radv/gfx10: implement support for GS as NGG
authorSamuel Pitoiset <samuel.pitoiset@gmail.com>
Thu, 11 Jul 2019 06:44:16 +0000 (08:44 +0200)
committerSamuel Pitoiset <samuel.pitoiset@gmail.com>
Thu, 11 Jul 2019 13:45:53 +0000 (15:45 +0200)
Signed-off-by: Samuel Pitoiset <samuel.pitoiset@gmail.com>
Reviewed-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
src/amd/vulkan/radv_nir_to_llvm.c
src/amd/vulkan/radv_pipeline.c
src/amd/vulkan/radv_private.h
src/amd/vulkan/radv_shader.c

index 176e95537c1b47db2560932879bc7f8f8031aa1f..dc37c937155faf3e523f43620e302e6cd5e311a6 100644 (file)
@@ -105,7 +105,12 @@ struct radv_shader_context {
 
        bool is_gs_copy_shader;
        LLVMValueRef gs_next_vertex[4];
+       LLVMValueRef gs_curprim_verts[4];
+       LLVMValueRef gs_generated_prims[4];
+       LLVMValueRef gs_ngg_emit;
+       LLVMValueRef gs_ngg_scratch;
        unsigned gs_max_out_vertices;
+       unsigned gs_output_prim;
 
        unsigned tes_primitive_mode;
 
@@ -116,6 +121,8 @@ struct radv_shader_context {
        uint32_t tcs_num_patches;
        uint32_t max_gsvs_emit_size;
        uint32_t gsvs_vertex_size;
+
+       LLVMValueRef vertexptr; /* GFX10 only */
 };
 
 enum radeon_llvm_calling_convention {
@@ -1846,6 +1853,10 @@ static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
 }
 
 
+static void gfx10_ngg_gs_emit_vertex(struct radv_shader_context *ctx,
+                                    unsigned stream,
+                                    LLVMValueRef *addrs);
+
 static void
 visit_emit_vertex(struct ac_shader_abi *abi, unsigned stream, LLVMValueRef *addrs)
 {
@@ -1854,6 +1865,11 @@ visit_emit_vertex(struct ac_shader_abi *abi, unsigned stream, LLVMValueRef *addr
        unsigned offset = 0;
        struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
 
+       if (ctx->options->key.vs_common_out.as_ngg) {
+               gfx10_ngg_gs_emit_vertex(ctx, stream, addrs);
+               return;
+       }
+
        /* Write vertex attribute values to GSVS ring */
        gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
                                       ctx->gs_next_vertex[stream],
@@ -1919,6 +1935,12 @@ static void
 visit_end_primitive(struct ac_shader_abi *abi, unsigned stream)
 {
        struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
+
+       if (ctx->options->key.vs_common_out.as_ngg) {
+               LLVMBuildStore(ctx->ac.builder, ctx->ac.i32_0, ctx->gs_curprim_verts[stream]);
+               return;
+       }
+
        ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8), ctx->gs_wave_id);
 }
 
@@ -2571,8 +2593,20 @@ radv_export_param(struct radv_shader_context *ctx, unsigned index,
 static LLVMValueRef
 radv_load_output(struct radv_shader_context *ctx, unsigned index, unsigned chan)
 {
-       LLVMValueRef output =
-               ctx->abi.outputs[ac_llvm_reg_index_soa(index, chan)];
+       LLVMValueRef output;
+
+       if (ctx->vertexptr) {
+               LLVMValueRef gep_idx[3] = {
+                       ctx->ac.i32_0, /* implicit C-style array */
+                       ctx->ac.i32_0, /* second value of struct */
+                       ctx->ac.i32_1, /* stream 1: source data index */
+               };
+
+               gep_idx[2] = LLVMConstInt(ctx->ac.i32, ac_llvm_reg_index_soa(index, chan), false);
+               output = LLVMBuildGEP(ctx->ac.builder, ctx->vertexptr, gep_idx, 3, "");
+       } else {
+               output = ctx->abi.outputs[ac_llvm_reg_index_soa(index, chan)];
+       }
 
        return LLVMBuildLoad(ctx->ac.builder, output, "");
 }
@@ -2940,7 +2974,7 @@ handle_vs_outputs_post(struct radv_shader_context *ctx,
                        outputs[noutput].usage_mask =
                                ctx->shader_info->info.tes.output_usage_mask[i];
                } else {
-                       assert(ctx->is_gs_copy_shader);
+                       assert(ctx->is_gs_copy_shader || ctx->options->key.vs_common_out.as_ngg);
                        outputs[noutput].usage_mask =
                                ctx->shader_info->info.gs.output_usage_mask[i];
                }
@@ -3090,6 +3124,20 @@ static LLVMValueRef get_wave_id_in_tg(struct radv_shader_context *ctx)
        return ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 24, 4);
 }
 
