values.sort()
return values[int(len(values) / 2)]
+class PredictDefFile:
+ def __init__(self, path):
+ self.path = path
+ self.predictors = {}
+
+ def parse_and_modify(self, heuristics, write_def_file):
+ lines = [x.rstrip() for x in open(self.path).readlines()]
+
+ p = None
+ modified_lines = []
+ for l in lines:
+ if l.startswith('DEF_PREDICTOR'):
+ m = re.match('.*"(.*)".*', l)
+ p = m.group(1)
+ elif l == '':
+ p = None
+
+ if p != None:
+ heuristic = [x for x in heuristics if x.name == p]
+ heuristic = heuristic[0] if len(heuristic) == 1 else None
+
+ m = re.match('.*HITRATE \(([^)]*)\).*', l)
+ if (m != None):
+ self.predictors[p] = int(m.group(1))
+
+ # modify the line
+ if heuristic != None:
+ new_line = (l[:m.start(1)]
+ + str(round(heuristic.get_hitrate()))
+ + l[m.end(1):])
+ l = new_line
+ p = None
+ elif 'PROB_VERY_LIKELY' in l:
+ self.predictors[p] = 100
+ modified_lines.append(l)
+
+ # save the file
+ if write_def_file:
+ with open(self.path, 'w+') as f:
+ for l in modified_lines:
+ f.write(l + '\n')
+
class Summary:
def __init__(self, name):
self.name = name
v /= 1000.0
return "%.1f%s" % (v, 'Y')
- def print(self, branches_max, count_max):
+ def print(self, branches_max, count_max, predict_def):
+ predicted_as = None
+ if predict_def != None and self.name in predict_def.predictors:
+ predicted_as = predict_def.predictors[self.name]
+
print('%-40s %8i %5.1f%% %11.2f%% %7.2f%% / %6.2f%% %14i %8s %5.1f%%' %
(self.name, self.branches,
percentage(self.branches, branches_max),
self.get_hitrate(),
percentage(self.fits, self.count),
self.count, self.count_formatted(),
- percentage(self.count, count_max)))
+ percentage(self.count, count_max)), end = '')
+
+ if predicted_as != None:
+ print('%12i%% %5.1f%%' % (predicted_as,
+ self.get_hitrate() - predicted_as), end = '')
+ print()
class Profile:
def __init__(self, filename):
def count_max(self):
return max([v.count for k, v in self.heuristics.items()])
- def print_group(self, sorting, group_name, heuristics):
+ def print_group(self, sorting, group_name, heuristics, predict_def):
count_max = self.count_max()
branches_max = self.branches_max()
elif sorting == 'name':
sorter = lambda x: x.name.lower()
- print('%-40s %8s %6s %12s %18s %14s %8s %6s' %
+ print('%-40s %8s %6s %12s %18s %14s %8s %6s %12s %6s' %
('HEURISTICS', 'BRANCHES', '(REL)',
- 'BR. HITRATE', 'HITRATE', 'COVERAGE', 'COVERAGE', '(REL)'))
+ 'BR. HITRATE', 'HITRATE', 'COVERAGE', 'COVERAGE', '(REL)',
+ 'predict.def', '(REL)'))
for h in sorted(heuristics, key = sorter):
- h.print(branches_max, count_max)
+ h.print(branches_max, count_max, predict_def)
def dump(self, sorting):
heuristics = self.heuristics.values()
print('No heuristics available')
return
+ predict_def = None
+ if args.def_file != None:
+ predict_def = PredictDefFile(args.def_file)
+ predict_def.parse_and_modify(heuristics, args.write_def_file)
+
special = list(filter(lambda x: x.name in counter_aggregates,
heuristics))
normal = list(filter(lambda x: x.name not in counter_aggregates,
heuristics))
- self.print_group(sorting, 'HEURISTICS', normal)
+ self.print_group(sorting, 'HEURISTICS', normal, predict_def)
print()
- self.print_group(sorting, 'HEURISTIC AGGREGATES', special)
+ self.print_group(sorting, 'HEURISTIC AGGREGATES', special, predict_def)
if len(self.niter_vector) > 0:
print ('\nLoop count: %d' % len(self.niter_vector)),
parser.add_argument('-s', '--sorting', dest = 'sorting',
choices = ['branches', 'branch-hitrate', 'hitrate', 'coverage', 'name'],
default = 'branches')
+parser.add_argument('-d', '--def-file', help = 'path to predict.def')
+parser.add_argument('-w', '--write-def-file', action = 'store_true',
+ help = 'Modify predict.def file in order to set new numbers')
args = parser.parse_args()
-profile = Profile(sys.argv[1])
+profile = Profile(args.dump_file)
r = re.compile(' (.*) heuristics( of edge [0-9]*->[0-9]*)?( \\(.*\\))?: (.*)%.*exec ([0-9]*) hit ([0-9]*)')
loop_niter_str = ';; profile-based iteration count: '
-for l in open(args.dump_file).readlines():
+for l in open(args.dump_file):
m = r.match(l)
if m != None and m.group(3) == None:
name = m.group(1)