#include "diagnostic-core.h"
#include "alias.h"
#include "fold-const.h"
+#include "fold-const-call.h"
#include "stor-layout.h"
#include "calls.h"
#include "varasm.h"
#include "rtl-chkp.h"
-static tree do_mpc_arg1 (tree, tree, int (*)(mpc_ptr, mpc_srcptr, mpc_rnd_t));
-
struct target_builtins default_target_builtins;
#if SWITCHABLE_TARGET
struct target_builtins *this_target_builtins = &default_target_builtins;
char target_percent_c[3];
char target_percent_s[3];
char target_percent_s_newline[4];
-static tree do_mpfr_arg1 (tree, tree, int (*)(mpfr_ptr, mpfr_srcptr, mp_rnd_t),
- const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, bool);
-static tree do_mpfr_arg2 (tree, tree, tree,
- int (*)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mp_rnd_t));
-static tree do_mpfr_arg3 (tree, tree, tree, tree,
- int (*)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_srcptr, mp_rnd_t));
-static tree do_mpfr_sincos (tree, tree, tree);
-static tree do_mpfr_bessel_n (tree, tree, tree,
- int (*)(mpfr_ptr, long, mpfr_srcptr, mp_rnd_t),
- const REAL_VALUE_TYPE *, bool);
static tree do_mpfr_remquo (tree, tree, tree);
static tree do_mpfr_lgamma_r (tree, tree, tree);
static void expand_builtin_sync_synchronize (void);
fcode = BUILT_IN_MATHFN##_R; fcodef = BUILT_IN_MATHFN##F_R ; \
fcodel = BUILT_IN_MATHFN##L_R ; break;
-/* Return mathematic function equivalent to FN but operating directly on TYPE,
- if available. If IMPLICIT is true use the implicit builtin declaration,
- otherwise use the explicit declaration. If we can't do the conversion,
- return zero. */
+/* Return a function equivalent to FN but operating on floating-point
+ values of type TYPE, or END_BUILTINS if no such function exists.
+ This is purely an operation on built-in function codes; it does not
+ guarantee that the target actually has an implementation of the
+ function. */
-static tree
-mathfn_built_in_1 (tree type, enum built_in_function fn, bool implicit_p)
+static built_in_function
+mathfn_built_in_2 (tree type, built_in_function fn)
{
- enum built_in_function fcode, fcodef, fcodel, fcode2;
+ built_in_function fcode, fcodef, fcodel;
switch (fn)
{
CASE_MATHFN (BUILT_IN_YN)
default:
- return NULL_TREE;
+ return END_BUILTINS;
}
if (TYPE_MAIN_VARIANT (type) == double_type_node)
- fcode2 = fcode;
+ return fcode;
else if (TYPE_MAIN_VARIANT (type) == float_type_node)
- fcode2 = fcodef;
+ return fcodef;
else if (TYPE_MAIN_VARIANT (type) == long_double_type_node)
- fcode2 = fcodel;
+ return fcodel;
else
+ return END_BUILTINS;
+}
+
+/* Return mathematic function equivalent to FN but operating directly on TYPE,
+ if available. If IMPLICIT_P is true use the implicit builtin declaration,
+ otherwise use the explicit declaration. If we can't do the conversion,
+ return null. */
+
+static tree
+mathfn_built_in_1 (tree type, enum built_in_function fn, bool implicit_p)
+{
+ built_in_function fcode2 = mathfn_built_in_2 (type, fn);
+ if (fcode2 == END_BUILTINS)
return NULL_TREE;
if (implicit_p && !builtin_decl_implicit_p (fcode2))
}
}
-/* If ARG is a foldable constant real, use FN to round it to an integer
- value and try to represent the result in integer type ITYPE. Return
- the value on success, otherwise return null. */
-
-static tree
-do_real_to_int_conversion (tree itype, tree arg,
- void (*fn) (REAL_VALUE_TYPE *, format_helper,
- const REAL_VALUE_TYPE *))
-{
- if (TREE_CODE (arg) != REAL_CST || TREE_OVERFLOW (arg))
- return NULL_TREE;
-
- const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (arg);
- if (!real_isfinite (value))
- return NULL_TREE;
-
- tree ftype = TREE_TYPE (arg);
- REAL_VALUE_TYPE rounded;
- fn (&rounded, TYPE_MODE (ftype), value);
-
- bool fail = false;
- wide_int ival = real_to_integer (&rounded, &fail, TYPE_PRECISION (itype));
- if (fail)
- return NULL_TREE;
-
- return wide_int_to_tree (itype, ival);
-}
-
-
/* Fold a call to __builtin_inf or __builtin_huge_val. */
static tree
tree arg0, tree arg1, tree arg2)
{
tree type;
- tree res, fn, call;
+ tree fndecl, call = NULL_TREE;
if (!validate_arg (arg0, REAL_TYPE)
|| !validate_arg (arg1, POINTER_TYPE)
type = TREE_TYPE (arg0);
/* Calculate the result when the argument is a constant. */
- if ((res = do_mpfr_sincos (arg0, arg1, arg2)))
- return res;
-
- /* Canonicalize sincos to cexpi. */
- if (!targetm.libc_has_function (function_c99_math_complex))
- return NULL_TREE;
- fn = mathfn_built_in (type, BUILT_IN_CEXPI);
- if (!fn)
+ built_in_function fn = mathfn_built_in_2 (type, BUILT_IN_CEXPI);
+ if (fn == END_BUILTINS)
return NULL_TREE;
- call = build_call_expr_loc (loc, fn, 1, arg0);
- call = builtin_save_expr (call);
+ /* Canonicalize sincos to cexpi. */
+ if (TREE_CODE (arg0) == REAL_CST)
+ {
+ tree complex_type = build_complex_type (type);
+ call = fold_const_call (fn, complex_type, arg0);
+ }
+ if (!call)
+ {
+ if (!targetm.libc_has_function (function_c99_math_complex)
+ || !builtin_decl_implicit_p (fn))
+ return NULL_TREE;
+ fndecl = builtin_decl_explicit (fn);
+ call = build_call_expr_loc (loc, fndecl, 1, arg0);
+ call = builtin_save_expr (call);
+ }
return build2 (COMPOUND_EXPR, void_type_node,
build2 (MODIFY_EXPR, void_type_node,
build_fold_indirect_ref_loc (loc, arg1),
- build1 (IMAGPART_EXPR, type, call)),
+ fold_build1_loc (loc, IMAGPART_EXPR, type, call)),
build2 (MODIFY_EXPR, void_type_node,
build_fold_indirect_ref_loc (loc, arg2),
- build1 (REALPART_EXPR, type, call)));
+ fold_build1_loc (loc, REALPART_EXPR, type, call)));
}
/* Fold function call to builtin ffs, clz, ctz, popcount and parity
return NULL_TREE;
}
-/* Fold a builtin function call to pow, powf, or powl. Return
- NULL_TREE if no simplification can be made. */
-static tree
-fold_const_builtin_pow (tree arg0, tree arg1, tree type)
-{
- tree res;
-
- if (!validate_arg (arg0, REAL_TYPE)
- || !validate_arg (arg1, REAL_TYPE))
- return NULL_TREE;
-
- /* Calculate the result when the argument is a constant. */
- if ((res = do_mpfr_arg2 (arg0, arg1, type, mpfr_pow)))
- return res;
-
- /* Check for an integer exponent. */
- if (TREE_CODE (arg0) == REAL_CST
- && !TREE_OVERFLOW (arg0)
- && TREE_CODE (arg1) == REAL_CST
- && !TREE_OVERFLOW (arg1))
- {
- REAL_VALUE_TYPE cint1;
- const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (arg0);
- const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (arg1);
- HOST_WIDE_INT n1 = real_to_integer (c1);
- real_from_integer (&cint1, VOIDmode, n1, SIGNED);
- /* Attempt to evaluate pow at compile-time, unless this should
- raise an exception. */
- if (real_identical (c1, &cint1)
- && (n1 > 0
- || (!flag_trapping_math && !flag_errno_math)
- || !real_equal (c0, &dconst0)))
- {
- REAL_VALUE_TYPE x;
- bool inexact = real_powi (&x, TYPE_MODE (type), c0, n1);
- if (flag_unsafe_math_optimizations || !inexact)
- return build_real (type, x);
- }
- }
-
- return NULL_TREE;
-}
-
/* Fold function call to builtin memchr. ARG1, ARG2 and LEN are the
arguments to the call, and TYPE is its return type.
