps[i])))
+ remember(var(ps[i]));
+
+ int nclauses = clauses.size();
+
+ if (redundancy_check && implied(ps))
+ return true;
+
+ if (!Solver::addClause(ps, type))
+ return false;
+
+ if (use_simplification && clauses.size() == nclauses + 1){
+ Clause& c = *clauses.last();
+
+ subsumption_queue.insert(&c);
+
+ for (int i = 0; i < c.size(); i++){
+ assert(occurs.size() > var(c[i]));
+ assert(!find(occurs[var(c[i])], &c));
+
+ occurs[var(c[i])].push(&c);
+ n_occ[toInt(c[i])]++;
+ touched[var(c[i])] = 1;
+ assert(elimtable[var(c[i])].order == 0);
+ if (elim_heap.inHeap(var(c[i])))
+ elim_heap.increase_(var(c[i]));
+ }
+ }
+
+ return true;
+}
+
+
+void SimpSolver::removeClause(Clause& c)
+{
+ Debug("minisat") << "SimpSolver::removeClause(" << c << ")" << std::endl;
+ assert(!c.learnt());
+
+ if (use_simplification)
+ for (int i = 0; i < c.size(); i++){
+ n_occ[toInt(c[i])]--;
+ updateElimHeap(var(c[i]));
+ }
+
+ detachClause(c);
+ c.mark(1);
+}
+
+
+bool SimpSolver::strengthenClause(Clause& c, Lit l)
+{
+ assert(decisionLevel() == 0);
+ assert(c.mark() == 0);
+ assert(!c.learnt());
+ assert(find(watches[toInt(~c[0])], &c));
+ assert(find(watches[toInt(~c[1])], &c));
+
+ // FIX: this is too inefficient but would be nice to have (properly implemented)
+ // if (!find(subsumption_queue, &c))
+ subsumption_queue.insert(&c);
+
+ // If l is watched, delete it from watcher list and watch a new literal
+ if (c[0] == l || c[1] == l){
+ Lit other = c[0] == l ? c[1] : c[0];
+ if (c.size() == 2){
+ removeClause(c);
+ c.strengthen(l);
+ }else{
+ c.strengthen(l);
+ remove(watches[toInt(~l)], &c);
+
+ // Add a watch for the correct literal
+ watches[toInt(~(c[1] == other ? c[0] : c[1]))].push(&c);
+
+ // !! this version assumes that remove does not change the order !!
+ //watches[toInt(~c[1])].push(&c);
+ clauses_literals -= 1;
+ }
+ }
+ else{
+ c.strengthen(l);
+ clauses_literals -= 1;
+ }
+
+ // if subsumption-indexing is active perform the necessary updates
+ if (use_simplification){
+ remove(occurs[var(l)], &c);
+ n_occ[toInt(l)]--;
+ updateElimHeap(var(l));
+ }
+
+ return c.size() == 1 ? enqueue(c[0]) && propagate(CHECK_WITHOUTH_PROPAGATION_QUICK) == NULL : true;
+}
+
+
+// Returns FALSE if clause is always satisfied ('out_clause' should not be used).
+bool SimpSolver::merge(const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause)
+{
+ merges++;
+ out_clause.clear();
+
+ bool ps_smallest = _ps.size() < _qs.size();
+ const Clause& ps = ps_smallest ? _qs : _ps;
+ const Clause& qs = ps_smallest ? _ps : _qs;
+
+ for (int i = 0; i < qs.size(); i++){
+ if (var(qs[i]) != v){
+ for (int j = 0; j < ps.size(); j++)
+ if (var(ps[j]) == var(qs[i])) {
+ if (ps[j] == ~qs[i])
+ return false;
+ else
+ goto next;
+ }
+ out_clause.push(qs[i]);
+ }
+ next:;
+ }
+
+ for (int i = 0; i < ps.size(); i++)
+ if (var(ps[i]) != v)
+ out_clause.push(ps[i]);
+
+ return true;
+}
+
+
+// Returns FALSE if clause is always satisfied.