+static LLVMValueRef get_tgsize(struct radv_shader_context *ctx)
+{
+       return ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 28, 4);
+}
+
+static LLVMValueRef get_thread_id_in_tg(struct radv_shader_context *ctx)
+{
+       LLVMBuilderRef builder = ctx->ac.builder;
+       LLVMValueRef tmp;
+       tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
+                          LLVMConstInt(ctx->ac.i32, 64, false), "");
+       return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), "");
+}
+
 static LLVMValueRef ngg_get_vtx_cnt(struct radv_shader_context *ctx)
 {
        return ac_build_bfe(&ctx->ac, ctx->gs_tg_info,
@@ -3106,6 +3154,85 @@ static LLVMValueRef ngg_get_prim_cnt(struct radv_shader_context *ctx)
                            false);
 }
 
+static LLVMValueRef
+ngg_gs_get_vertex_storage(struct radv_shader_context *ctx)
+{
+       unsigned num_outputs = util_bitcount64(ctx->output_mask);
+
+       LLVMTypeRef elements[2] = {
+               LLVMArrayType(ctx->ac.i32, 4 * num_outputs),
+               LLVMArrayType(ctx->ac.i8, 4),
+       };
+       LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false);
+       type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS);
+       return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, "");
+}
+
+/**
+ * Return a pointer to the LDS storage reserved for the N'th vertex, where N
+ * is in emit order; that is:
+ * - during the epilogue, N is the threadidx (relative to the entire threadgroup)
+ * - during vertex emit, i.e. while the API GS shader invocation is running,
+ *   N = threadidx * gs_max_out_vertices + emitidx
+ *
+ * Goals of the LDS memory layout:
+ * 1. Eliminate bank conflicts on write for geometry shaders that have all emits
+ *    in uniform control flow
+ * 2. Eliminate bank conflicts on read for export if, additionally, there is no
+ *    culling
+ * 3. Agnostic to the number of waves (since we don't know it before compiling)
+ * 4. Allow coalescing of LDS instructions (ds_write_b128 etc.)
+ * 5. Avoid wasting memory.
+ *
+ * We use an AoS layout due to point 4 (this also helps point 3). In an AoS
+ * layout, elimination of bank conflicts requires that each vertex occupy an
+ * odd number of dwords. We use the additional dword to store the output stream
+ * index as well as a flag to indicate whether this vertex ends a primitive
+ * for rasterization.
+ *
+ * Swizzling is required to satisfy points 1 and 2 simultaneously.
+ *
+ * Vertices are stored in export order (gsthread * gs_max_out_vertices + emitidx).
+ * Indices are swizzled in groups of 32, which ensures point 1 without
+ * disturbing point 2.
+ *
+ * \return an LDS pointer to type {[N x i32], [4 x i8]}
+ */
+static LLVMValueRef
+ngg_gs_vertex_ptr(struct radv_shader_context *ctx, LLVMValueRef vertexidx)
+{
+       LLVMBuilderRef builder = ctx->ac.builder;
+       LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx);
+
+       /* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */
+       unsigned write_stride_2exp = ffs(ctx->gs_max_out_vertices) - 1;
+       if (write_stride_2exp) {
+               LLVMValueRef row =
+                       LLVMBuildLShr(builder, vertexidx,
+                                     LLVMConstInt(ctx->ac.i32, 5, false), "");
+               LLVMValueRef swizzle =
+                       LLVMBuildAnd(builder, row,
+                                    LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1,
+                                                 false), "");
+               vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, "");
+       }
+
+       return ac_build_gep0(&ctx->ac, storage, vertexidx);
+}
+
+static LLVMValueRef
+ngg_gs_emit_vertex_ptr(struct radv_shader_context *ctx, LLVMValueRef gsthread,
+                      LLVMValueRef emitidx)
+{
+       LLVMBuilderRef builder = ctx->ac.builder;
+       LLVMValueRef tmp;
+
+       tmp = LLVMConstInt(ctx->ac.i32, ctx->gs_max_out_vertices, false);
+       tmp = LLVMBuildMul(builder, tmp, gsthread, "");
+       const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, "");
+       return ngg_gs_vertex_ptr(ctx, vertexidx);
+}
+
 /* Send GS Alloc Req message from the first wave of the group to SPI.
  * Message payload is:
  * - bits 0..10: vertices in group
@@ -3247,6 +3374,369 @@ handle_ngg_outputs_post(struct radv_shader_context *ctx)
        ac_nir_build_endif(&if_state);
 }
 
