--- /dev/null
+/* original source code from Hackers-Delight
+ https://github.com/hcs0/Hackers-Delight
+*/
+/* This divides an n-word dividend by an m-word divisor, giving an
+n-m+1-word quotient and m-word remainder. The bignums are in arrays of
+words. Here a "word" is 32 bits. This routine is designed for a 64-bit
+machine which has a 64/64 division instruction. */
+
+#include <stdbool.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h> //To define "exit", req'd by XLC.
+
+#define max(x, y) ((x) > (y) ? (x) : (y))
+
+int nlz(unsigned x)
+{
+ int n;
+
+ if (x == 0)
+ return (32);
+ n = 0;
+ if (x <= 0x0000FFFF)
+ {
+ n = n + 16;
+ x = x << 16;
+ }
+ if (x <= 0x00FFFFFF)
+ {
+ n = n + 8;
+ x = x << 8;
+ }
+ if (x <= 0x0FFFFFFF)
+ {
+ n = n + 4;
+ x = x << 4;
+ }
+ if (x <= 0x3FFFFFFF)
+ {
+ n = n + 2;
+ x = x << 2;
+ }
+ if (x <= 0x7FFFFFFF)
+ {
+ n = n + 1;
+ }
+ return n;
+}
+
+void dumpit(char *msg, int n, unsigned v[])
+{
+ int i;
+ printf("%s", msg);
+ for (i = n - 1; i >= 0; i--)
+ printf(" %08x", v[i]);
+ printf("\n");
+}
+
+bool bigmul(unsigned long long qhat, unsigned vn[], unsigned un[],
+ int j, int m, int n)
+{
+ long long t, k;
+ int s, i;
+ // Multiply and subtract.
+ uint32_t carry = 0;
+ uint32_t product[n + 1];
+ // VL = n + 1
+ // sv.madded product.v, vn.v, qhat.s, carry.s
+ for (int i = 0; i <= n; i++)
+ {
+ uint32_t vn_v = i < n ? vn[i] : 0;
+ uint64_t value = (uint64_t)vn_v * (uint64_t)qhat + carry;
+ carry = (uint32_t)(value >> 32);
+ product[i] = (uint32_t)value;
+ }
+ return carry != 0;
+}
+
+bool bigsub(unsigned long long qhat, unsigned vn[], unsigned un[],
+ int j, int m, int n, bool ca)
+{
+ // VL = n + 1
+ // sv.subfe un_j.v, product.v, un_j.v
+ for (int i = 0; i <= n; i++)
+ {
+ uint64_t value = (uint64_t)~vn[i] + (uint64_t)un[i] + ca;
+ ca = value >> 32 != 0;
+ un[i] = value;
+ }
+ bool need_fixup = !ca;
+ return need_fixup;
+}
+
+bool bigmulsub(unsigned long long qhat, unsigned vn[], unsigned un[],
+ int j, int m, int n)
+{
+ unsigned long long p; // Product of two digits.
+ long long t, k;
+ int s, i;
+ // Multiply and subtract.
+ uint32_t carry = 0;
+ uint32_t product[n + 1];
+ // VL = n + 1
+ // sv.madded product.v, vn.v, qhat.s, carry.s
+ for (int i = 0; i <= n; i++)
+ {
+ uint32_t vn_v = i < n ? vn[i] : 0;
+ uint64_t value = (uint64_t)vn_v * (uint64_t)qhat + carry;
+ carry = (uint32_t)(value >> 32);
+ product[i] = (uint32_t)value;
+ }
+ bool ca = true;
+ uint32_t *un_j = &un[j];
+ // VL = n + 1
+ // sv.subfe un_j.v, product.v, un_j.v
+ for (int i = 0; i <= n; i++)
+ {
+ uint64_t value = (uint64_t)~product[i] + (uint64_t)un_j[i] + ca;
+ ca = value >> 32 != 0;
+ un_j[i] = value;
+ }
+ bool need_fixup = !ca;
+ return need_fixup;
+}
+
+/* q[0], r[0], u[0], and v[0] contain the LEAST significant words.
+(The sequence is in little-endian order).
+
+This is a fairly precise implementation of Knuth's Algorithm D, for a
+binary computer with base b = 2**32. The caller supplies:
+ 1. Space q for the quotient, m - n + 1 words (at least one).