+bool SimpSolver::merge(const Clause& _ps, const Clause& _qs, Var v)
+{
+ merges++;
+
+ bool ps_smallest = _ps.size() < _qs.size();
+ const Clause& ps = ps_smallest ? _qs : _ps;
+ const Clause& qs = ps_smallest ? _ps : _qs;
+ const Lit* __ps = (const Lit*)ps;
+ const Lit* __qs = (const Lit*)qs;
+
+ for (int i = 0; i < qs.size(); i++){
+ if (var(__qs[i]) != v){
+ for (int j = 0; j < ps.size(); j++)
+ if (var(__ps[j]) == var(__qs[i])) {
+ if (__ps[j] == ~__qs[i])
+ return false;
+ else
+ goto next;
+ }
+ }
+ next:;
+ }
+
+ return true;
+}
+
+
+void SimpSolver::gatherTouchedClauses()
+{
+ //fprintf(stderr, "Gathering clauses for backwards subsumption\n");
+ int ntouched = 0;
+ for (int i = 0; i < touched.size(); i++)
+ if (touched[i]){
+ const vec<Clause*>& cs = getOccurs(i);
+ ntouched++;
+ for (int j = 0; j < cs.size(); j++)
+ if (cs[j]->mark() == 0){
+ subsumption_queue.insert(cs[j]);
+ cs[j]->mark(2);
+ }
+ touched[i] = 0;
+ }
+
+ //fprintf(stderr, "Touched variables %d of %d yields %d clauses to check\n", ntouched, touched.size(), clauses.size());
+ for (int i = 0; i < subsumption_queue.size(); i++)
+ subsumption_queue[i]->mark(0);
+}
+
+
+bool SimpSolver::implied(const vec<Lit>& c)
+{
+ assert(decisionLevel() == 0);
+
+ trail_lim.push(trail.size());
+ for (int i = 0; i < c.size(); i++)
+ if (value(c[i]) == l_True){
+ cancelUntil(0);
+ return false;
+ }else if (value(c[i]) != l_False){
+ assert(value(c[i]) == l_Undef);
+ uncheckedEnqueue(~c[i]);
+ }
+
+ bool result = propagate(CHECK_WITHOUTH_PROPAGATION_QUICK) != NULL;
+ cancelUntil(0);
+ return result;
+}
+
+
+// Backward subsumption + backward subsumption resolution
+bool SimpSolver::backwardSubsumptionCheck(bool verbose)
+{
+ int cnt = 0;
+ int subsumed = 0;
+ int deleted_literals = 0;
+ assert(decisionLevel() == 0);
+
+ while (subsumption_queue.size() > 0 || bwdsub_assigns < trail.size()){
+
+ // Check top-level assignments by creating a dummy clause and placing it in the queue:
+ if (subsumption_queue.size() == 0 && bwdsub_assigns < trail.size()){
+ Lit l = trail[bwdsub_assigns++];
+ (*bwdsub_tmpunit)[0] = l;
+ bwdsub_tmpunit->calcAbstraction();
+ assert(bwdsub_tmpunit->mark() == 0);
+ subsumption_queue.insert(bwdsub_tmpunit); }
+
+ Clause& c = *subsumption_queue.peek(); subsumption_queue.pop();
+
+ if (c.mark()) continue;
+
+ if (verbose && verbosity >= 2 && cnt++ % 1000 == 0)
+ reportf("subsumption left: %10d (%10d subsumed, %10d deleted literals)\r", subsumption_queue.size(), subsumed, deleted_literals);
+
+ assert(c.size() > 1 || value(c[0]) == l_True); // Unit-clauses should have been propagated before this point.