+static void gfx10_ngg_gs_emit_prologue(struct radv_shader_context *ctx)
+{
+       /* Zero out the part of LDS scratch that is used to accumulate the
+        * per-stream generated primitive count.
+        */
+       LLVMBuilderRef builder = ctx->ac.builder;
+       LLVMValueRef scratchptr = ctx->gs_ngg_scratch;
+       LLVMValueRef tid = get_thread_id_in_tg(ctx);
+       LLVMValueRef tmp;
+
+       tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->ac.i32, 4, false), "");
+       ac_build_ifcc(&ctx->ac, tmp, 5090);
+       {
+               LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid);
+               LLVMBuildStore(builder, ctx->ac.i32_0, ptr);
+       }
+       ac_build_endif(&ctx->ac, 5090);
+
+       ac_build_s_barrier(&ctx->ac);
+}
+
+static void gfx10_ngg_gs_emit_epilogue_1(struct radv_shader_context *ctx)
+{
+       LLVMBuilderRef builder = ctx->ac.builder;
+       LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false);
+       LLVMValueRef tmp;
+
+       /* Zero out remaining (non-emitted) primitive flags.
+        *
+        * Note: Alternatively, we could pass the relevant gs_next_vertex to
+        *       the emit threads via LDS. This is likely worse in the expected
+        *       typical case where each GS thread emits the full set of
+        *       vertices.
+        */
+       for (unsigned stream = 0; stream < 4; ++stream) {
+               unsigned num_components;
+
+               num_components =
+                       ctx->shader_info->info.gs.num_stream_output_components[stream];
+               if (!num_components)
+                       continue;
+
+               const LLVMValueRef gsthread = get_thread_id_in_tg(ctx);
+
+               ac_build_bgnloop(&ctx->ac, 5100);
+
+               const LLVMValueRef vertexidx =
+                       LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
+               tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx,
+                       LLVMConstInt(ctx->ac.i32, ctx->gs_max_out_vertices, false), "");
+               ac_build_ifcc(&ctx->ac, tmp, 5101);
+               ac_build_break(&ctx->ac);
+               ac_build_endif(&ctx->ac, 5101);
+
+               tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
+               LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
+
+               tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx);
+               LLVMValueRef gep_idx[3] = {
+                       ctx->ac.i32_0, /* implied C-style array */
+                       ctx->ac.i32_1, /* second entry of struct */
+                       LLVMConstInt(ctx->ac.i32, stream, false),
+               };
+               tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
+               LLVMBuildStore(builder, i8_0, tmp);
+
+               ac_build_endloop(&ctx->ac, 5100);
+       }
+}
+
+static void gfx10_ngg_gs_emit_epilogue_2(struct radv_shader_context *ctx)
+{
+       const unsigned verts_per_prim = si_conv_gl_prim_to_vertices(ctx->gs_output_prim);
+       LLVMBuilderRef builder = ctx->ac.builder;
+       LLVMValueRef tmp, tmp2;
+
+       ac_build_s_barrier(&ctx->ac);
+
+       const LLVMValueRef tid = get_thread_id_in_tg(ctx);
+       LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);
+
+       /* TODO: streamout */
+
+       /* TODO: culling */
+
+       /* Determine vertex liveness. */
+       LLVMValueRef vertliveptr = ac_build_alloca(&ctx->ac, ctx->ac.i1, "vertexlive");
+
+       tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
+       ac_build_ifcc(&ctx->ac, tmp, 5120);
+       {
+               for (unsigned i = 0; i < verts_per_prim; ++i) {
+                       const LLVMValueRef primidx =
+                               LLVMBuildAdd(builder, tid,
+                                            LLVMConstInt(ctx->ac.i32, i, false), "");
+
+                       if (i > 0) {
+                               tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, "");
+                               ac_build_ifcc(&ctx->ac, tmp, 5121 + i);
+                       }
+
+                       /* Load primitive liveness */
+                       tmp = ngg_gs_vertex_ptr(ctx, primidx);
+                       LLVMValueRef gep_idx[3] = {
+                               ctx->ac.i32_0, /* implicit C-style array */
+                               ctx->ac.i32_1, /* second value of struct */
+                               ctx->ac.i32_0, /* stream 0 */
+                       };
+                       tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
+                       tmp = LLVMBuildLoad(builder, tmp, "");
+                       const LLVMValueRef primlive =
+                               LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
+
+                       tmp = LLVMBuildLoad(builder, vertliveptr, "");
+                       tmp = LLVMBuildOr(builder, tmp, primlive, ""),
+                       LLVMBuildStore(builder, tmp, vertliveptr);
+
+                       if (i > 0)
+                               ac_build_endif(&ctx->ac, 5121 + i);
+               }
+       }
+       ac_build_endif(&ctx->ac, 5120);
+
+       /* Inclusive scan addition across the current wave. */
+       LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, "");
+       struct ac_wg_scan vertlive_scan = {};
+       vertlive_scan.op = nir_op_iadd;
+       vertlive_scan.enable_reduce = true;
+       vertlive_scan.enable_exclusive = true;
+       vertlive_scan.src = vertlive;
+       vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->ac.i32_0);
+       vertlive_scan.waveidx = get_wave_id_in_tg(ctx);
+       vertlive_scan.numwaves = get_tgsize(ctx);