+ 2. Space r for the remainder (optional), n words.
+ 3. The dividend u, m words, m >= 1.
+ 4. The divisor v, n words, n >= 2.
+The most significant digit of the divisor, v[n-1], must be nonzero. The
+dividend u may have leading zeros; this just makes the algorithm take
+longer and makes the quotient contain more leading zeros. A value of
+NULL may be given for the address of the remainder to signify that the
+caller does not want the remainder.
+ The program does not alter the input parameters u and v.
+ The quotient and remainder returned may have leading zeros. The
+function itself returns a value of 0 for success and 1 for invalid
+parameters (e.g., division by 0).
+ For now, we must have m >= n. Knuth's Algorithm D also requires
+that the dividend be at least as long as the divisor. (In his terms,
+m >= 0 (unstated). Therefore m+n >= n.) */
+
+int divmnu(unsigned q[], unsigned r[], const unsigned u[], const unsigned v[],
+ int m, int n)
+{
+
+ const unsigned long long b = 1LL<<32; // Number base (2**32).
+ unsigned *un, *vn; // Normalized form of u, v.
+ unsigned long long qhat; // Estimated quotient digit.
+ unsigned long long rhat; // A remainder.
+ unsigned long long p; // Product of two digits.
+ long long t, k;
+ int s, i, j;
+
+ if (m < n || n <= 0 || v[n - 1] == 0)
+ return 1; // Return if invalid param.
+
+ if (n == 1)
+ { // Take care of
+ k = 0; // the case of a
+ for (j = m - 1; j >= 0; j--)
+ { // single-digit
+ q[j] = (k * b + u[j]) / v[0]; // divisor here.
+ k = (k * b + u[j]) - q[j] * v[0];
+ }
+ if (r != NULL)
+ r[0] = k;
+ return 0;
+ }
+
+ /* Normalize by shifting v left just enough so that its high-order
+ bit is on, and shift u left the same amount. We may have to append a
+ high-order digit on the dividend; we do that unconditionally. */
+
+ s = nlz(v[n - 1]); // 0 <= s <= 31.
+ vn = (unsigned *)alloca(4 * n);
+ for (i = n - 1; i > 0; i--)
+ vn[i] = (v[i] << s) | ((unsigned long long)v[i - 1] >> (32 - s));
+ vn[0] = v[0] << s;
+
+ un = (unsigned *)alloca(4 * (m + 1));
+ un[m] = (unsigned long long)u[m - 1] >> (32 - s);
+ for (i = m - 1; i > 0; i--)
+ un[i] = (u[i] << s) | ((unsigned long long)u[i - 1] >> (32 - s));
+ un[0] = u[0] << s;
+
+ for (j = m - n; j >= 0; j--)
+ { // Main loop.
+ // Compute estimate qhat of q[j] from top 2 digits
+ uint64_t dig2 = ((uint64_t)un[j + n] << 32) | un[j + n - 1];
+ qhat = dig2 / vn[n - 1];
+ rhat = dig2 % vn[n - 1];
+ again:
+ // use 3rd-from-top digit to obtain better accuracy
+ if (qhat >= b || qhat * vn[n - 2] > b * rhat + un[j + n - 2])
+ {
+ qhat = qhat - 1;
+ rhat = rhat + vn[n - 1];
+ if (rhat < b)
+ goto again;
+ }
+
+ bool need_fixup = bigmulsub(qhat, vn, un, j, m, n);
+
+ q[j] = qhat; // Store quotient digit.
+ if (need_fixup)
+ { // If we subtracted too
+ q[j] = q[j] - 1; // much, add back.
+ k = 0;
+ for (i = 0; i < n; i++)
+ {
+ t = (unsigned long long)un[i + j] + vn[i] + k;
+ un[i + j] = t;
+ k = t >> 32;
+ }
+ un[j + n] = un[j + n] + k;
+ }
+ } // End j.
+ // If the caller wants the remainder, unnormalize
+ // it and pass it back.