+
+ // Find best variable to scan:
+ Var best = var(c[0]);
+ for (int i = 1; i < c.size(); i++)
+ if (occurs[var(c[i])].size() < occurs[best].size())
+ best = var(c[i]);
+
+ // Search all candidates:
+ vec<Clause*>& _cs = getOccurs(best);
+ Clause** cs = (Clause**)_cs;
+
+ for (int j = 0; j < _cs.size(); j++)
+ if (c.mark())
+ break;
+ else if (!cs[j]->mark() && cs[j] != &c){
+ Lit l = c.subsumes(*cs[j]);
+
+ if (l == lit_Undef)
+ subsumed++, removeClause(*cs[j]);
+ else if (l != lit_Error){
+ deleted_literals++;
+
+ if (!strengthenClause(*cs[j], ~l))
+ return false;
+
+ // Did current candidate get deleted from cs? Then check candidate at index j again:
+ if (var(l) == best)
+ j--;
+ }
+ }
+ }
+
+ return true;
+}
+
+
+bool SimpSolver::asymm(Var v, Clause& c)
+{
+ assert(decisionLevel() == 0);
+
+ if (c.mark() || satisfied(c)) return true;
+
+ trail_lim.push(trail.size());
+ Lit l = lit_Undef;
+ for (int i = 0; i < c.size(); i++)
+ if (var(c[i]) != v && value(c[i]) != l_False)
+ uncheckedEnqueue(~c[i]);
+ else
+ l = c[i];
+
+ if (propagate(CHECK_WITHOUTH_PROPAGATION_QUICK) != NULL){
+ cancelUntil(0);
+ asymm_lits++;
+ if (!strengthenClause(c, l))
+ return false;
+ }else
+ cancelUntil(0);
+
+ return true;
+}
+
+
+bool SimpSolver::asymmVar(Var v)
+{
+ assert(!frozen[v]);
+ assert(use_simplification);
+
+ vec<Clause*> pos, neg;
+ const vec<Clause*>& cls = getOccurs(v);
+
+ if (value(v) != l_Undef || cls.size() == 0)
+ return true;
+
+ for (int i = 0; i < cls.size(); i++)
+ if (!asymm(v, *cls[i]))
+ return false;
+
+ return backwardSubsumptionCheck();
+}
+
+
+void SimpSolver::verifyModel()
+{
+ bool failed = false;
+ int cnt = 0;
+ // NOTE: elimtable.size() might be lower than nVars() at the moment
+ for (int i = 0; i < elimtable.size(); i++)
+ if (elimtable[i].order > 0)
+ for (int j = 0; j < elimtable[i].eliminated.size(); j++){
+ cnt++;
+ Clause& c = *elimtable[i].eliminated[j];
+ for (int k = 0; k < c.size(); k++)
+ if (modelValue(c[k]) == l_True)
+ goto next;
+
+ reportf("unsatisfied clause: ");
+ printClause(*elimtable[i].eliminated[j]);
+ reportf("\n");
+ failed = true;
+ next:;
+ }
+
+ assert(!failed);
+ reportf("Verified %d eliminated clauses.\n", cnt);
+}
+
+
+bool SimpSolver::eliminateVar(Var v, bool fail)
+{
+ if (!fail && asymm_mode && !asymmVar(v)) return false;
+
+ const vec<Clause*>& cls = getOccurs(v);
+
+// if (value(v) != l_Undef || cls.size() == 0) return true;
+ if (value(v) != l_Undef) return true;
+
+ // Split the occurrences into positive and negative:
+ vec<Clause*> pos, neg;
+ for (int i = 0; i < cls.size(); i++)
+ (find(*cls[i], Lit(v)) ? pos : neg).push(cls[i]);
+
+ // Check if number of clauses decreases:
+ int cnt = 0;
+ for (int i = 0; i < pos.size(); i++)
+ for (int j = 0; j < neg.size(); j++)
+ if (merge(*pos[i], *neg[j], v) && ++cnt > cls.size() + grow)
+ return true;
+
+ // Delete and store old clauses:
+ setDecisionVar(v, false);
+ elimtable[v].order = elimorder++;
+ assert(elimtable[v].eliminated.size() == 0);
+ for (int i = 0; i < cls.size(); i++){
+ elimtable[v].eliminated.push(Clause_new(*cls[i]));
+ removeClause(*cls[i]); }
+
+ // Produce clauses in cross product:
+ int top = clauses.size();
+ vec<Lit> resolvent;
+ for (int i = 0; i < pos.size(); i++)
+ for (int j = 0; j < neg.size(); j++)
+ if (merge(*pos[i], *neg[j], v, resolvent) && !addClause(resolvent, CLAUSE_CONFLICT))
+ return false;
+
+ // DEBUG: For checking that a clause set is saturated with respect to variable elimination.
