from migen.fhdl.std import *
+from migen.actorlib.fifo import AsyncFIFO
+from migen.actorlib.structuring import Converter
from lib.sata.k7sataphy.std import *
self.rxuserrdy = Signal()
# Receive Ports - 8b10b Decoder
- self.rxcharisk = Signal(2)
self.rxdisperr = Signal(2)
self.rxnotintable = Signal(2)
# Receive Ports - RX Data Path interface
self.gtrxreset = Signal()
- self.rxdata = Signal(16)
self.rxoutclk = Signal()
self.rxusrclk = Signal()
self.rxusrclk2 = Signal()
self.txuserrdy = Signal()
# Transmit Ports - 8b10b Encoder Control Ports
- self.txcharisk = Signal(2)
# Transmit Ports - TX Buffer and Phase Alignment Ports
self.txdlyen = Signal()
# Transmit Ports - TX Data Path interface
self.gttxreset = Signal()
- self.txdata = Signal()
self.txoutclk = Signal()
self.txoutclkfabric = Signal()
self.txoutclkpcs = Signal()
rxdata = Signal(16)
rxcharisk = Signal(2)
+ txdata = Signal(16)
+ txcharisk = Signal(2)
+
self.specials += \
Instance("GTXE2_CHANNEL",
# Simulation-Only Attributes
# realign rxdata / rxcharisk
rxdata_r = Signal(dw)
rxcharisk_r = Signal(dw//8)
+ rxdata_aligned = Signal(dw)
+ rxcharisk_aligned = Signal(dw//8)
self.sync.sata_rx += [
rxdata_r.eq(rxdata),
rxcharisk_r.eq(rxcharisk)
]
cases = {}
cases[1<<0] = [
- self.rxdata.eq(rx_data_r[0:dw]),
- self.rxcharisk.eq(rx_charisk_r[0:dw//8])
+ rxdata_aligned .eq(rx_data_r[0:dw]),
+ rxcharisk_aligned .eq(rx_charisk_r[0:dw//8])
]
for i in range(1, dw//8):
cases[1<<i] = [
- self.rxdata.eq(Cat(self.gtx.rxdata[8*i:dw], rxdata_r[0:8*i])),
- self.rxcharisk.eq(Cat(self.gtx.rxcharisk[i:dw//8], rxcharisk_r[0:i]))
+ rxdata_aligned .eq(Cat(rxdata[8*i:dw], rxdata_r[0:8*i])),
+ rxcharisk_aligned .eq(Cat(self.gtx.rxcharisk[i:dw//8], rxcharisk_r[0:i]))
]
self.comb += Case(rxcharisk_d, cases)
+
+
+ # convert data widths
+ rx_converter = RenameClockDomains(Converter([("raw", 16+2)], [("raw", 32+4)]), "sata_rx")
+ tx_converter = RenameClockDomains(Converter([("raw", 32+4)], [("raw", 16+2)]), "sata_tx")
+ self.submodules += rx_converter, tx_converter
+ self.comb += [
+ rx_converter.sink.stb.eq(1),
+ rx_converter.sink.raw.eq(Cat(rxdata_aligned , rxcharisk_aligned)),
+ rx_converter.source.ack.eq(1),
+
+ Cat(txdata, txcharisk).eq(tx_converter.source.raw),
+ tx_converter.source.ack.eq(1),
+ ]
+
+ # clock domain crossing
+ # SATA device is supposed to lock its tx frequency to its received rx frequency, so this
+ # ensure that sata_rx and sata_tx clock have the same frequency with only not the same
+ # phase and thus ensute the rx_fifo will never be full.
+ rx_fifo = AsyncFIFO(("raw", 36), 16)
+ self.submodules.rx_fifo = RenameClockDomains(rx_fifo, {"write": "sata_rx", "read": "sata"})
+ tx_fifo = AsyncFIFO(("raw", 36), 16)
+ self.submodules.tx_fifo = RenameClockDomains(tx_fifo, {"write": "sata", "read": "sata_tx"})
+ self.comb += [
+ Record.connect(rx_converter.source, self.rx_fifo.sink),
+ self.rx_fifo.source.ack.eq(1),
+ Record.connect(tx_fifo.source, tx_converter.sink),
+ self.tx_fifo.sink.stb.eq(1),
+ ]
+
+ # Todo:
+ # we can add support to Converter to generate non raw connection (ie keep here convert from
+ # [("data", 16), ("charisk", 2)] to [("data", 32), ("charisk", 4)]
+ self.source = Source([("data", 32), ("charisk", 4)])
+ self.comb += [
+ self.source.stb.eq(self.rx_fifo.source.stb),
+ self.source.payload.data.eq(Cat(rx_fifo.source.raw[0:32], rx_fifo.source.raw[36:36+32])),
+ self.source.payload.charisk.eq(rx_fifo.source.raw[32:36], rx_fifo.source.raw[36+32:36+36]),
+ self.rx_fifo.source.ack.eq(self.source.ack),
+ ]
+
+ self.sink = Sink(("data", 32), ("charisk", 4)])
+ self.comb += [
+ self.tx_fifo.stb.eq(self.sink.stb),
+ self.tx_fifo.raw.eq(Cat(self.sink.data[0:16], self.sink.charisk[0:2],
+ self.sink.data[16:32], self.sink.charisk[2:4])),
+ self.sink.ack.eq(self.tx_fifo.ack),
+ ]