+       vertlive_scan.maxwaves = 8;
+
+       ac_build_wg_scan(&ctx->ac, &vertlive_scan);
+
+       /* Skip all exports (including index exports) when possible. At least on
+        * early gfx10 revisions this is also to avoid hangs.
+        */
+       LLVMValueRef have_exports =
+               LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, "");
+       num_emit_threads =
+               LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, "");
+
+       /* Allocate export space. Send this message as early as possible, to
+        * hide the latency of the SQ <-> SPI roundtrip.
+        *
+        * Note: We could consider compacting primitives for export as well.
+        *       PA processes 1 non-null prim / clock, but it fetches 4 DW of
+        *       prim data per clock and skips null primitives at no additional
+        *       cost. So compacting primitives can only be beneficial when
+        *       there are 4 or more contiguous null primitives in the export
+        *       (in the common case of single-dword prim exports).
+        */
+       build_sendmsg_gs_alloc_req(ctx, vertlive_scan.result_reduce, num_emit_threads);
+
+       /* Setup the reverse vertex compaction permutation. We re-use stream 1
+        * of the primitive liveness flags, relying on the fact that each
+        * threadgroup can have at most 256 threads. */
+       ac_build_ifcc(&ctx->ac, vertlive, 5130);
+       {
+               tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive);
+               LLVMValueRef gep_idx[3] = {
+                       ctx->ac.i32_0, /* implicit C-style array */
+                       ctx->ac.i32_1, /* second value of struct */
+                       ctx->ac.i32_1, /* stream 1 */
+               };
+               tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
+               tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, "");
+               LLVMBuildStore(builder, tmp2, tmp);
+       }
+       ac_build_endif(&ctx->ac, 5130);
+
+       ac_build_s_barrier(&ctx->ac);
+
+       /* Export primitive data */
+       tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
+       ac_build_ifcc(&ctx->ac, tmp, 5140);
+       {
+               struct ngg_prim prim = {};
+               prim.num_vertices = verts_per_prim;
+
+               tmp = ngg_gs_vertex_ptr(ctx, tid);
+               LLVMValueRef gep_idx[3] = {
+                       ctx->ac.i32_0, /* implicit C-style array */
+                       ctx->ac.i32_1, /* second value of struct */
+                       ctx->ac.i32_0, /* primflag */
+               };
+               tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
+               tmp = LLVMBuildLoad(builder, tmp, "");
+               prim.isnull = LLVMBuildICmp(builder, LLVMIntEQ, tmp,
+                                           LLVMConstInt(ctx->ac.i8, 0, false), "");
+
+               for (unsigned i = 0; i < verts_per_prim; ++i) {
+                       prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive,
+                               LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
+                       prim.edgeflag[i] = ctx->ac.i1false;
+               }
+
+               build_export_prim(ctx, &prim);
+       }
+       ac_build_endif(&ctx->ac, 5140);
+
+       /* Export position and parameter data */
+       tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, "");
+       ac_build_ifcc(&ctx->ac, tmp, 5145);
+       {
+               struct radv_vs_output_info *outinfo = &ctx->shader_info->vs.outinfo;
+               struct radv_shader_output_values *outputs;
+               unsigned noutput = 0;
+
+               /* Allocate a temporary array for the output values. */
+               unsigned num_outputs = util_bitcount64(ctx->output_mask);
+               outputs = calloc(num_outputs, sizeof(outputs[0]));
+
+               memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
+                      sizeof(outinfo->vs_output_param_offset));
+               outinfo->pos_exports = 0;
+
+               tmp = ngg_gs_vertex_ptr(ctx, tid);
+               LLVMValueRef gep_idx[3] = {
+                       ctx->ac.i32_0, /* implicit C-style array */
+                       ctx->ac.i32_1, /* second value of struct */
+                       ctx->ac.i32_1, /* stream 1: source data index */
+               };
+               tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
+               tmp = LLVMBuildLoad(builder, tmp, "");
+               tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
+               const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp);
+
+               if (ctx->output_mask & (1ull << VARYING_SLOT_PSIZ)) {
+                       outinfo->writes_pointsize = true;
+               }
+
+               if (ctx->output_mask & (1ull << VARYING_SLOT_LAYER)) {
+                       outinfo->writes_layer = true;
+               }
+
+               if (ctx->output_mask & (1ull << VARYING_SLOT_VIEWPORT)) {
+                       outinfo->writes_viewport_index = true;
+               }
+
+               unsigned out_idx = 0;
+               gep_idx[1] = ctx->ac.i32_0;
+               for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
+                       if (!(ctx->output_mask & (1ull << i)))
+                               continue;
+
+                       outputs[noutput].slot_name = i;
+                       outputs[noutput].slot_index = i == VARYING_SLOT_CLIP_DIST1;
+
+                       if (ctx->stage == MESA_SHADER_VERTEX &&
+                           !ctx->is_gs_copy_shader) {
+                               outputs[noutput].usage_mask =