Return NULL_TREE if no simplification can be made. */
return fold_build1_loc (loc, ABS_EXPR, type, arg);
}
-/* Fold a fma operation with arguments ARG[012]. */
-
-tree
-fold_fma (location_t loc ATTRIBUTE_UNUSED,
- tree type, tree arg0, tree arg1, tree arg2)
-{
- if (TREE_CODE (arg0) == REAL_CST
- && TREE_CODE (arg1) == REAL_CST
- && TREE_CODE (arg2) == REAL_CST)
- return do_mpfr_arg3 (arg0, arg1, arg2, type, mpfr_fma);
-
- return NULL_TREE;
-}
-
/* Fold a call to fma, fmaf, or fmal with arguments ARG[012]. */
static tree
return NULL_TREE;
}
-/* Fold a call to builtin logb/ilogb. */
-
-static tree
-fold_const_builtin_logb (location_t loc, tree arg, tree rettype)
-{
- if (! validate_arg (arg, REAL_TYPE))
- return NULL_TREE;
-
- if (TREE_CODE (arg) == REAL_CST && ! TREE_OVERFLOW (arg))
- {
- const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (arg);
-
- switch (value->cl)
- {
- case rvc_nan:
- case rvc_inf:
- /* If arg is Inf or NaN and we're logb, return it. */
- if (TREE_CODE (rettype) == REAL_TYPE)
- {
- /* For logb(-Inf) we have to return +Inf. */
- if (real_isinf (value) && real_isneg (value))
- {
- REAL_VALUE_TYPE tem;
- real_inf (&tem);
- return build_real (rettype, tem);
- }
- return fold_convert_loc (loc, rettype, arg);
- }
- /* Fall through... */
- case rvc_zero:
- /* Zero may set errno and/or raise an exception for logb, also
- for ilogb we don't know FP_ILOGB0. */
- return NULL_TREE;
- case rvc_normal:
- /* For normal numbers, proceed iff radix == 2. In GCC,
- normalized significands are in the range [0.5, 1.0). We
- want the exponent as if they were [1.0, 2.0) so get the
- exponent and subtract 1. */
- if (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (arg)))->b == 2)
- return fold_convert_loc (loc, rettype,
- build_int_cst (integer_type_node,
- REAL_EXP (value)-1));
- break;
- }
- }
-
- return NULL_TREE;
-}
-
-/* Fold a call to builtin significand, if radix == 2. */
-
-static tree
-fold_const_builtin_significand (location_t loc, tree arg, tree rettype)
-{
- if (! validate_arg (arg, REAL_TYPE))
- return NULL_TREE;
-
- if (TREE_CODE (arg) == REAL_CST && ! TREE_OVERFLOW (arg))
- {
- const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (arg);
-
- switch (value->cl)
- {
- case rvc_zero:
- case rvc_nan:
- case rvc_inf:
- /* If arg is +-0, +-Inf or +-NaN, then return it. */
- return fold_convert_loc (loc, rettype, arg);
- case rvc_normal:
- /* For normal numbers, proceed iff radix == 2. */
- if (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (arg)))->b == 2)
- {
- REAL_VALUE_TYPE result = *value;
- /* In GCC, normalized significands are in the range [0.5,
- 1.0). We want them to be [1.0, 2.0) so set the
- exponent to 1. */
- SET_REAL_EXP (&result, 1);
- return build_real (rettype, result);
- }
- break;
- }
- }
-
- return NULL_TREE;
-}
-
/* Fold a call to builtin frexp, we can assume the base is 2. */
static tree
return NULL_TREE;
}
-/* Fold a call to builtin ldexp or scalbn/scalbln. If LDEXP is true
- then we can assume the base is two. If it's false, then we have to
- check the mode of the TYPE parameter in certain cases. */
-
-static tree
-fold_const_builtin_load_exponent (tree arg0, tree arg1,
- tree type, bool ldexp)
-{
- if (validate_arg (arg0, REAL_TYPE) && validate_arg (arg1, INTEGER_TYPE))
- {
- /* If both arguments are constant, then try to evaluate it. */
- if ((ldexp || REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2)
- && TREE_CODE (arg0) == REAL_CST && !TREE_OVERFLOW (arg0)
- && tree_fits_shwi_p (arg1))
- {
- /* Bound the maximum adjustment to twice the range of the
- mode's valid exponents. Use abs to ensure the range is
- positive as a sanity check. */
- const long max_exp_adj = 2 *
- labs (REAL_MODE_FORMAT (TYPE_MODE (type))->emax
- - REAL_MODE_FORMAT (TYPE_MODE (type))->emin);
-
- /* Get the user-requested adjustment. */
- const HOST_WIDE_INT req_exp_adj = tree_to_shwi (arg1);
-
- /* The requested adjustment must be inside this range. This
- is a preliminary cap to avoid things like overflow, we
- may still fail to compute the result for other reasons. */
- if (-max_exp_adj < req_exp_adj && req_exp_adj < max_exp_adj)
- {
- REAL_VALUE_TYPE initial_result;
-
- real_ldexp (&initial_result, &TREE_REAL_CST (arg0), req_exp_adj);
-
- /* Ensure we didn't overflow. */
- if (! real_isinf (&initial_result))
- {
- const REAL_VALUE_TYPE trunc_result
- = real_value_truncate (TYPE_MODE (type), initial_result);
-
- /* Only proceed if the target mode can hold the
- resulting value. */
- if (real_equal (&initial_result, &trunc_result))
- return build_real (type, trunc_result);
- }
- }
- }
- }
-
- return NULL_TREE;
-}
-
/* Fold a call to builtin modf. */
static tree
{
tree type = TREE_TYPE (TREE_TYPE (fndecl));
enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
+
+ if (TREE_CODE (arg0) == ERROR_MARK)
+ return NULL_TREE;
+
+ if (tree ret = fold_const_call (fcode, type, arg0))
+ return ret;
+
switch (fcode)
{
case BUILT_IN_CONSTANT_P:
return non_lvalue_loc (loc, fold_build1_loc (loc, IMAGPART_EXPR, type, arg0));
break;
- CASE_FLT_FN (BUILT_IN_CCOS):
- if (validate_arg (arg0, COMPLEX_TYPE)
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
- return do_mpc_arg1 (arg0, type, mpc_cos);
- break;
-
- CASE_FLT_FN (BUILT_IN_CCOSH):
- if (validate_arg (arg0, COMPLEX_TYPE)
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
- return do_mpc_arg1 (arg0, type, mpc_cosh);
- break;
-
- CASE_FLT_FN (BUILT_IN_CPROJ):
- if (TREE_CODE (arg0) == COMPLEX_CST
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
- {
- const REAL_VALUE_TYPE *real
- = TREE_REAL_CST_PTR (TREE_REALPART (arg0));
- const REAL_VALUE_TYPE *imag
- = TREE_REAL_CST_PTR (TREE_IMAGPART (arg0));
-
- if (real_isinf (real) || real_isinf (imag))
- return build_complex_inf (type, imag->sign);
- else
- return arg0;
- }
- break;
+ CASE_FLT_FN (BUILT_IN_CARG):
+ return fold_builtin_carg (loc, arg0, type);
- CASE_FLT_FN (BUILT_IN_CSIN):
- if (validate_arg (arg0, COMPLEX_TYPE)
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
- return do_mpc_arg1 (arg0, type, mpc_sin);
- break;
+ CASE_FLT_FN (BUILT_IN_NAN):
+ case BUILT_IN_NAND32:
+ case BUILT_IN_NAND64:
+ case BUILT_IN_NAND128:
+ return fold_builtin_nan (arg0, type, true);
- CASE_FLT_FN (BUILT_IN_CSINH):
- if (validate_arg (arg0, COMPLEX_TYPE)
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
- return do_mpc_arg1 (arg0, type, mpc_sinh);
- break;
+ CASE_FLT_FN (BUILT_IN_NANS):
+ return fold_builtin_nan (arg0, type, false);
- CASE_FLT_FN (BUILT_IN_CTAN):
- if (validate_arg (arg0, COMPLEX_TYPE)
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
- return do_mpc_arg1 (arg0, type, mpc_tan);
- break;
+ case BUILT_IN_BSWAP16:
+ case BUILT_IN_BSWAP32:
+ case BUILT_IN_BSWAP64:
+ return fold_builtin_bswap (fndecl, arg0);
- CASE_FLT_FN (BUILT_IN_CTANH):
- if (validate_arg (arg0, COMPLEX_TYPE)
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
- return do_mpc_arg1 (arg0, type, mpc_tanh);
- break;
+ CASE_INT_FN (BUILT_IN_FFS):
+ CASE_INT_FN (BUILT_IN_CLZ):
+ CASE_INT_FN (BUILT_IN_CTZ):
+ CASE_INT_FN (BUILT_IN_CLRSB):
+ CASE_INT_FN (BUILT_IN_POPCOUNT):
+ CASE_INT_FN (BUILT_IN_PARITY):
+ return fold_builtin_bitop (fndecl, arg0);
- CASE_FLT_FN (BUILT_IN_CLOG):
- if (validate_arg (arg0, COMPLEX_TYPE)
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
- return do_mpc_arg1 (arg0, type, mpc_log);
- break;
+ case BUILT_IN_ISASCII:
+ return fold_builtin_isascii (loc, arg0);
- CASE_FLT_FN (BUILT_IN_CSQRT):
- if (validate_arg (arg0, COMPLEX_TYPE)
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
- return do_mpc_arg1 (arg0, type, mpc_sqrt);
- break;
+ case BUILT_IN_TOASCII:
+ return fold_builtin_toascii (loc, arg0);
- CASE_FLT_FN (BUILT_IN_CASIN):
- if (validate_arg (arg0, COMPLEX_TYPE)
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
- return do_mpc_arg1 (arg0, type, mpc_asin);
- break;
+ case BUILT_IN_ISDIGIT:
+ return fold_builtin_isdigit (loc, arg0);
- CASE_FLT_FN (BUILT_IN_CACOS):
- if (validate_arg (arg0, COMPLEX_TYPE)
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
- return do_mpc_arg1 (arg0, type, mpc_acos);
- break;
+ CASE_FLT_FN (BUILT_IN_FINITE):
+ case BUILT_IN_FINITED32:
+ case BUILT_IN_FINITED64:
+ case BUILT_IN_FINITED128:
+ case BUILT_IN_ISFINITE:
+ {
+ tree ret = fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISFINITE);
+ if (ret)
+ return ret;
+ return fold_builtin_interclass_mathfn (loc, fndecl, arg0);
+ }
- CASE_FLT_FN (BUILT_IN_CATAN):
- if (validate_arg (arg0, COMPLEX_TYPE)
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
- return do_mpc_arg1 (arg0, type, mpc_atan);
- break;
+ CASE_FLT_FN (BUILT_IN_ISINF):
+ case BUILT_IN_ISINFD32:
+ case BUILT_IN_ISINFD64:
+ case BUILT_IN_ISINFD128:
+ {
+ tree ret = fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISINF);
+ if (ret)
+ return ret;
+ return fold_builtin_interclass_mathfn (loc, fndecl, arg0);
+ }
- CASE_FLT_FN (BUILT_IN_CASINH):
- if (validate_arg (arg0, COMPLEX_TYPE)
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
- return do_mpc_arg1 (arg0, type, mpc_asinh);
- break;
+ case BUILT_IN_ISNORMAL:
+ return fold_builtin_interclass_mathfn (loc, fndecl, arg0);
- CASE_FLT_FN (BUILT_IN_CACOSH):
- if (validate_arg (arg0, COMPLEX_TYPE)
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
- return do_mpc_arg1 (arg0, type, mpc_acosh);