+ // If the clause set is expected to be saturated at this point, this constitutes an
+ // error.
+ if (fail){
+ reportf("eliminated var %d, %d <= %d\n", v+1, cnt, cls.size());
+ reportf("previous clauses:\n");
+ for (int i = 0; i < cls.size(); i++){
+ printClause(*cls[i]); reportf("\n"); }
+ reportf("new clauses:\n");
+ for (int i = top; i < clauses.size(); i++){
+ printClause(*clauses[i]); reportf("\n"); }
+ assert(0); }
+
+ return backwardSubsumptionCheck();
+}
+
+
+void SimpSolver::remember(Var v)
+{
+ assert(decisionLevel() == 0);
+ assert(isEliminated(v));
+
+ vec<Lit> clause;
+
+ // Re-activate variable:
+ elimtable[v].order = 0;
+ setDecisionVar(v, true); // Not good if the variable wasn't a decision variable before. Not sure how to fix this right now.
+
+ if (use_simplification)
+ updateElimHeap(v);
+
+ // Reintroduce all old clauses which may implicitly remember other clauses:
+ for (int i = 0; i < elimtable[v].eliminated.size(); i++){
+ Clause& c = *elimtable[v].eliminated[i];
+ clause.clear();
+ for (int j = 0; j < c.size(); j++)
+ clause.push(c[j]);
+
+ remembered_clauses++;
+ check(addClause(clause, CLAUSE_PROBLEM));
+ free(&c);
+ }
+
+ elimtable[v].eliminated.clear();
+}
+
+
+void SimpSolver::extendModel()
+{
+ vec<Var> vs;
+
+ // NOTE: elimtable.size() might be lower than nVars() at the moment
+ for (int v = 0; v < elimtable.size(); v++)
+ if (elimtable[v].order > 0)
+ vs.push(v);
+
+ sort(vs, ElimOrderLt(elimtable));
+
+ for (int i = 0; i < vs.size(); i++){
+ Var v = vs[i];
+ Lit l = lit_Undef;
+
+ for (int j = 0; j < elimtable[v].eliminated.size(); j++){
+ Clause& c = *elimtable[v].eliminated[j];
+
+ for (int k = 0; k < c.size(); k++)
+ if (var(c[k]) == v)
+ l = c[k];
+ else if (modelValue(c[k]) != l_False)
+ goto next;
+
+ assert(l != lit_Undef);
+ model[v] = lbool(!sign(l));
+ break;
+
+ next:;
+ }
+
+ if (model[v] == l_Undef)
+ model[v] = l_True;
+ }
+}
+
+
+bool SimpSolver::eliminate(bool turn_off_elim)
+{
+ if (!ok || !use_simplification)
+ return ok;
+
+ // Main simplification loop:
+ //assert(subsumption_queue.size() == 0);
+ //gatherTouchedClauses();
+ while (subsumption_queue.size() > 0 || elim_heap.size() > 0){
+
+ //fprintf(stderr, "subsumption phase: (%d)\n", subsumption_queue.size());
+ if (!backwardSubsumptionCheck(true))
+ return false;
+
+ //fprintf(stderr, "elimination phase:\n (%d)", elim_heap.size());
+ for (int cnt = 0; !elim_heap.empty(); cnt++){
+ Var elim = elim_heap.removeMin();
+
+ if (verbosity >= 2 && cnt % 100 == 0)
+ reportf("elimination left: %10d\r", elim_heap.size());
+
+ if (!frozen[elim] && !eliminateVar(elim))
+ return false;
+ }
+
+ assert(subsumption_queue.size() == 0);