+ if (r != NULL)
+ {
+ for (i = 0; i < n - 1; i++)
+ r[i] = (un[i] >> s) | ((unsigned long long)un[i + 1] << (32 - s));
+ r[n - 1] = un[n - 1] >> s;
+ }
+ return 0;
+}
+
+int errors;
+
+void check(unsigned q[], unsigned r[], unsigned u[], unsigned v[], int m,
+ int n, unsigned cq[], unsigned cr[])
+{
+ int i, szq;
+
+ szq = max(m - n + 1, 1);
+ for (i = 0; i < szq; i++)
+ {
+ if (q[i] != cq[i])
+ {
+ errors = errors + 1;
+ dumpit("Error, dividend u =", m, u);
+ dumpit(" divisor v =", n, v);
+ dumpit("For quotient, got:", m - n + 1, q);
+ dumpit(" Should get:", m - n + 1, cq);
+ return;
+ }
+ }
+ for (i = 0; i < n; i++)
+ {
+ if (r[i] != cr[i])
+ {
+ errors = errors + 1;
+ dumpit("Error, dividend u =", m, u);
+ dumpit(" divisor v =", n, v);
+ dumpit("For remainder, got:", n, r);
+ dumpit(" Should get:", n, cr);
+ return;
+ }
+ }
+ return;
+}
+
+int main()
+{
+ static struct
+ {
+ int m, n;
+ uint32_t u[10], v[10], cq[10], cr[10];
+ bool error;
+ } test[] = {
+ // clang-format off
+ {.m=1, .n=1, .u={3}, .v={0}, .cq={1}, .cr={1}, .error=true}, // Error, divide by 0.
+ {.m=1, .n=2, .u={7}, .v={1,3}, .cq={0}, .cr={7,0}, .error=true}, // Error, n > m.
+ {.m=2, .n=2, .u={0,0}, .v={1,0}, .cq={0}, .cr={0,0}, .error=true}, // Error, incorrect remainder cr.
+ {.m=1, .n=1, .u={3}, .v={2}, .cq={1}, .cr={1}},
+ {.m=1, .n=1, .u={3}, .v={3}, .cq={1}, .cr={0}},
+ {.m=1, .n=1, .u={3}, .v={4}, .cq={0}, .cr={3}},
+ {.m=1, .n=1, .u={0}, .v={0xffffffff}, .cq={0}, .cr={0}},
+ {.m=1, .n=1, .u={0xffffffff}, .v={1}, .cq={0xffffffff}, .cr={0}},
+ {.m=1, .n=1, .u={0xffffffff}, .v={0xffffffff}, .cq={1}, .cr={0}},
+ {.m=1, .n=1, .u={0xffffffff}, .v={3}, .cq={0x55555555}, .cr={0}},
+ {.m=2, .n=1, .u={0xffffffff,0xffffffff}, .v={1}, .cq={0xffffffff,0xffffffff}, .cr={0}},
+ {.m=2, .n=1, .u={0xffffffff,0xffffffff}, .v={0xffffffff}, .cq={1,1}, .cr={0}},
+ {.m=2, .n=1, .u={0xffffffff,0xfffffffe}, .v={0xffffffff}, .cq={0xffffffff,0}, .cr={0xfffffffe}},
+ {.m=2, .n=1, .u={0x00005678,0x00001234}, .v={0x00009abc}, .cq={0x1e1dba76,0}, .cr={0x6bd0}},
+ {.m=2, .n=2, .u={0,0}, .v={0,1}, .cq={0}, .cr={0,0}},
+ {.m=2, .n=2, .u={0,7}, .v={0,3}, .cq={2}, .cr={0,1}},
+ {.m=2, .n=2, .u={5,7}, .v={0,3}, .cq={2}, .cr={5,1}},
+ {.m=2, .n=2, .u={0,6}, .v={0,2}, .cq={3}, .cr={0,0}},
+ {.m=1, .n=1, .u={0x80000000}, .v={0x40000001}, .cq={0x00000001}, .cr={0x3fffffff}},
+ {.m=2, .n=1, .u={0x00000000,0x80000000}, .v={0x40000001}, .cq={0xfffffff8,0x00000001}, .cr={0x00000008}},
+ {.m=2, .n=2, .u={0x00000000,0x80000000}, .v={0x00000001,0x40000000}, .cq={0x00000001}, .cr={0xffffffff,0x3fffffff}},
+ {.m=2, .n=2, .u={0x0000789a,0x0000bcde}, .v={0x0000789a,0x0000bcde}, .cq={1}, .cr={0,0}},