- break;
+ case BUILT_IN_ISINF_SIGN:
+ return fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISINF_SIGN);
- CASE_FLT_FN (BUILT_IN_CATANH):
- if (validate_arg (arg0, COMPLEX_TYPE)
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
- return do_mpc_arg1 (arg0, type, mpc_atanh);
- break;
+ CASE_FLT_FN (BUILT_IN_ISNAN):
+ case BUILT_IN_ISNAND32:
+ case BUILT_IN_ISNAND64:
+ case BUILT_IN_ISNAND128:
+ return fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISNAN);
- CASE_FLT_FN (BUILT_IN_CABS):
- if (TREE_CODE (arg0) == COMPLEX_CST
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
- return do_mpfr_arg2 (TREE_REALPART (arg0), TREE_IMAGPART (arg0),
- type, mpfr_hypot);
+ case BUILT_IN_FREE:
+ if (integer_zerop (arg0))
+ return build_empty_stmt (loc);
break;
- CASE_FLT_FN (BUILT_IN_CARG):
- return fold_builtin_carg (loc, arg0, type);
-
- CASE_FLT_FN (BUILT_IN_SQRT):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_sqrt, &dconst0, NULL, true);
+ default:
break;
+ }
- CASE_FLT_FN (BUILT_IN_CBRT):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_cbrt, NULL, NULL, 0);
- break;
+ return NULL_TREE;
- CASE_FLT_FN (BUILT_IN_ASIN):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_asin,
- &dconstm1, &dconst1, true);
- break;
+}
- CASE_FLT_FN (BUILT_IN_ACOS):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_acos,
- &dconstm1, &dconst1, true);
- break;
-
- CASE_FLT_FN (BUILT_IN_ATAN):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_atan, NULL, NULL, 0);
- break;
-
- CASE_FLT_FN (BUILT_IN_ASINH):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_asinh, NULL, NULL, 0);
- break;
-
- CASE_FLT_FN (BUILT_IN_ACOSH):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_acosh,
- &dconst1, NULL, true);
- break;
-
- CASE_FLT_FN (BUILT_IN_ATANH):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_atanh,
- &dconstm1, &dconst1, false);
- break;
-
- CASE_FLT_FN (BUILT_IN_SIN):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_sin, NULL, NULL, 0);
- break;
-
- CASE_FLT_FN (BUILT_IN_COS):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_cos, NULL, NULL, 0);
- break;
-
- CASE_FLT_FN (BUILT_IN_TAN):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_tan, NULL, NULL, 0);
- break;
-
- CASE_FLT_FN (BUILT_IN_CEXP):
- if (validate_arg (arg0, COMPLEX_TYPE)
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
- return do_mpc_arg1 (arg0, type, mpc_exp);
- break;
-
- CASE_FLT_FN (BUILT_IN_CEXPI):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_sincos (arg0, NULL_TREE, NULL_TREE);
- break;
-
- CASE_FLT_FN (BUILT_IN_SINH):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_sinh, NULL, NULL, 0);
- break;
-
- CASE_FLT_FN (BUILT_IN_COSH):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_cosh, NULL, NULL, 0);
- break;
-
- CASE_FLT_FN (BUILT_IN_TANH):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_tanh, NULL, NULL, 0);
- break;
-
- CASE_FLT_FN (BUILT_IN_ERF):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_erf, NULL, NULL, 0);
- break;
-
- CASE_FLT_FN (BUILT_IN_ERFC):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_erfc, NULL, NULL, 0);
- break;
-
- CASE_FLT_FN (BUILT_IN_TGAMMA):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_gamma, NULL, NULL, 0);
- break;
-
- CASE_FLT_FN (BUILT_IN_EXP):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_exp, NULL, NULL, 0);
- break;
-
- CASE_FLT_FN (BUILT_IN_EXP2):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_exp2, NULL, NULL, 0);
- break;
-
- CASE_FLT_FN (BUILT_IN_EXP10):
- CASE_FLT_FN (BUILT_IN_POW10):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_exp10, NULL, NULL, 0);
- break;
-
- CASE_FLT_FN (BUILT_IN_EXPM1):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_expm1, NULL, NULL, 0);
- break;
-
- CASE_FLT_FN (BUILT_IN_LOG):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_log, &dconst0, NULL, false);
- break;
-
- CASE_FLT_FN (BUILT_IN_LOG2):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_log2, &dconst0, NULL, false);
- break;
-
- CASE_FLT_FN (BUILT_IN_LOG10):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_log10, &dconst0, NULL, false);
- break;
-
- CASE_FLT_FN (BUILT_IN_LOG1P):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_log1p,
- &dconstm1, NULL, false);
- break;
-
- CASE_FLT_FN (BUILT_IN_J0):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_j0,
- NULL, NULL, 0);
- break;
-
- CASE_FLT_FN (BUILT_IN_J1):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_j1,
- NULL, NULL, 0);
- break;
-
- CASE_FLT_FN (BUILT_IN_Y0):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_y0,
- &dconst0, NULL, false);
- break;
-
- CASE_FLT_FN (BUILT_IN_Y1):
- if (validate_arg (arg0, REAL_TYPE))
- return do_mpfr_arg1 (arg0, type, mpfr_y1,
- &dconst0, NULL, false);
- break;
-
- CASE_FLT_FN (BUILT_IN_NAN):
- case BUILT_IN_NAND32:
- case BUILT_IN_NAND64:
- case BUILT_IN_NAND128:
- return fold_builtin_nan (arg0, type, true);
-
- CASE_FLT_FN (BUILT_IN_NANS):
- return fold_builtin_nan (arg0, type, false);
-
- CASE_FLT_FN (BUILT_IN_FLOOR):
- if (TREE_CODE (arg0) == REAL_CST && !TREE_OVERFLOW (arg0))
- {
- REAL_VALUE_TYPE x = TREE_REAL_CST (arg0);
- if (!REAL_VALUE_ISNAN (x) || !flag_errno_math)
- {
- tree type = TREE_TYPE (TREE_TYPE (fndecl));
- REAL_VALUE_TYPE r;
- real_floor (&r, TYPE_MODE (type), &x);
- return build_real (type, r);
- }
- }
- break;
-
- CASE_FLT_FN (BUILT_IN_CEIL):
- if (TREE_CODE (arg0) == REAL_CST && !TREE_OVERFLOW (arg0))
- {
- REAL_VALUE_TYPE x = TREE_REAL_CST (arg0);
- if (!REAL_VALUE_ISNAN (x) || !flag_errno_math)
- {
- tree type = TREE_TYPE (TREE_TYPE (fndecl));
- REAL_VALUE_TYPE r;
- real_ceil (&r, TYPE_MODE (type), &x);
- return build_real (type, r);
- }
- }
- break;
-
- CASE_FLT_FN (BUILT_IN_TRUNC):
- if (TREE_CODE (arg0) == REAL_CST && !TREE_OVERFLOW (arg0))
- {
- REAL_VALUE_TYPE x = TREE_REAL_CST (arg0);
- REAL_VALUE_TYPE r;
- real_trunc (&r, TYPE_MODE (type), &x);
- return build_real (type, r);
- }
- break;
-
- CASE_FLT_FN (BUILT_IN_ROUND):
- if (TREE_CODE (arg0) == REAL_CST && !TREE_OVERFLOW (arg0))
- {
- REAL_VALUE_TYPE x = TREE_REAL_CST (arg0);
- if (!REAL_VALUE_ISNAN (x) || !flag_errno_math)
- {
- tree type = TREE_TYPE (TREE_TYPE (fndecl));
- REAL_VALUE_TYPE r;
- real_round (&r, TYPE_MODE (type), &x);
- return build_real (type, r);
- }
- }
- break;
-
- CASE_FLT_FN (BUILT_IN_ICEIL):
- CASE_FLT_FN (BUILT_IN_LCEIL):
- CASE_FLT_FN (BUILT_IN_LLCEIL):
- return do_real_to_int_conversion (type, arg0, real_ceil);
-
- CASE_FLT_FN (BUILT_IN_LFLOOR):
- CASE_FLT_FN (BUILT_IN_IFLOOR):
- CASE_FLT_FN (BUILT_IN_LLFLOOR):
- return do_real_to_int_conversion (type, arg0, real_floor);
-
- CASE_FLT_FN (BUILT_IN_IROUND):
- CASE_FLT_FN (BUILT_IN_LROUND):
- CASE_FLT_FN (BUILT_IN_LLROUND):
- return do_real_to_int_conversion (type, arg0, real_round);
-
- CASE_FLT_FN (BUILT_IN_IRINT):
- CASE_FLT_FN (BUILT_IN_LRINT):
- CASE_FLT_FN (BUILT_IN_LLRINT):
- /* Not yet folded to a constant. */
- return NULL_TREE;
-
- case BUILT_IN_BSWAP16:
- case BUILT_IN_BSWAP32:
- case BUILT_IN_BSWAP64:
- return fold_builtin_bswap (fndecl, arg0);
-
- CASE_INT_FN (BUILT_IN_FFS):
- CASE_INT_FN (BUILT_IN_CLZ):
- CASE_INT_FN (BUILT_IN_CTZ):
- CASE_INT_FN (BUILT_IN_CLRSB):
- CASE_INT_FN (BUILT_IN_POPCOUNT):
- CASE_INT_FN (BUILT_IN_PARITY):
- return fold_builtin_bitop (fndecl, arg0);
-
- CASE_FLT_FN (BUILT_IN_SIGNBIT):
- if (TREE_CODE (arg0) == REAL_CST && !TREE_OVERFLOW (arg0))
- return (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0))
- ? build_one_cst (type)
- : build_zero_cst (type));
- break;
-
- CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
- return fold_const_builtin_significand (loc, arg0, type);
-
- CASE_FLT_FN (BUILT_IN_ILOGB):
- CASE_FLT_FN (BUILT_IN_LOGB):
- return fold_const_builtin_logb (loc, arg0, type);
-
- case BUILT_IN_ISASCII:
- return fold_builtin_isascii (loc, arg0);
-
- case BUILT_IN_TOASCII:
- return fold_builtin_toascii (loc, arg0);
-
- case BUILT_IN_ISDIGIT:
- return fold_builtin_isdigit (loc, arg0);
-
- CASE_FLT_FN (BUILT_IN_FINITE):
- case BUILT_IN_FINITED32:
- case BUILT_IN_FINITED64:
- case BUILT_IN_FINITED128:
- case BUILT_IN_ISFINITE:
- {
- tree ret = fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISFINITE);
- if (ret)
- return ret;
- return fold_builtin_interclass_mathfn (loc, fndecl, arg0);
- }
-
- CASE_FLT_FN (BUILT_IN_ISINF):
- case BUILT_IN_ISINFD32:
- case BUILT_IN_ISINFD64:
- case BUILT_IN_ISINFD128:
- {
- tree ret = fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISINF);
- if (ret)
- return ret;
- return fold_builtin_interclass_mathfn (loc, fndecl, arg0);
- }
-
- case BUILT_IN_ISNORMAL:
- return fold_builtin_interclass_mathfn (loc, fndecl, arg0);
-
- case BUILT_IN_ISINF_SIGN:
- return fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISINF_SIGN);
-
- CASE_FLT_FN (BUILT_IN_ISNAN):
- case BUILT_IN_ISNAND32:
- case BUILT_IN_ISNAND64:
- case BUILT_IN_ISNAND128:
- return fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISNAN);
-
- case BUILT_IN_FREE:
- if (integer_zerop (arg0))
- return build_empty_stmt (loc);
- break;
-
- default:
- break;
- }
-
- return NULL_TREE;
-
-}
-
-/* Fold a call to built-in function FNDECL with 2 arguments, ARG0 and ARG1.
- This function returns NULL_TREE if no simplification was possible. */
+/* Fold a call to built-in function FNDECL with 2 arguments, ARG0 and ARG1.