+ gatherTouchedClauses();
+ }
+
+ // Cleanup:
+ cleanUpClauses();
+ order_heap.filter(VarFilter(*this));
+
+#ifdef INVARIANTS
+ // Check that no more subsumption is possible:
+ reportf("Checking that no more subsumption is possible\n");
+ for (int i = 0; i < clauses.size(); i++){
+ if (i % 1000 == 0)
+ reportf("left %10d\r", clauses.size() - i);
+
+ assert(clauses[i]->mark() == 0);
+ for (int j = 0; j < i; j++)
+ assert(clauses[i]->subsumes(*clauses[j]) == lit_Error);
+ }
+ reportf("done.\n");
+
+ // Check that no more elimination is possible:
+ reportf("Checking that no more elimination is possible\n");
+ for (int i = 0; i < nVars(); i++)
+ if (!frozen[i]) eliminateVar(i, true);
+ reportf("done.\n");
+ checkLiteralCount();
+#endif
+
+ // If no more simplification is needed, free all simplification-related data structures:
+ if (turn_off_elim){
+ use_simplification = false;
+ touched.clear(true);
+ occurs.clear(true);
+ n_occ.clear(true);
+ subsumption_queue.clear(true);
+ elim_heap.clear(true);
+ remove_satisfied = true;
+ }
+
+
+ return true;
+}
+
+
+void SimpSolver::cleanUpClauses()
+{
+ int i , j;
+ vec<Var> dirty;
+ for (i = 0; i < clauses.size(); i++)
+ if (clauses[i]->mark() == 1){
+ Clause& c = *clauses[i];
+ for (int k = 0; k < c.size(); k++)
+ if (!seen[var(c[k])]){
+ seen[var(c[k])] = 1;
+ dirty.push(var(c[k]));
+ } }
+
+ for (i = 0; i < dirty.size(); i++){
+ cleanOcc(dirty[i]);
+ seen[dirty[i]] = 0; }
+
+ for (i = j = 0; i < clauses.size(); i++)
+ if (clauses[i]->mark() == 1)
+ free(clauses[i]);
+ else
+ clauses[j++] = clauses[i];
+ clauses.shrink(i - j);
+}
+
+
+//=================================================================================================
+// Convert to DIMACS:
+
+
+void SimpSolver::toDimacs(FILE* f, Clause& c)
+{
+ if (satisfied(c)) return;
+
+ for (int i = 0; i < c.size(); i++)
+ if (value(c[i]) != l_False)
+ fprintf(f, "%s%d ", sign(c[i]) ? "-" : "", var(c[i])+1);
+ fprintf(f, "0\n");
+}
+
+
+void SimpSolver::toDimacs(const char* file)
+{
+ assert(decisionLevel() == 0);
+ FILE* f = fopen(file, "wr");
+ if (f != NULL){
+
+ // Cannot use removeClauses here because it is not safe
+ // to deallocate them at this point. Could be improved.
+ int cnt = 0;
+ for (int i = 0; i < clauses.size(); i++)
+ if (!satisfied(*clauses[i]))
+ cnt++;
+
+ fprintf(f, "p cnf %d %d\n", nVars(), cnt);
+
+ for (int i = 0; i < clauses.size(); i++)
+ toDimacs(f, *clauses[i]);
+
+ fprintf(stderr, "Wrote %d clauses...\n", clauses.size());
+ }else
+ fprintf(stderr, "could not open file %s\n", file);
+}
+
+}/* CVC4::prop::minisat namespace */
+}/* CVC4::prop namespace */
+}/* CVC4 namespace */