{
if (type == AST_FCALL)
{
+ if (str == "\\$initstate")
+ {
+ int myidx = autoidx++;
+
+ AstNode *wire = new AstNode(AST_WIRE);
+ wire->str = stringf("$initstate$%d_wire", myidx);
+ current_ast_mod->children.push_back(wire);
+ while (wire->simplify(true, false, false, 1, -1, false, false)) { }
+
+ AstNode *cell = new AstNode(AST_CELL, new AstNode(AST_CELLTYPE), new AstNode(AST_ARGUMENT, new AstNode(AST_IDENTIFIER)));
+ cell->str = stringf("$initstate$%d", myidx);
+ cell->children[0]->str = "$initstate";
+ cell->children[1]->str = "\\Y";
+ cell->children[1]->children[0]->str = wire->str;
+ cell->children[1]->children[0]->id2ast = wire;
+ current_ast_mod->children.push_back(cell);
+ while (cell->simplify(true, false, false, 1, -1, false, false)) { }
+
+ newNode = new AstNode(AST_IDENTIFIER);
+ newNode->str = wire->str;
+ newNode->id2ast = wire;
+ goto apply_newNode;
+ }
+
if (str == "\\$clog2")
{
if (children.size() != 1)
$$ = new AstNode(AST_IDENTIFIER, $2);
$$->str = *$1;
delete $1;
+ if ($2 == nullptr && $$->str == "\\$initstate")
+ $$->type = AST_FCALL;
} |
hierarchical_id non_opt_multirange {
$$ = new AstNode(AST_IDENTIFIER, $2);
setup_type("$assert", {A, EN}, pool<RTLIL::IdString>(), true);
setup_type("$assume", {A, EN}, pool<RTLIL::IdString>(), true);
setup_type("$predict", {A, EN}, pool<RTLIL::IdString>(), true);
+ setup_type("$initstate", pool<RTLIL::IdString>(), {Y}, true);
setup_type("$equiv", {A, B}, {Y}, true);
}
return;
}
+ if (cell->type == "$initstate") {
+ port("\\Y", 1);
+ check_expected();
+ return;
+ }
+
if (cell->type == "$equiv") {
port("\\A", 1);
port("\\B", 1);
SigPool initial_state;
std::map<std::string, RTLIL::SigSpec> asserts_a, asserts_en;
std::map<std::string, RTLIL::SigSpec> assumes_a, assumes_en;
- std::map<std::string, RTLIL::SigSpec> expects_a, expects_en;
+ std::map<std::string, RTLIL::SigSpec> predict_a, predict_en;
std::map<std::string, std::map<RTLIL::SigBit, int>> imported_signals;
bool ignore_div_by_zero;
bool model_undef;
if (cell->type == "$predict")
{
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
- expects_a[pf].append((*sigmap)(cell->getPort("\\A")));
- expects_en[pf].append((*sigmap)(cell->getPort("\\EN")));
+ predict_a[pf].append((*sigmap)(cell->getPort("\\A")));
+ predict_en[pf].append((*sigmap)(cell->getPort("\\EN")));
return true;
}
using the {\tt abc} pass.
\begin{fixme}
-Add information about {\tt \$assert}, {\tt \$assume}, {\tt \$predict}, and {\tt \$equiv} cells.
+Add information about {\tt \$assert}, {\tt \$assume}, {\tt \$predict}, {\tt \$equiv}, and {\tt \$initstate} cells.
\end{fixme}
\begin{fixme}
// --------------------------------------------------------
+module \$initstate (Y);
+
+output reg Y = 1;
+reg [3:0] cnt = 1;
+reg trig = 0;
+
+initial trig <= 1;
+
+always @(cnt, trig) begin
+ Y <= |cnt;
+ cnt <= cnt + |cnt;
+end
+
+endmodule
+
+// --------------------------------------------------------
+
module \$equiv (A, B, Y);
input A, B;