+ This function returns NULL_TREE if no simplification was possible. */
static tree
fold_builtin_2 (location_t loc, tree fndecl, tree arg0, tree arg1)
tree type = TREE_TYPE (TREE_TYPE (fndecl));
enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
- switch (fcode)
- {
- CASE_FLT_FN (BUILT_IN_JN):
- if (validate_arg (arg0, INTEGER_TYPE)
- && validate_arg (arg1, REAL_TYPE))
- return do_mpfr_bessel_n (arg0, arg1, type, mpfr_jn, NULL, 0);
- break;
-
- CASE_FLT_FN (BUILT_IN_YN):
- if (validate_arg (arg0, INTEGER_TYPE)
- && validate_arg (arg1, REAL_TYPE))
- return do_mpfr_bessel_n (arg0, arg1, type, mpfr_yn,
- &dconst0, false);
- break;
+ if (TREE_CODE (arg0) == ERROR_MARK
+ || TREE_CODE (arg1) == ERROR_MARK)
+ return NULL_TREE;
- CASE_FLT_FN (BUILT_IN_DREM):
- CASE_FLT_FN (BUILT_IN_REMAINDER):
- if (validate_arg (arg0, REAL_TYPE)
- && validate_arg (arg1, REAL_TYPE))
- return do_mpfr_arg2 (arg0, arg1, type, mpfr_remainder);
- break;
+ if (tree ret = fold_const_call (fcode, type, arg0, arg1))
+ return ret;
+ switch (fcode)
+ {
CASE_FLT_FN_REENT (BUILT_IN_GAMMA): /* GAMMA_R */
CASE_FLT_FN_REENT (BUILT_IN_LGAMMA): /* LGAMMA_R */
if (validate_arg (arg0, REAL_TYPE)
return do_mpfr_lgamma_r (arg0, arg1, type);
break;
- CASE_FLT_FN (BUILT_IN_ATAN2):
- if (validate_arg (arg0, REAL_TYPE)
- && validate_arg (arg1, REAL_TYPE))
- return do_mpfr_arg2 (arg0, arg1, type, mpfr_atan2);
- break;
-
- CASE_FLT_FN (BUILT_IN_FDIM):
- if (validate_arg (arg0, REAL_TYPE)
- && validate_arg (arg1, REAL_TYPE))
- return do_mpfr_arg2 (arg0, arg1, type, mpfr_dim);
- break;
-
- CASE_FLT_FN (BUILT_IN_HYPOT):
- if (validate_arg (arg0, REAL_TYPE)
- && validate_arg (arg1, REAL_TYPE))
- return do_mpfr_arg2 (arg0, arg1, type, mpfr_hypot);
- break;
-
- CASE_FLT_FN (BUILT_IN_CPOW):
- if (validate_arg (arg0, COMPLEX_TYPE)
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE
- && validate_arg (arg1, COMPLEX_TYPE)
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg1))) == REAL_TYPE)
- return do_mpc_arg2 (arg0, arg1, type, /*do_nonfinite=*/ 0, mpc_pow);
- break;
-
- CASE_FLT_FN (BUILT_IN_LDEXP):
- return fold_const_builtin_load_exponent (arg0, arg1, type,
- /*ldexp=*/true);
- CASE_FLT_FN (BUILT_IN_SCALBN):
- CASE_FLT_FN (BUILT_IN_SCALBLN):
- return fold_const_builtin_load_exponent (arg0, arg1, type,
- /*ldexp=*/false);
-
CASE_FLT_FN (BUILT_IN_FREXP):
return fold_builtin_frexp (loc, arg0, arg1, type);
case BUILT_IN_EXPECT:
return fold_builtin_expect (loc, arg0, arg1, NULL_TREE);
- CASE_FLT_FN (BUILT_IN_POW):
- return fold_const_builtin_pow (arg0, arg1, type);
-
- CASE_FLT_FN (BUILT_IN_POWI):
- if (TREE_CODE (arg0) == REAL_CST
- && !TREE_OVERFLOW (arg0)
- && tree_fits_shwi_p (arg1))
- {
- HOST_WIDE_INT c = tree_to_shwi (arg1);
- REAL_VALUE_TYPE x;
- real_powi (&x, TYPE_MODE (type), TREE_REAL_CST_PTR (arg0), c);
- return build_real (type, x);
- }
- break;
-
- CASE_FLT_FN (BUILT_IN_COPYSIGN):
- if (TREE_CODE (arg0) == REAL_CST
- && TREE_CODE (arg1) == REAL_CST
- && !TREE_OVERFLOW (arg0)
- && !TREE_OVERFLOW (arg1))
- {
- REAL_VALUE_TYPE c1 = TREE_REAL_CST (arg0);
- real_copysign (&c1, TREE_REAL_CST_PTR (arg1));
- return build_real (type, c1);
- }
- break;
-
- CASE_FLT_FN (BUILT_IN_FMIN):
- if (validate_arg (arg0, REAL_TYPE) && validate_arg (arg1, REAL_TYPE))
- return do_mpfr_arg2 (arg0, arg1, type, mpfr_min);
- break;
-
- CASE_FLT_FN (BUILT_IN_FMAX):
- if (validate_arg (arg0, REAL_TYPE) && validate_arg (arg1, REAL_TYPE))
- return do_mpfr_arg2 (arg0, arg1, type, mpfr_max);
- break;
-
case BUILT_IN_ISGREATER:
return fold_builtin_unordered_cmp (loc, fndecl,
arg0, arg1, UNLE_EXPR, LE_EXPR);
{
tree type = TREE_TYPE (TREE_TYPE (fndecl));
enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
+
+ if (TREE_CODE (arg0) == ERROR_MARK
+ || TREE_CODE (arg1) == ERROR_MARK
+ || TREE_CODE (arg2) == ERROR_MARK)
+ return NULL_TREE;
+
+ if (tree ret = fold_const_call (fcode, type, arg0, arg1, arg2))
+ return ret;
+
switch (fcode)
{
return fold_builtin_sincos (loc, arg0, arg1, arg2);
CASE_FLT_FN (BUILT_IN_FMA):
- if (tree tem = fold_fma (loc, type, arg0, arg1, arg2))
- return tem;
return fold_builtin_fma (loc, arg0, arg1, arg2, type);
CASE_FLT_FN (BUILT_IN_REMQUO):
return NULL_TREE;
}
-/* If argument ARG is a REAL_CST, call the one-argument mpfr function
- FUNC on it and return the resulting value as a tree with type TYPE.
- If MIN and/or MAX are not NULL, then the supplied ARG must be
- within those bounds. If INCLUSIVE is true, then MIN/MAX are
- acceptable values, otherwise they are not. The mpfr precision is
- set to the precision of TYPE. We assume that function FUNC returns
- zero if the result could be calculated exactly within the requested
- precision. */
-
-static tree
-do_mpfr_arg1 (tree arg, tree type, int (*func)(mpfr_ptr, mpfr_srcptr, mp_rnd_t),
- const REAL_VALUE_TYPE *min, const REAL_VALUE_TYPE *max,
- bool inclusive)
-{
- tree result = NULL_TREE;
-
- STRIP_NOPS (arg);
-
- /* To proceed, MPFR must exactly represent the target floating point
- format, which only happens when the target base equals two. */
- if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
- && TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg))
- {
- const REAL_VALUE_TYPE *const ra = &TREE_REAL_CST (arg);
-
- if (real_isfinite (ra)
- && (!min || real_compare (inclusive ? GE_EXPR: GT_EXPR , ra, min))
- && (!max || real_compare (inclusive ? LE_EXPR: LT_EXPR , ra, max)))
- {
- const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
- const int prec = fmt->p;
- const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
- int inexact;
- mpfr_t m;
-
- mpfr_init2 (m, prec);
- mpfr_from_real (m, ra, GMP_RNDN);
- mpfr_clear_flags ();
- inexact = func (m, m, rnd);
- result = do_mpfr_ckconv (m, type, inexact);
- mpfr_clear (m);
- }
- }
-
- return result;
-}
-
-/* If argument ARG is a REAL_CST, call the two-argument mpfr function
- FUNC on it and return the resulting value as a tree with type TYPE.
- The mpfr precision is set to the precision of TYPE. We assume that
- function FUNC returns zero if the result could be calculated
- exactly within the requested precision. */
-
-static tree
-do_mpfr_arg2 (tree arg1, tree arg2, tree type,
- int (*func)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mp_rnd_t))
-{
- tree result = NULL_TREE;
-
- STRIP_NOPS (arg1);
- STRIP_NOPS (arg2);
-
- /* To proceed, MPFR must exactly represent the target floating point
- format, which only happens when the target base equals two. */
- if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
- && TREE_CODE (arg1) == REAL_CST && !TREE_OVERFLOW (arg1)
- && TREE_CODE (arg2) == REAL_CST && !TREE_OVERFLOW (arg2))
- {
- const REAL_VALUE_TYPE *const ra1 = &TREE_REAL_CST (arg1);
- const REAL_VALUE_TYPE *const ra2 = &TREE_REAL_CST (arg2);
-
- if (real_isfinite (ra1) && real_isfinite (ra2))
- {
- const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
- const int prec = fmt->p;
- const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
- int inexact;
- mpfr_t m1, m2;
-
- mpfr_inits2 (prec, m1, m2, NULL);
- mpfr_from_real (m1, ra1, GMP_RNDN);
- mpfr_from_real (m2, ra2, GMP_RNDN);
- mpfr_clear_flags ();
- inexact = func (m1, m1, m2, rnd);
- result = do_mpfr_ckconv (m1, type, inexact);
- mpfr_clears (m1, m2, NULL);
- }
- }
-
- return result;
-}
-
-/* If argument ARG is a REAL_CST, call the three-argument mpfr function
- FUNC on it and return the resulting value as a tree with type TYPE.
- The mpfr precision is set to the precision of TYPE. We assume that
- function FUNC returns zero if the result could be calculated
- exactly within the requested precision. */
-
-static tree
-do_mpfr_arg3 (tree arg1, tree arg2, tree arg3, tree type,
- int (*func)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_srcptr, mp_rnd_t))
-{
- tree result = NULL_TREE;
-
- STRIP_NOPS (arg1);
- STRIP_NOPS (arg2);
- STRIP_NOPS (arg3);
-
- /* To proceed, MPFR must exactly represent the target floating point
- format, which only happens when the target base equals two. */
- if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
- && TREE_CODE (arg1) == REAL_CST && !TREE_OVERFLOW (arg1)
- && TREE_CODE (arg2) == REAL_CST && !TREE_OVERFLOW (arg2)
- && TREE_CODE (arg3) == REAL_CST && !TREE_OVERFLOW (arg3))
- {
- const REAL_VALUE_TYPE *const ra1 = &TREE_REAL_CST (arg1);
- const REAL_VALUE_TYPE *const ra2 = &TREE_REAL_CST (arg2);
- const REAL_VALUE_TYPE *const ra3 = &TREE_REAL_CST (arg3);
-
- if (real_isfinite (ra1) && real_isfinite (ra2) && real_isfinite (ra3))
- {
- const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
- const int prec = fmt->p;
- const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
- int inexact;
- mpfr_t m1, m2, m3;
-
- mpfr_inits2 (prec, m1, m2, m3, NULL);
- mpfr_from_real (m1, ra1, GMP_RNDN);
- mpfr_from_real (m2, ra2, GMP_RNDN);
- mpfr_from_real (m3, ra3, GMP_RNDN);
- mpfr_clear_flags ();
- inexact = func (m1, m1, m2, m3, rnd);
- result = do_mpfr_ckconv (m1, type, inexact);
- mpfr_clears (m1, m2, m3, NULL);
- }
- }
-
- return result;
-}
-
-/* If argument ARG is a REAL_CST, call mpfr_sin_cos() on it and set
- the pointers *(ARG_SINP) and *(ARG_COSP) to the resulting values.
- If ARG_SINP and ARG_COSP are NULL then the result is returned
- as a complex value.