+ {.m=2, .n=2, .u={0x0000789b,0x0000bcde}, .v={0x0000789a,0x0000bcde}, .cq={1}, .cr={1,0}},
+ {.m=2, .n=2, .u={0x00007899,0x0000bcde}, .v={0x0000789a,0x0000bcde}, .cq={0}, .cr={0x00007899,0x0000bcde}},
+ {.m=2, .n=2, .u={0x0000ffff,0x0000ffff}, .v={0x0000ffff,0x0000ffff}, .cq={1}, .cr={0,0}},
+ {.m=2, .n=2, .u={0x0000ffff,0x0000ffff}, .v={0x00000000,0x00000001}, .cq={0x0000ffff}, .cr={0x0000ffff,0}},
+ {.m=3, .n=2, .u={0x000089ab,0x00004567,0x00000123}, .v={0x00000000,0x00000001}, .cq={0x00004567,0x00000123}, .cr={0x000089ab,0}},
+ {.m=3, .n=2, .u={0x00000000,0x0000fffe,0x00008000}, .v={0x0000ffff,0x00008000}, .cq={0xffffffff,0x00000000}, .cr={0x0000ffff,0x00007fff}}, // Shows that first qhat can = b + 1.
+ {.m=3, .n=3, .u={0x00000003,0x00000000,0x80000000}, .v={0x00000001,0x00000000,0x20000000}, .cq={0x00000003}, .cr={0,0,0x20000000}}, // Adding back step req'd.
+ {.m=3, .n=3, .u={0x00000003,0x00000000,0x00008000}, .v={0x00000001,0x00000000,0x00002000}, .cq={0x00000003}, .cr={0,0,0x00002000}}, // Adding back step req'd.
+ {.m=4, .n=3, .u={0,0,0x00008000,0x00007fff}, .v={1,0,0x00008000}, .cq={0xfffe0000,0}, .cr={0x00020000,0xffffffff,0x00007fff}}, // Add back req'd.
+ {.m=4, .n=3, .u={0,0x0000fffe,0,0x00008000}, .v={0x0000ffff,0,0x00008000}, .cq={0xffffffff,0}, .cr={0x0000ffff,0xffffffff,0x00007fff}}, // Shows that mult-sub quantity cannot be treated as signed.
+ {.m=4, .n=3, .u={0,0xfffffffe,0,0x80000000}, .v={0x0000ffff,0,0x80000000}, .cq={0x00000000,1}, .cr={0x00000000,0xfffeffff,0x00000000}}, // Shows that mult-sub quantity cannot be treated as signed.
+ {.m=4, .n=3, .u={0,0xfffffffe,0,0x80000000}, .v={0xffffffff,0,0x80000000}, .cq={0xffffffff,0}, .cr={0xffffffff,0xffffffff,0x7fffffff}}, // Shows that mult-sub quantity cannot be treated as signed.
+ // clang-format on
+ };
+ const int ncases = sizeof(test) / sizeof(test[0]);
+ unsigned q[10], r[10];
+
+ printf("divmnu:\n");
+ for (int i = 0; i < ncases; i++)
+ {
+ int m = test[i].m;
+ int n = test[i].n;
+ uint32_t *u = test[i].u;
+ uint32_t *v = test[i].v;
+ uint32_t *cq = test[i].cq;
+ uint32_t *cr = test[i].cr;
+
+ int f = divmnu(q, r, u, v, m, n);
+ if (f && !test[i].error)
+ {
+ dumpit("Unexpected error return code for dividend u =", m, u);
+ dumpit(" divisor v =", n, v);
+ errors = errors + 1;
+ }
+ else if (!f && test[i].error)
+ {
+ dumpit("Unexpected success return code for dividend u =", m, u);
+ dumpit(" divisor v =", n, v);
+ errors = errors + 1;
+ }
+
+ if (!f)
+ check(q, r, u, v, m, n, cq, cr);
+ }
+
+ printf("%d test failures out of %d cases.\n", errors, ncases);
+ return 0;
+}