+                                       ctx->shader_info->info.vs.output_usage_mask[i];
+                       } else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
+                               outputs[noutput].usage_mask =
+                                       ctx->shader_info->info.tes.output_usage_mask[i];
+                       } else {
+                               assert(ctx->is_gs_copy_shader || ctx->options->key.vs_common_out.as_ngg);
+                               outputs[noutput].usage_mask =
+                                       ctx->shader_info->info.gs.output_usage_mask[i];
+                       }
+
+                       for (unsigned j = 0; j < 4; j++, out_idx++) {
+                               gep_idx[2] = LLVMConstInt(ctx->ac.i32, out_idx, false);
+                               tmp = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
+                               tmp = LLVMBuildLoad(builder, tmp, "");
+                               outputs[noutput].values[j] = ac_to_float(&ctx->ac, tmp);
+                       }
+
+                       noutput++;
+               }
+
+               radv_llvm_export_vs(ctx, outputs, noutput, outinfo, false);
+               FREE(outputs);
+       }
+       ac_build_endif(&ctx->ac, 5145);
+}
+
+static void gfx10_ngg_gs_emit_vertex(struct radv_shader_context *ctx,
+                                    unsigned stream,
+                                    LLVMValueRef *addrs)
+{
+       LLVMBuilderRef builder = ctx->ac.builder;
+       LLVMValueRef tmp;
+       const LLVMValueRef vertexidx =
+               LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
+
+       /* If this thread has already emitted the declared maximum number of
+        * vertices, skip the write: excessive vertex emissions are not
+        * supposed to have any effect.
+        */
+       const LLVMValueRef can_emit =
+               LLVMBuildICmp(builder, LLVMIntULT, vertexidx,
+                             LLVMConstInt(ctx->ac.i32, ctx->gs_max_out_vertices, false), "");
+       ac_build_kill_if_false(&ctx->ac, can_emit);
+
+       tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
+       tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, "");
+       LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
+
+       const LLVMValueRef vertexptr =
+               ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx);
+       unsigned out_idx = 0;
+       for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
+               unsigned output_usage_mask =
+                       ctx->shader_info->info.gs.output_usage_mask[i];
+               uint8_t output_stream =
+                       ctx->shader_info->info.gs.output_streams[i];
+               LLVMValueRef *out_ptr = &addrs[i * 4];
+               int length = util_last_bit(output_usage_mask);
+
+               if (!(ctx->output_mask & (1ull << i)) ||
+                   output_stream != stream)
+                       continue;
+
+               for (unsigned j = 0; j < length; j++, out_idx++) {
+                       if (!(output_usage_mask & (1 << j)))
+                               continue;
+
+                       LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder,
+                                                            out_ptr[j], "");
+                       LLVMValueRef gep_idx[3] = {
+                               ctx->ac.i32_0, /* implied C-style array */
+                               ctx->ac.i32_0, /* first entry of struct */
+                               LLVMConstInt(ctx->ac.i32, out_idx, false),
+                       };
+                       LLVMValueRef ptr = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
+
+                       out_val = ac_to_integer(&ctx->ac, out_val);
+                       LLVMBuildStore(builder, out_val, ptr);
+               }
+       }
+       assert(out_idx * 4 <= ctx->gsvs_vertex_size);
+
+       /* Determine and store whether this vertex completed a primitive. */
+       const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], "");
+
+       tmp = LLVMConstInt(ctx->ac.i32, si_conv_gl_prim_to_vertices(ctx->gs_output_prim) - 1, false);
+       const LLVMValueRef iscompleteprim =
+               LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, "");
+
+       tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, "");
+       LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]);
+
+       LLVMValueRef gep_idx[3] = {
+               ctx->ac.i32_0, /* implied C-style array */
+               ctx->ac.i32_1, /* second struct entry */
+               LLVMConstInt(ctx->ac.i32, stream, false),
+       };
+       const LLVMValueRef primflagptr =
+               LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
+
+       tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, "");
+       LLVMBuildStore(builder, tmp, primflagptr);
+
+       tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
+       tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), "");
+       LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]);
+}
+
 static void
 write_tess_factors(struct radv_shader_context *ctx)
 {
@@ -3490,6 +3980,14 @@ handle_fs_outputs_post(struct radv_shader_context *ctx)
 static void
 emit_gs_epilogue(struct radv_shader_context *ctx)
 {
+       if (ctx->options->key.vs_common_out.as_ngg) {
+               gfx10_ngg_gs_emit_epilogue_1(ctx);
+               return;
+       }
+
+       if (ctx->ac.chip_class >= GFX10)
+               LLVMBuildFence(ctx->ac.builder, LLVMAtomicOrderingRelease, false, "");
+
        ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE, ctx->gs_wave_id);
 }
 