- The type is taken from the type of ARG and is used for setting the
- precision of the calculation and results. */
-
-static tree
-do_mpfr_sincos (tree arg, tree arg_sinp, tree arg_cosp)
-{
- tree const type = TREE_TYPE (arg);
- tree result = NULL_TREE;
-
- STRIP_NOPS (arg);
-
- /* To proceed, MPFR must exactly represent the target floating point
- format, which only happens when the target base equals two. */
- if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
- && TREE_CODE (arg) == REAL_CST
- && !TREE_OVERFLOW (arg))
- {
- const REAL_VALUE_TYPE *const ra = &TREE_REAL_CST (arg);
-
- if (real_isfinite (ra))
- {
- const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
- const int prec = fmt->p;
- const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
- tree result_s, result_c;
- int inexact;
- mpfr_t m, ms, mc;
-
- mpfr_inits2 (prec, m, ms, mc, NULL);
- mpfr_from_real (m, ra, GMP_RNDN);
- mpfr_clear_flags ();
- inexact = mpfr_sin_cos (ms, mc, m, rnd);
- result_s = do_mpfr_ckconv (ms, type, inexact);
- result_c = do_mpfr_ckconv (mc, type, inexact);
- mpfr_clears (m, ms, mc, NULL);
- if (result_s && result_c)
- {
- /* If we are to return in a complex value do so. */
- if (!arg_sinp && !arg_cosp)
- return build_complex (build_complex_type (type),
- result_c, result_s);
-
- /* Dereference the sin/cos pointer arguments. */
- arg_sinp = build_fold_indirect_ref (arg_sinp);
- arg_cosp = build_fold_indirect_ref (arg_cosp);
- /* Proceed if valid pointer type were passed in. */
- if (TYPE_MAIN_VARIANT (TREE_TYPE (arg_sinp)) == TYPE_MAIN_VARIANT (type)
- && TYPE_MAIN_VARIANT (TREE_TYPE (arg_cosp)) == TYPE_MAIN_VARIANT (type))
- {
- /* Set the values. */
- result_s = fold_build2 (MODIFY_EXPR, type, arg_sinp,
- result_s);
- TREE_SIDE_EFFECTS (result_s) = 1;
- result_c = fold_build2 (MODIFY_EXPR, type, arg_cosp,
- result_c);
- TREE_SIDE_EFFECTS (result_c) = 1;
- /* Combine the assignments into a compound expr. */
- result = non_lvalue (fold_build2 (COMPOUND_EXPR, type,
- result_s, result_c));
- }
- }
- }
- }
- return result;
-}
-
-/* If argument ARG1 is an INTEGER_CST and ARG2 is a REAL_CST, call the
- two-argument mpfr order N Bessel function FUNC on them and return
- the resulting value as a tree with type TYPE. The mpfr precision
- is set to the precision of TYPE. We assume that function FUNC
- returns zero if the result could be calculated exactly within the
- requested precision. */
-static tree
-do_mpfr_bessel_n (tree arg1, tree arg2, tree type,
- int (*func)(mpfr_ptr, long, mpfr_srcptr, mp_rnd_t),
- const REAL_VALUE_TYPE *min, bool inclusive)
-{
- tree result = NULL_TREE;
-
- STRIP_NOPS (arg1);
- STRIP_NOPS (arg2);
-
- /* To proceed, MPFR must exactly represent the target floating point
- format, which only happens when the target base equals two. */
- if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
- && tree_fits_shwi_p (arg1)
- && TREE_CODE (arg2) == REAL_CST && !TREE_OVERFLOW (arg2))
- {
- const HOST_WIDE_INT n = tree_to_shwi (arg1);
- const REAL_VALUE_TYPE *const ra = &TREE_REAL_CST (arg2);
-
- if (n == (long)n
- && real_isfinite (ra)
- && (!min || real_compare (inclusive ? GE_EXPR: GT_EXPR , ra, min)))
- {
- const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
- const int prec = fmt->p;
- const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
- int inexact;
- mpfr_t m;
-
- mpfr_init2 (m, prec);
- mpfr_from_real (m, ra, GMP_RNDN);
- mpfr_clear_flags ();
- inexact = func (m, n, m, rnd);
- result = do_mpfr_ckconv (m, type, inexact);
- mpfr_clear (m);
- }
- }
-
- return result;
-}
-
/* If arguments ARG0 and ARG1 are REAL_CSTs, call mpfr_remquo() to set
the pointer *(ARG_QUO) and return the result. The type is taken
from the type of ARG0 and is used for setting the precision of the
return result;
}
-/* If argument ARG is a COMPLEX_CST, call the one-argument mpc
- function FUNC on it and return the resulting value as a tree with
- type TYPE. The mpfr precision is set to the precision of TYPE. We
- assume that function FUNC returns zero if the result could be
- calculated exactly within the requested precision. */
-
-static tree
-do_mpc_arg1 (tree arg, tree type, int (*func)(mpc_ptr, mpc_srcptr, mpc_rnd_t))
-{
- tree result = NULL_TREE;
-
- STRIP_NOPS (arg);
-
- /* To proceed, MPFR must exactly represent the target floating point
- format, which only happens when the target base equals two. */
- if (TREE_CODE (arg) == COMPLEX_CST && !TREE_OVERFLOW (arg)
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == REAL_TYPE
- && REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (TREE_TYPE (arg))))->b == 2)
- {
- const REAL_VALUE_TYPE *const re = TREE_REAL_CST_PTR (TREE_REALPART (arg));
- const REAL_VALUE_TYPE *const im = TREE_REAL_CST_PTR (TREE_IMAGPART (arg));
-
- if (real_isfinite (re) && real_isfinite (im))
- {
- const struct real_format *const fmt =
- REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (type)));
- const int prec = fmt->p;
- const mp_rnd_t rnd = fmt->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
- const mpc_rnd_t crnd = fmt->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
- int inexact;
- mpc_t m;
-
- mpc_init2 (m, prec);
- mpfr_from_real (mpc_realref (m), re, rnd);
- mpfr_from_real (mpc_imagref (m), im, rnd);
- mpfr_clear_flags ();
- inexact = func (m, m, crnd);
- result = do_mpc_ckconv (m, type, inexact, /*force_convert=*/ 0);
- mpc_clear (m);
- }
- }
-
- return result;
-}
-
/* If arguments ARG0 and ARG1 are a COMPLEX_CST, call the two-argument
mpc function FUNC on it and return the resulting value as a tree
with type TYPE. The mpfr precision is set to the precision of
--- /dev/null
+/* Constant folding for calls to built-in and internal functions.
+ Copyright (C) 1988-2015 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "realmpfr.h"
+#include "tree.h"
+#include "stor-layout.h"
+#include "options.h"
+#include "fold-const-call.h"
+
+/* Functions that test for certain constant types, abstracting away the
+ decision about whether to check for overflow. */
+
+static inline bool
+integer_cst_p (tree t)
+{
+ return TREE_CODE (t) == INTEGER_CST && !TREE_OVERFLOW (t);
+}
+
+static inline bool
+real_cst_p (tree t)
+{
+ return TREE_CODE (t) == REAL_CST && !TREE_OVERFLOW (t);
+}
+
+static inline bool
+complex_cst_p (tree t)
+{
+ return TREE_CODE (t) == COMPLEX_CST;
+}
+
+/* M is the result of trying to constant-fold an expression (starting
+ with clear MPFR flags) and INEXACT says whether the result in M is
+ exact or inexact. Return true if M can be used as a constant-folded
+ result in format FORMAT, storing the value in *RESULT if so. */
+
+static bool
+do_mpfr_ckconv (real_value *result, mpfr_srcptr m, bool inexact,
+ const real_format *format)
+{
+ /* Proceed iff we get a normal number, i.e. not NaN or Inf and no
+ overflow/underflow occurred. If -frounding-math, proceed iff the
+ result of calling FUNC was exact. */
+ if (!mpfr_number_p (m)
+ || mpfr_overflow_p ()
+ || mpfr_underflow_p ()
+ || (flag_rounding_math && inexact))
+ return false;
+
+ REAL_VALUE_TYPE tmp;
+ real_from_mpfr (&tmp, m, format, GMP_RNDN);
+
+ /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values.
+ If the REAL_VALUE_TYPE is zero but the mpft_t is not, then we
+ underflowed in the conversion. */
+ if (!real_isfinite (&tmp)
+ || ((tmp.cl == rvc_zero) != (mpfr_zero_p (m) != 0)))
+ return false;
+
+ real_convert (result, format, &tmp);
+ return real_identical (result, &tmp);
+}
+
+/* Try to evaluate:
+
+ *RESULT = f (*ARG)
+
+ in format FORMAT, given that FUNC is the MPFR implementation of f.
+ Return true on success. */
+
+static bool
+do_mpfr_arg1 (real_value *result,
+ int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_rnd_t),
+ const real_value *arg, const real_format *format)
+{
+ /* To proceed, MPFR must exactly represent the target floating point
+ format, which only happens when the target base equals two. */
+ if (format->b != 2 || !real_isfinite (arg))
+ return false;
+
+ int prec = format->p;
+ mp_rnd_t rnd = format->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
+ mpfr_t m;
+
+ mpfr_init2 (m, prec);
+ mpfr_from_real (m, arg, GMP_RNDN);
+ mpfr_clear_flags ();
+ bool inexact = func (m, m, rnd);
+ bool ok = do_mpfr_ckconv (result, m, inexact, format);
+ mpfr_clear (m);
+
+ return ok;
+}
+
+/* Try to evaluate:
+
+ *RESULT_SIN = sin (*ARG);
+ *RESULT_COS = cos (*ARG);
+
+ for format FORMAT. Return true on success. */
+
+static bool
+do_mpfr_sincos (real_value *result_sin, real_value *result_cos,
+ const real_value *arg, const real_format *format)
+{
+ /* To proceed, MPFR must exactly represent the target floating point
+ format, which only happens when the target base equals two. */
+ if (format->b != 2 || !real_isfinite (arg))
+ return false;
+
+ int prec = format->p;
+ mp_rnd_t rnd = format->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
+ mpfr_t m, ms, mc;
+
+ mpfr_inits2 (prec, m, ms, mc, NULL);
+ mpfr_from_real (m, arg, GMP_RNDN);
+ mpfr_clear_flags ();
+ bool inexact = mpfr_sin_cos (ms, mc, m, rnd);
+ bool ok = (do_mpfr_ckconv (result_sin, ms, inexact, format)
+ && do_mpfr_ckconv (result_cos, mc, inexact, format));
+ mpfr_clears (m, ms, mc, NULL);
+
+ return ok;
+}
+
+/* Try to evaluate:
+
+ *RESULT = f (*ARG0, *ARG1)
+
+ in format FORMAT, given that FUNC is the MPFR implementation of f.
+ Return true on success. */
+
+static bool
+do_mpfr_arg2 (real_value *result,
+ int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_rnd_t),
+ const real_value *arg0, const real_value *arg1,
+ const real_format *format)
+{
+ /* To proceed, MPFR must exactly represent the target floating point
+ format, which only happens when the target base equals two. */
+ if (format->b != 2 || !real_isfinite (arg0) || !real_isfinite (arg1))
+ return false;
+
+ int prec = format->p;
+ mp_rnd_t rnd = format->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
+ mpfr_t m0, m1;
+
+ mpfr_inits2 (prec, m0, m1, NULL);
+ mpfr_from_real (m0, arg0, GMP_RNDN);
+ mpfr_from_real (m1, arg1, GMP_RNDN);
+ mpfr_clear_flags ();
+ bool inexact = func (m0, m0, m1, rnd);
+ bool ok = do_mpfr_ckconv (result, m0, inexact, format);
+ mpfr_clears (m0, m1, NULL);
+
+ return ok;
+}
+
+/* Try to evaluate:
+
+ *RESULT = f (ARG0, *ARG1)
+
+ in format FORMAT, given that FUNC is the MPFR implementation of f.
+ Return true on success. */
+
+static bool
+do_mpfr_arg2 (real_value *result,
+ int (*func) (mpfr_ptr, long, mpfr_srcptr, mp_rnd_t),
+ const wide_int_ref &arg0, const real_value *arg1,
+ const real_format *format)
+{
+ if (format->b != 2 || !real_isfinite (arg1))
+ return false;
+
+ int prec = format->p;
+ mp_rnd_t rnd = format->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
+ mpfr_t m;
+
+ mpfr_init2 (m, prec);
+ mpfr_from_real (m, arg1, GMP_RNDN);
+ mpfr_clear_flags ();
+ bool inexact = func (m, arg0.to_shwi (), m, rnd);
+ bool ok = do_mpfr_ckconv (result, m, inexact, format);
+ mpfr_clear (m);
+
+ return ok;
+}
+
+/* Try to evaluate:
+
+ *RESULT = f (*ARG0, *ARG1, *ARG2)
+
+ in format FORMAT, given that FUNC is the MPFR implementation of f.
+ Return true on success. */
+
+static bool
+do_mpfr_arg3 (real_value *result,
+ int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr,
+ mpfr_srcptr, mpfr_rnd_t),
+ const real_value *arg0, const real_value *arg1,
+ const real_value *arg2, const real_format *format)
+{
+ /* To proceed, MPFR must exactly represent the target floating point
+ format, which only happens when the target base equals two. */
+ if (format->b != 2
+ || !real_isfinite (arg0)
+ || !real_isfinite (arg1)
+ || !real_isfinite (arg2))
+ return false;
+
+ int prec = format->p;
+ mp_rnd_t rnd = format->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
+ mpfr_t m0, m1, m2;
+
+ mpfr_inits2 (prec, m0, m1, m2, NULL);
+ mpfr_from_real (m0, arg0, GMP_RNDN);
+ mpfr_from_real (m1, arg1, GMP_RNDN);
+ mpfr_from_real (m2, arg2, GMP_RNDN);
+ mpfr_clear_flags ();
+ bool inexact = func (m0, m0, m1, m2, rnd);
+ bool ok = do_mpfr_ckconv (result, m0, inexact, format);
+ mpfr_clears (m0, m1, m2, NULL);
+
+ return ok;
+}
+
+/* M is the result of trying to constant-fold an expression (starting
+ with clear MPFR flags) and INEXACT says whether the result in M is
+ exact or inexact. Return true if M can be used as a constant-folded
+ result in which the real and imaginary parts have format FORMAT.
+ Store those parts in *RESULT_REAL and *RESULT_IMAG if so. */
+
+static bool
+do_mpc_ckconv (real_value *result_real, real_value *result_imag,
+ mpc_srcptr m, bool inexact, const real_format *format)
+{
+ /* Proceed iff we get a normal number, i.e. not NaN or Inf and no
+ overflow/underflow occurred. If -frounding-math, proceed iff the
+ result of calling FUNC was exact. */
+ if (!mpfr_number_p (mpc_realref (m))
+ || !mpfr_number_p (mpc_imagref (m))
+ || mpfr_overflow_p ()
+ || mpfr_underflow_p ()
+ || (flag_rounding_math && inexact))
+ return false;
+
+ REAL_VALUE_TYPE tmp_real, tmp_imag;
+ real_from_mpfr (&tmp_real, mpc_realref (m), format, GMP_RNDN);
+ real_from_mpfr (&tmp_imag, mpc_imagref (m), format, GMP_RNDN);
+
+ /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values.
+ If the REAL_VALUE_TYPE is zero but the mpft_t is not, then we
+ underflowed in the conversion. */
+ if (!real_isfinite (&tmp_real)
+ || !real_isfinite (&tmp_imag)
+ || (tmp_real.cl == rvc_zero) != (mpfr_zero_p (mpc_realref (m)) != 0)
+ || (tmp_imag.cl == rvc_zero) != (mpfr_zero_p (mpc_imagref (m)) != 0))
+ return false;
+
+ real_convert (result_real, format, &tmp_real);
+ real_convert (result_imag, format, &tmp_imag);
+
+ return (real_identical (result_real, &tmp_real)
+ && real_identical (result_imag, &tmp_imag));
+}
+
+/* Try to evaluate:
+
+ RESULT = f (ARG)
+
+ in format FORMAT, given that FUNC is the mpc implementation of f.
+ Return true on success. Both RESULT and ARG are represented as
+ real and imaginary pairs. */
+
+static bool
+do_mpc_arg1 (real_value *result_real, real_value *result_imag,
+ int (*func) (mpc_ptr, mpc_srcptr, mpc_rnd_t),
+ const real_value *arg_real, const real_value *arg_imag,
+ const real_format *format)
+{
+ /* To proceed, MPFR must exactly represent the target floating point
+ format, which only happens when the target base equals two. */
+ if (format->b != 2
+ || !real_isfinite (arg_real)
+ || !real_isfinite (arg_imag))
+ return false;
+
+ int prec = format->p;
+ mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
+ mpc_t m;
+
+ mpc_init2 (m, prec);
+ mpfr_from_real (mpc_realref (m), arg_real, GMP_RNDN);
+ mpfr_from_real (mpc_imagref (m), arg_imag, GMP_RNDN);
+ mpfr_clear_flags ();
+ bool inexact = func (m, m, crnd);
+ bool ok = do_mpc_ckconv (result_real, result_imag, m, inexact, format);
+ mpc_clear (m);
+
+ return ok;
+}
+
+/* Try to evaluate:
+
+ RESULT = f (ARG0, ARG1)
+
+ in format FORMAT, given that FUNC is the mpc implementation of f.
+ Return true on success. RESULT, ARG0 and ARG1 are represented as
+ real and imaginary pairs. */
+
+static bool
+do_mpc_arg2 (real_value *result_real, real_value *result_imag,
+ int (*func)(mpc_ptr, mpc_srcptr, mpc_srcptr, mpc_rnd_t),
+ const real_value *arg0_real, const real_value *arg0_imag,
+ const real_value *arg1_real, const real_value *arg1_imag,
+ const real_format *format)
+{
+ if (!real_isfinite (arg0_real)
+ || !real_isfinite (arg0_imag)
+ || !real_isfinite (arg1_real)
+ || !real_isfinite (arg1_imag))
+ return false;
+
+ int prec = format->p;
+ mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
+ mpc_t m0, m1;
+
+ mpc_init2 (m0, prec);
+ mpc_init2 (m1, prec);
+ mpfr_from_real (mpc_realref (m0), arg0_real, GMP_RNDN);
+ mpfr_from_real (mpc_imagref (m0), arg0_imag, GMP_RNDN);
+ mpfr_from_real (mpc_realref (m1), arg1_real, GMP_RNDN);
+ mpfr_from_real (mpc_imagref (m1), arg1_imag, GMP_RNDN);
+ mpfr_clear_flags ();
+ bool inexact = func (m0, m0, m1, crnd);
+ bool ok = do_mpc_ckconv (result_real, result_imag, m0, inexact, format);
+ mpc_clear (m0);
+ mpc_clear (m1);
+
+ return ok;
+}
+
+/* Try to evaluate:
+
+ *RESULT = logb (*ARG)
+
+ in format FORMAT. Return true on success. */
+
+static bool
+fold_const_logb (real_value *result, const real_value *arg,
+ const real_format *format)
+{
+ switch (arg->cl)
+ {
+ case rvc_nan:
+ /* If arg is +-NaN, then return it. */
+ *result = *arg;
+ return true;
+
+ case rvc_inf:
+ /* If arg is +-Inf, then return +Inf. */
+ *result = *arg;
+ result->sign = 0;
+ return true;
+
+ case rvc_zero:
+ /* Zero may set errno and/or raise an exception. */
+ return false;
+
+ case rvc_normal:
+ /* For normal numbers, proceed iff radix == 2. In GCC,
+ normalized significands are in the range [0.5, 1.0). We
+ want the exponent as if they were [1.0, 2.0) so get the
+ exponent and subtract 1. */
+ if (format->b == 2)
+ {
+ real_from_integer (result, format, REAL_EXP (arg) - 1, SIGNED);
+ return true;
+ }
+ return false;
+ }
+ gcc_unreachable ();
+}
+
+/* Try to evaluate:
+
+ *RESULT = significand (*ARG)
+
+ in format FORMAT. Return true on success. */
+
+static bool
+fold_const_significand (real_value *result, const real_value *arg,
+ const real_format *format)
+{
+ switch (arg->cl)
+ {
+ case rvc_zero:
+ case rvc_nan:
+ case rvc_inf:
+ /* If arg is +-0, +-Inf or +-NaN, then return it. */
+ *result = *arg;
+ return true;
+
+ case rvc_normal:
+ /* For normal numbers, proceed iff radix == 2. */
+ if (format->b == 2)
+ {
+ *result = *arg;
+ /* In GCC, normalized significands are in the range [0.5, 1.0).
+ We want them to be [1.0, 2.0) so set the exponent to 1. */
+ SET_REAL_EXP (result, 1);
+ return true;
+ }
+ return false;
+ }
+ gcc_unreachable ();
+}
+
+/* Try to evaluate:
+
+ *RESULT = f (*ARG)
+
+ where FORMAT is the format of *ARG and PRECISION is the number of
+ significant bits in the result. Return true on success. */
+
+static bool
+fold_const_conversion (wide_int *result,
+ void (*fn) (real_value *, format_helper,
+ const real_value *),
+ const real_value *arg, unsigned int precision,
+ const real_format *format)
+{
+ if (!real_isfinite (arg))
+ return false;
+
+ real_value rounded;
+ fn (&rounded, format, arg);
+
+ bool fail = false;
+ *result = real_to_integer (&rounded, &fail, precision);
+ return !fail;
+}
+
+/* Try to evaluate:
+
+ *RESULT = pow (*ARG0, *ARG1)
+
+ in format FORMAT. Return true on success. */
+
+static bool
+fold_const_pow (real_value *result, const real_value *arg0,
+ const real_value *arg1, const real_format *format)
+{
+ if (do_mpfr_arg2 (result, mpfr_pow, arg0, arg1, format))
+ return true;
+
+ /* Check for an integer exponent. */
+ REAL_VALUE_TYPE cint1;
+ HOST_WIDE_INT n1 = real_to_integer (arg1);
+ real_from_integer (&cint1, VOIDmode, n1, SIGNED);
+ /* Attempt to evaluate pow at compile-time, unless this should
+ raise an exception. */
+ if (real_identical (arg1, &cint1)
+ && (n1 > 0
+ || (!flag_trapping_math && !flag_errno_math)
+ || !real_equal (arg0, &dconst0)))
+ {
+ bool inexact = real_powi (result, format, arg0, n1);
+ if (flag_unsafe_math_optimizations || !inexact)
+ return true;
+ }
+
+ return false;
+}
+
+/* Try to evaluate:
+
+ *RESULT = ldexp (*ARG0, ARG1)
+
+ in format FORMAT. Return true on success. */
+
+static bool
+fold_const_builtin_load_exponent (real_value *result, const real_value *arg0,
+ const wide_int_ref &arg1,
+ const real_format *format)
+{
+ /* Bound the maximum adjustment to twice the range of the
+ mode's valid exponents. Use abs to ensure the range is
+ positive as a sanity check. */
+ int max_exp_adj = 2 * labs (format->emax - format->emin);
+
+ /* The requested adjustment must be inside this range. This
+ is a preliminary cap to avoid things like overflow, we
+ may still fail to compute the result for other reasons. */
+ if (wi::les_p (arg1, -max_exp_adj) || wi::ges_p (arg1, max_exp_adj))
+ return false;
+
+ REAL_VALUE_TYPE initial_result;
+ real_ldexp (&initial_result, arg0, arg1.to_shwi ());
+
+ /* Ensure we didn't overflow. */
+ if (real_isinf (&initial_result))
+ return false;
+
+ /* Only proceed if the target mode can hold the
+ resulting value. */
+ *result = real_value_truncate (format, initial_result);
+ return real_equal (&initial_result, result);
+}
+
+/* Try to evaluate:
+
+ *RESULT = FN (*ARG)
+
+ in format FORMAT. Return true on success. */
+
+static bool
+fold_const_call_ss (real_value *result, built_in_function fn,
+ const real_value *arg, const real_format *format)
+{
+ switch (fn)
+ {
+ CASE_FLT_FN (BUILT_IN_SQRT):
+ return (real_compare (GE_EXPR, arg, &dconst0)
+ && do_mpfr_arg1 (result, mpfr_sqrt, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_CBRT):
+ return do_mpfr_arg1 (result, mpfr_cbrt, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_ASIN):