@@ -3503,10 +4001,10 @@ handle_shader_outputs_post(struct ac_shader_abi *abi, unsigned max_outputs,
        case MESA_SHADER_VERTEX:
                if (ctx->options->key.vs_common_out.as_ls)
                        handle_ls_outputs_post(ctx);
-               else if (ctx->options->key.vs_common_out.as_ngg)
-                       break; /* handled outside of the shader body */
                else if (ctx->options->key.vs_common_out.as_es)
                        handle_es_outputs_post(ctx, &ctx->shader_info->vs.es_info);
+               else if (ctx->options->key.vs_common_out.as_ngg)
+                       break; /* handled outside of the shader body */
                else
                        handle_vs_outputs_post(ctx, ctx->options->key.vs_common_out.export_prim_id,
                                               ctx->options->key.vs_common_out.export_clip_dists,
@@ -3800,7 +4298,31 @@ LLVMModuleRef ac_translate_nir_to_llvm(struct ac_llvm_compiler *ac_llvm,
                                ctx.gs_next_vertex[i] =
                                        ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
                        }
+                       if (ctx.options->key.vs_common_out.as_ngg) {
+                               for (unsigned i = 0; i < 4; ++i) {
+                                       ctx.gs_curprim_verts[i] =
+                                               ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
+                                       ctx.gs_generated_prims[i] =
+                                               ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
+                               }
+
+                               /* TODO: streamout */
+
+                               LLVMTypeRef ai32 = LLVMArrayType(ctx.ac.i32, 8);
+                               ctx.gs_ngg_scratch =
+                                       LLVMAddGlobalInAddressSpace(ctx.ac.module,
+                                                                   ai32, "ngg_scratch", AC_ADDR_SPACE_LDS);
+                               LLVMSetInitializer(ctx.gs_ngg_scratch, LLVMGetUndef(ai32));
+                               LLVMSetAlignment(ctx.gs_ngg_scratch, 4);
+
+                               ctx.gs_ngg_emit = LLVMBuildIntToPtr(ctx.ac.builder, ctx.ac.i32_0,
+                                       LLVMPointerType(LLVMArrayType(ctx.ac.i32, 0), AC_ADDR_SPACE_LDS),
+                                       "ngg_emit");
+                               LLVMSetAlignment(ctx.gs_ngg_emit, 4);
+                       }
+
                        ctx.gs_max_out_vertices = shaders[i]->info.gs.vertices_out;
+                       ctx.gs_output_prim = shaders[i]->info.gs.output_primitive;
                        ctx.abi.load_inputs = load_gs_input;
                        ctx.abi.emit_primitive = visit_end_primitive;
                } else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
@@ -3861,6 +4383,11 @@ LLVMModuleRef ac_translate_nir_to_llvm(struct ac_llvm_compiler *ac_llvm,
                        LLVMBuildCondBr(ctx.ac.builder, cond, then_block, merge_block);
 