+ return (real_compare (GE_EXPR, arg, &dconstm1)
+ && real_compare (LE_EXPR, arg, &dconst1)
+ && do_mpfr_arg1 (result, mpfr_asin, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_ACOS):
+ return (real_compare (GE_EXPR, arg, &dconstm1)
+ && real_compare (LE_EXPR, arg, &dconst1)
+ && do_mpfr_arg1 (result, mpfr_acos, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_ATAN):
+ return do_mpfr_arg1 (result, mpfr_atan, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_ASINH):
+ return do_mpfr_arg1 (result, mpfr_asinh, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_ACOSH):
+ return (real_compare (GE_EXPR, arg, &dconst1)
+ && do_mpfr_arg1 (result, mpfr_acosh, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_ATANH):
+ return (real_compare (GE_EXPR, arg, &dconstm1)
+ && real_compare (LE_EXPR, arg, &dconst1)
+ && do_mpfr_arg1 (result, mpfr_atanh, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_SIN):
+ return do_mpfr_arg1 (result, mpfr_sin, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_COS):
+ return do_mpfr_arg1 (result, mpfr_cos, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_TAN):
+ return do_mpfr_arg1 (result, mpfr_tan, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_SINH):
+ return do_mpfr_arg1 (result, mpfr_sinh, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_COSH):
+ return do_mpfr_arg1 (result, mpfr_cosh, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_TANH):
+ return do_mpfr_arg1 (result, mpfr_tanh, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_ERF):
+ return do_mpfr_arg1 (result, mpfr_erf, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_ERFC):
+ return do_mpfr_arg1 (result, mpfr_erfc, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_TGAMMA):
+ return do_mpfr_arg1 (result, mpfr_gamma, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_EXP):
+ return do_mpfr_arg1 (result, mpfr_exp, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_EXP2):
+ return do_mpfr_arg1 (result, mpfr_exp2, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_EXP10):
+ CASE_FLT_FN (BUILT_IN_POW10):
+ return do_mpfr_arg1 (result, mpfr_exp10, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_EXPM1):
+ return do_mpfr_arg1 (result, mpfr_expm1, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_LOG):
+ return (real_compare (GT_EXPR, arg, &dconst0)
+ && do_mpfr_arg1 (result, mpfr_log, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_LOG2):
+ return (real_compare (GT_EXPR, arg, &dconst0)
+ && do_mpfr_arg1 (result, mpfr_log2, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_LOG10):
+ return (real_compare (GT_EXPR, arg, &dconst0)
+ && do_mpfr_arg1 (result, mpfr_log10, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_LOG1P):
+ return (real_compare (GT_EXPR, arg, &dconstm1)
+ && do_mpfr_arg1 (result, mpfr_log1p, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_J0):
+ return do_mpfr_arg1 (result, mpfr_j0, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_J1):
+ return do_mpfr_arg1 (result, mpfr_j1, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_Y0):
+ return (real_compare (GT_EXPR, arg, &dconst0)
+ && do_mpfr_arg1 (result, mpfr_y0, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_Y1):
+ return (real_compare (GT_EXPR, arg, &dconst0)
+ && do_mpfr_arg1 (result, mpfr_y1, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_FLOOR):
+ if (!REAL_VALUE_ISNAN (*arg) || !flag_errno_math)
+ {
+ real_floor (result, format, arg);
+ return true;
+ }
+ return false;
+
+ CASE_FLT_FN (BUILT_IN_CEIL):
+ if (!REAL_VALUE_ISNAN (*arg) || !flag_errno_math)
+ {
+ real_ceil (result, format, arg);
+ return true;
+ }
+ return false;
+
+ CASE_FLT_FN (BUILT_IN_TRUNC):
+ real_trunc (result, format, arg);
+ return true;
+
+ CASE_FLT_FN (BUILT_IN_ROUND):
+ if (!REAL_VALUE_ISNAN (*arg) || !flag_errno_math)
+ {
+ real_round (result, format, arg);
+ return true;
+ }
+ return false;
+
+ CASE_FLT_FN (BUILT_IN_LOGB):
+ return fold_const_logb (result, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
+ return fold_const_significand (result, arg, format);
+
+ default:
+ return false;
+ }
+}
+
+/* Try to evaluate:
+
+ *RESULT = FN (*ARG)
+
+ where FORMAT is the format of ARG and PRECISION is the number of
+ significant bits in the result. Return true on success. */
+
+static bool
+fold_const_call_ss (wide_int *result, built_in_function fn,
+ const real_value *arg, unsigned int precision,
+ const real_format *format)
+{
+ switch (fn)
+ {
+ CASE_FLT_FN (BUILT_IN_SIGNBIT):
+ if (real_isneg (arg))
+ *result = wi::one (precision);
+ else
+ *result = wi::zero (precision);
+ return true;
+
+ CASE_FLT_FN (BUILT_IN_ILOGB):
+ /* For ilogb we don't know FP_ILOGB0, so only handle normal values.
+ Proceed iff radix == 2. In GCC, normalized significands are in
+ the range [0.5, 1.0). We want the exponent as if they were
+ [1.0, 2.0) so get the exponent and subtract 1. */
+ if (arg->cl == rvc_normal && format->b == 2)
+ {
+ *result = wi::shwi (REAL_EXP (arg) - 1, precision);
+ return true;
+ }
+ return false;
+
+ CASE_FLT_FN (BUILT_IN_ICEIL):
+ CASE_FLT_FN (BUILT_IN_LCEIL):
+ CASE_FLT_FN (BUILT_IN_LLCEIL):
+ return fold_const_conversion (result, real_ceil, arg,
+ precision, format);
+
+ CASE_FLT_FN (BUILT_IN_LFLOOR):
+ CASE_FLT_FN (BUILT_IN_IFLOOR):
+ CASE_FLT_FN (BUILT_IN_LLFLOOR):
+ return fold_const_conversion (result, real_floor, arg,
+ precision, format);
+
+ CASE_FLT_FN (BUILT_IN_IROUND):
+ CASE_FLT_FN (BUILT_IN_LROUND):
+ CASE_FLT_FN (BUILT_IN_LLROUND):
+ return fold_const_conversion (result, real_round, arg,
+ precision, format);
+
+ CASE_FLT_FN (BUILT_IN_IRINT):
+ CASE_FLT_FN (BUILT_IN_LRINT):
+ CASE_FLT_FN (BUILT_IN_LLRINT):
+ /* Not yet folded to a constant. */
+ return false;
+
+ default:
+ return false;
+ }
+}
+
+/* Try to evaluate:
+
+ RESULT = FN (*ARG)
+
+ where FORMAT is the format of ARG and of the real and imaginary parts
+ of RESULT, passed as RESULT_REAL and RESULT_IMAG respectively. Return
+ true on success. */
+
+static bool
+fold_const_call_cs (real_value *result_real, real_value *result_imag,
+ built_in_function fn, const real_value *arg,
+ const real_format *format)
+{
+ switch (fn)
+ {
+ CASE_FLT_FN (BUILT_IN_CEXPI):
+ /* cexpi(x+yi) = cos(x)+sin(y)*i. */
+ return do_mpfr_sincos (result_imag, result_real, arg, format);
+
+ default:
+ return false;
+ }
+}
+
+/* Try to evaluate:
+
+ *RESULT = fn (ARG)
+
+ where FORMAT is the format of RESULT and of the real and imaginary parts
+ of ARG, passed as ARG_REAL and ARG_IMAG respectively. Return true on
+ success. */
+
+static bool
+fold_const_call_sc (real_value *result, built_in_function fn,
+ const real_value *arg_real, const real_value *arg_imag,
+ const real_format *format)
+{
+ switch (fn)
+ {
+ CASE_FLT_FN (BUILT_IN_CABS):
+ return do_mpfr_arg2 (result, mpfr_hypot, arg_real, arg_imag, format);
+
+ default:
+ return false;
+ }
+}
+
+/* Try to evaluate:
+
+ RESULT = fn (ARG)
+
+ where FORMAT is the format of the real and imaginary parts of RESULT
+ (RESULT_REAL and RESULT_IMAG) and of ARG (ARG_REAL and ARG_IMAG).
+ Return true on success. */
+
+static bool
+fold_const_call_cc (real_value *result_real, real_value *result_imag,
+ built_in_function fn, const real_value *arg_real,
+ const real_value *arg_imag, const real_format *format)
+{
+ switch (fn)
+ {
+ CASE_FLT_FN (BUILT_IN_CCOS):
+ return do_mpc_arg1 (result_real, result_imag, mpc_cos,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CCOSH):
+ return do_mpc_arg1 (result_real, result_imag, mpc_cosh,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CPROJ):
+ if (real_isinf (arg_real) || real_isinf (arg_imag))
+ {
+ real_inf (result_real);
+ *result_imag = dconst0;
+ result_imag->sign = arg_imag->sign;
+ }
+ else
+ {
+ *result_real = *arg_real;
+ *result_imag = *arg_imag;
+ }
+ return true;
+
+ CASE_FLT_FN (BUILT_IN_CSIN):
+ return do_mpc_arg1 (result_real, result_imag, mpc_sin,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CSINH):
+ return do_mpc_arg1 (result_real, result_imag, mpc_sinh,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CTAN):
+ return do_mpc_arg1 (result_real, result_imag, mpc_tan,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CTANH):
+ return do_mpc_arg1 (result_real, result_imag, mpc_tanh,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CLOG):
+ return do_mpc_arg1 (result_real, result_imag, mpc_log,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CSQRT):
+ return do_mpc_arg1 (result_real, result_imag, mpc_sqrt,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CASIN):
+ return do_mpc_arg1 (result_real, result_imag, mpc_asin,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CACOS):
+ return do_mpc_arg1 (result_real, result_imag, mpc_acos,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CATAN):
+ return do_mpc_arg1 (result_real, result_imag, mpc_atan,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CASINH):
+ return do_mpc_arg1 (result_real, result_imag, mpc_asinh,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CACOSH):
+ return do_mpc_arg1 (result_real, result_imag, mpc_acosh,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CATANH):
+ return do_mpc_arg1 (result_real, result_imag, mpc_atanh,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CEXP):
+ return do_mpc_arg1 (result_real, result_imag, mpc_exp,
+ arg_real, arg_imag, format);
+
+ default:
+ return false;
+ }
+}
+
+/* Try to fold FN (ARG) to a constant. Return the constant on success,
+ otherwise return null. TYPE is the type of the return value. */
+
+tree
+fold_const_call (built_in_function fn, tree type, tree arg)
+{