                        LLVMPositionBuilderAtEnd(ctx.ac.builder, then_block);
+
+                       if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY &&
+                           ctx.options->key.vs_common_out.as_ngg) {
+                               gfx10_ngg_gs_emit_prologue(&ctx);
+                       }
                }
 
                if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT)
@@ -3883,6 +4410,9 @@ LLVMModuleRef ac_translate_nir_to_llvm(struct ac_llvm_compiler *ac_llvm,
                    ctx.options->key.vs_common_out.as_ngg &&
                    i == shader_count - 1) {
                        handle_ngg_outputs_post(&ctx);
+               } else if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY &&
+                          ctx.options->key.vs_common_out.as_ngg) {
+                       gfx10_ngg_gs_emit_epilogue_2(&ctx);
                }
 
                if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
index 8417eab41db95e7825d776105b6afcb20479757f..5c97aae39a853d4e14d5ec0d87dc7e63e59e34bf 100644 (file)
@@ -2023,7 +2023,10 @@ static const struct radv_prim_vertex_count prim_size_table[] = {
 static const struct radv_vs_output_info *get_vs_output_info(const struct radv_pipeline *pipeline)
 {
        if (radv_pipeline_has_gs(pipeline))
-               return &pipeline->gs_copy_shader->info.vs.outinfo;
+               if (radv_pipeline_has_ngg(pipeline))
+                       return &pipeline->shaders[MESA_SHADER_GEOMETRY]->info.vs.outinfo;
+               else
+                       return &pipeline->gs_copy_shader->info.vs.outinfo;
        else if (radv_pipeline_has_tess(pipeline))
                return &pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.outinfo;
        else
index fd1f8972adc87f7cb1c5e899ab469a44e108fa1b..f4dd526c89d03577c7a6a74edd67aca699afcdea 100644 (file)
@@ -2148,6 +2148,30 @@ struct radeon_winsys_sem;
 
 uint64_t radv_get_current_time(void);
 
+static inline uint32_t
+si_conv_gl_prim_to_vertices(unsigned gl_prim)
+{
+       switch (gl_prim) {
+       case 0: /* GL_POINTS */
+               return 1;
+       case 1: /* GL_LINES */
+       case 3: /* GL_LINE_STRIP */
+               return 2;
+       case 4: /* GL_TRIANGLES */
+       case 5: /* GL_TRIANGLE_STRIP */
+               return 3;
+       case 0xA: /* GL_LINE_STRIP_ADJACENCY_ARB */
+               return 4;
+       case 0xc: /* GL_TRIANGLES_ADJACENCY_ARB */
+               return 6;
+       case 7: /* GL_QUADS */
+               return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
+       default:
+               assert(0);
+               return 0;
+       }
+}
+
 #define RADV_DEFINE_HANDLE_CASTS(__radv_type, __VkType)                \
                                                                \
        static inline struct __radv_type *                      \
index 1987d43961223c6e3ffc004fd050d41934dc571f..4ec4e88349d16ccc69ec80a2c60822f2e0fef711 100644 (file)
@@ -927,6 +927,11 @@ radv_shader_variant_create(struct radv_device *device,
                        sym->name = "esgs_ring";
                        sym->size = 32 * 1024;
                        sym->align = 64 * 1024;
+
+                       /* Make sure to have LDS space for NGG scratch. */
+                       /* TODO: Compute this correctly somehow? */
+                       if (binary->variant_info.is_ngg)
+                               sym->size -= 32;
                }
                struct ac_rtld_open_info open_info = {
                        .info = &device->physical_device->rad_info,