+ machine_mode mode = TYPE_MODE (type);
+ machine_mode arg_mode = TYPE_MODE (TREE_TYPE (arg));
+
+ if (real_cst_p (arg))
+ {
+ gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg_mode));
+ if (mode == arg_mode)
+ {
+ /* real -> real. */
+ REAL_VALUE_TYPE result;
+ if (fold_const_call_ss (&result, fn, TREE_REAL_CST_PTR (arg),
+ REAL_MODE_FORMAT (mode)))
+ return build_real (type, result);
+ }
+ else if (COMPLEX_MODE_P (mode)
+ && GET_MODE_INNER (mode) == arg_mode)
+ {
+ /* real -> complex real. */
+ REAL_VALUE_TYPE result_real, result_imag;
+ if (fold_const_call_cs (&result_real, &result_imag, fn,
+ TREE_REAL_CST_PTR (arg),
+ REAL_MODE_FORMAT (arg_mode)))
+ return build_complex (type,
+ build_real (TREE_TYPE (type), result_real),
+ build_real (TREE_TYPE (type), result_imag));
+ }
+ else if (INTEGRAL_TYPE_P (type))
+ {
+ /* real -> int. */
+ wide_int result;
+ if (fold_const_call_ss (&result, fn,
+ TREE_REAL_CST_PTR (arg),
+ TYPE_PRECISION (type),
+ REAL_MODE_FORMAT (arg_mode)))
+ return wide_int_to_tree (type, result);
+ }
+ return NULL_TREE;
+ }
+
+ if (complex_cst_p (arg))
+ {
+ gcc_checking_assert (COMPLEX_MODE_P (arg_mode));
+ machine_mode inner_mode = GET_MODE_INNER (arg_mode);
+ tree argr = TREE_REALPART (arg);
+ tree argi = TREE_IMAGPART (arg);
+ if (mode == arg_mode
+ && real_cst_p (argr)
+ && real_cst_p (argi))
+ {
+ /* complex real -> complex real. */
+ REAL_VALUE_TYPE result_real, result_imag;
+ if (fold_const_call_cc (&result_real, &result_imag, fn,
+ TREE_REAL_CST_PTR (argr),
+ TREE_REAL_CST_PTR (argi),
+ REAL_MODE_FORMAT (inner_mode)))
+ return build_complex (type,
+ build_real (TREE_TYPE (type), result_real),
+ build_real (TREE_TYPE (type), result_imag));
+ }
+ if (mode == inner_mode
+ && real_cst_p (argr)
+ && real_cst_p (argi))
+ {
+ /* complex real -> real. */
+ REAL_VALUE_TYPE result;
+ if (fold_const_call_sc (&result, fn,
+ TREE_REAL_CST_PTR (argr),
+ TREE_REAL_CST_PTR (argi),
+ REAL_MODE_FORMAT (inner_mode)))
+ return build_real (type, result);
+ }
+ return NULL_TREE;
+ }
+
+ return NULL_TREE;
+}
+
+/* Try to evaluate:
+
+ *RESULT = FN (*ARG0, *ARG1)
+
+ in format FORMAT. Return true on success. */
+
+static bool
+fold_const_call_sss (real_value *result, built_in_function fn,
+ const real_value *arg0, const real_value *arg1,
+ const real_format *format)
+{
+ switch (fn)
+ {
+ CASE_FLT_FN (BUILT_IN_DREM):
+ CASE_FLT_FN (BUILT_IN_REMAINDER):
+ return do_mpfr_arg2 (result, mpfr_remainder, arg0, arg1, format);
+
+ CASE_FLT_FN (BUILT_IN_ATAN2):
+ return do_mpfr_arg2 (result, mpfr_atan2, arg0, arg1, format);
+
+ CASE_FLT_FN (BUILT_IN_FDIM):
+ return do_mpfr_arg2 (result, mpfr_dim, arg0, arg1, format);
+
+ CASE_FLT_FN (BUILT_IN_HYPOT):
+ return do_mpfr_arg2 (result, mpfr_hypot, arg0, arg1, format);
+
+ CASE_FLT_FN (BUILT_IN_COPYSIGN):
+ *result = *arg0;
+ real_copysign (result, arg1);
+ return true;
+
+ CASE_FLT_FN (BUILT_IN_FMIN):
+ return do_mpfr_arg2 (result, mpfr_min, arg0, arg1, format);
+
+ CASE_FLT_FN (BUILT_IN_FMAX):
+ return do_mpfr_arg2 (result, mpfr_max, arg0, arg1, format);
+
+ CASE_FLT_FN (BUILT_IN_POW):
+ return fold_const_pow (result, arg0, arg1, format);
+
+ default:
+ return false;
+ }
+}
+
+/* Try to evaluate:
+
+ *RESULT = FN (*ARG0, ARG1)
+
+ where FORMAT is the format of *RESULT and *ARG0. Return true on
+ success. */
+
+static bool
+fold_const_call_sss (real_value *result, built_in_function fn,
+ const real_value *arg0, const wide_int_ref &arg1,
+ const real_format *format)
+{
+ switch (fn)
+ {
+ CASE_FLT_FN (BUILT_IN_LDEXP):
+ return fold_const_builtin_load_exponent (result, arg0, arg1, format);
+
+ CASE_FLT_FN (BUILT_IN_SCALBN):
+ CASE_FLT_FN (BUILT_IN_SCALBLN):
+ return (format->b == 2
+ && fold_const_builtin_load_exponent (result, arg0, arg1,
+ format));
+
+ CASE_FLT_FN (BUILT_IN_POWI):
+ real_powi (result, format, arg0, arg1.to_shwi ());
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+/* Try to evaluate:
+
+ *RESULT = FN (ARG0, *ARG1)
+
+ where FORMAT is the format of *RESULT and *ARG1. Return true on
+ success. */
+
+static bool
+fold_const_call_sss (real_value *result, built_in_function fn,
+ const wide_int_ref &arg0, const real_value *arg1,
+ const real_format *format)
+{
+ switch (fn)
+ {
+ CASE_FLT_FN (BUILT_IN_JN):
+ return do_mpfr_arg2 (result, mpfr_jn, arg0, arg1, format);
+
+ CASE_FLT_FN (BUILT_IN_YN):
+ return (real_compare (GT_EXPR, arg1, &dconst0)
+ && do_mpfr_arg2 (result, mpfr_yn, arg0, arg1, format));
+
+ default:
+ return false;
+ }
+}
+
+/* Try to evaluate:
+
+ RESULT = fn (ARG0, ARG1)
+
+ where FORMAT is the format of the real and imaginary parts of RESULT
+ (RESULT_REAL and RESULT_IMAG), of ARG0 (ARG0_REAL and ARG0_IMAG)
+ and of ARG1 (ARG1_REAL and ARG1_IMAG). Return true on success. */
+
+static bool
+fold_const_call_ccc (real_value *result_real, real_value *result_imag,
+ built_in_function fn, const real_value *arg0_real,
+ const real_value *arg0_imag, const real_value *arg1_real,
+ const real_value *arg1_imag, const real_format *format)
+{
+ switch (fn)
+ {
+ CASE_FLT_FN (BUILT_IN_CPOW):
+ return do_mpc_arg2 (result_real, result_imag, mpc_pow,
+ arg0_real, arg0_imag, arg1_real, arg1_imag, format);
+
+ default:
+ return false;
+ }
+}
+
+/* Try to fold FN (ARG0, ARG1) to a constant. Return the constant on success,
+ otherwise return null. TYPE is the type of the return value. */
+
+tree
+fold_const_call (built_in_function fn, tree type, tree arg0, tree arg1)
+{
+ machine_mode mode = TYPE_MODE (type);
+ machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
+ machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1));
+
+ if (arg0_mode == arg1_mode
+ && real_cst_p (arg0)
+ && real_cst_p (arg1))
+ {
+ gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
+ if (mode == arg0_mode)
+ {
+ /* real, real -> real. */
+ REAL_VALUE_TYPE result;
+ if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
+ TREE_REAL_CST_PTR (arg1),
+ REAL_MODE_FORMAT (mode)))
+ return build_real (type, result);
+ }
+ return NULL_TREE;
+ }
+
+ if (real_cst_p (arg0)
+ && integer_cst_p (arg1))
+ {
+ gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
+ if (mode == arg0_mode)
+ {
+ /* real, int -> real. */
+ REAL_VALUE_TYPE result;
+ if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
+ arg1, REAL_MODE_FORMAT (mode)))
+ return build_real (type, result);
+ }
+ return NULL_TREE;
+ }
+
+ if (integer_cst_p (arg0)
+ && real_cst_p (arg1))
+ {
+ gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg1_mode));
+ if (mode == arg1_mode)
+ {
+ /* int, real -> real. */
+ REAL_VALUE_TYPE result;
+ if (fold_const_call_sss (&result, fn, arg0,
+ TREE_REAL_CST_PTR (arg1),
+ REAL_MODE_FORMAT (mode)))
+ return build_real (type, result);
+ }
+ return NULL_TREE;
+ }
+
+ if (arg0_mode == arg1_mode
+ && complex_cst_p (arg0)
+ && complex_cst_p (arg1))
+ {
+ gcc_checking_assert (COMPLEX_MODE_P (arg0_mode));
+ machine_mode inner_mode = GET_MODE_INNER (arg0_mode);
+ tree arg0r = TREE_REALPART (arg0);
+ tree arg0i = TREE_IMAGPART (arg0);
+ tree arg1r = TREE_REALPART (arg1);
+ tree arg1i = TREE_IMAGPART (arg1);
+ if (mode == arg0_mode
+ && real_cst_p (arg0r)
+ && real_cst_p (arg0i)
+ && real_cst_p (arg1r)
+ && real_cst_p (arg1i))
+ {
+ /* complex real, complex real -> complex real. */
+ REAL_VALUE_TYPE result_real, result_imag;
+ if (fold_const_call_ccc (&result_real, &result_imag, fn,
+ TREE_REAL_CST_PTR (arg0r),
+ TREE_REAL_CST_PTR (arg0i),
+ TREE_REAL_CST_PTR (arg1r),
+ TREE_REAL_CST_PTR (arg1i),
+ REAL_MODE_FORMAT (inner_mode)))
+ return build_complex (type,
+ build_real (TREE_TYPE (type), result_real),
+ build_real (TREE_TYPE (type), result_imag));
+ }
+ return NULL_TREE;
+ }
+
+ return NULL_TREE;
+}
+
+/* Try to evaluate:
+
+ *RESULT = FN (*ARG0, *ARG1, *ARG2)
+
+ in format FORMAT. Return true on success. */
+
+static bool
+fold_const_call_ssss (real_value *result, built_in_function fn,
+ const real_value *arg0, const real_value *arg1,
+ const real_value *arg2, const real_format *format)
+{
+ switch (fn)
+ {
+ CASE_FLT_FN (BUILT_IN_FMA):
+ return do_mpfr_arg3 (result, mpfr_fma, arg0, arg1, arg2, format);
+
+ default:
+ return false;
+ }
+}
+
+/* Try to fold FN (ARG0, ARG1, ARG2) to a constant. Return the constant on
+ success, otherwise return null. TYPE is the type of the return value. */
+
+tree
+fold_const_call (built_in_function fn, tree type, tree arg0, tree arg1,
+ tree arg2)
+{
+ machine_mode mode = TYPE_MODE (type);
+ machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
+ machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1));
+ machine_mode arg2_mode = TYPE_MODE (TREE_TYPE (arg2));
+
+ if (arg0_mode == arg1_mode
+ && arg0_mode == arg2_mode
+ && real_cst_p (arg0)
+ && real_cst_p (arg1)
+ && real_cst_p (arg2))
+ {
+ gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
+ if (mode == arg0_mode)
+ {
+ /* real, real, real -> real. */
+ REAL_VALUE_TYPE result;
+ if (fold_const_call_ssss (&result, fn, TREE_REAL_CST_PTR (arg0),
+ TREE_REAL_CST_PTR (arg1),
+ TREE_REAL_CST_PTR (arg2),
+ REAL_MODE_FORMAT (mode)))
+ return build_real (type, result);
+ }
+ return NULL_TREE;
+ }
+
+ return NULL_TREE;
+}
+
+/* Fold a fma operation with arguments ARG[012]. */
+
+tree
+fold_fma (location_t, tree type, tree arg0, tree arg1, tree arg2)
+{
+ REAL_VALUE_TYPE result;
+ if (real_cst_p (arg0)
+ && real_cst_p (arg1)
+ && real_cst_p (arg2)
+ && do_mpfr_arg3 (&result, mpfr_fma, TREE_REAL_CST_PTR (arg0),
+ TREE_REAL_CST_PTR (arg1), TREE_REAL_CST_PTR (arg2),
+ REAL_MODE_FORMAT (TYPE_MODE (type))))
+ return build_real (type, result);
+
+ return NULL_TREE;
+}