# Boolean simplifications
(('ine', 'a@bool', 0), 'a'),
(('ieq', 'a@bool', 0), ('inot', 'a')),
- (('bcsel', 'a@bool', True, False), 'a'),
- (('bcsel', 'a@bool', False, True), ('inot', 'a')),
+ (('bcsel', a, True, False), ('ine', a, 0)),
+ (('bcsel', a, False, True), ('ieq', a, 0)),
+ (('bcsel', True, b, c), b),
+ (('bcsel', False, b, c), c),
+ # The result of this should be hit by constant propagation and, in the
+ # next round of opt_algebraic, get picked up by one of the above two.
+ (('bcsel', '#a', b, c), ('bcsel', ('ine', 'a', 0), b, c)),
# This one may not be exact
(('feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
]
+# Add optimizations to handle the case where the result of a ternary is
+# compared to a constant. This way we can take things like
+#
+# (a ? 0 : 1) > 0
+#
+# and turn it into
+#
+# a ? (0 > 0) : (1 > 0)
+#
+# which constant folding will eat for lunch. The resulting ternary will
+# further get cleaned up by the boolean reductions above and we will be
+# left with just the original variable "a".
+for op in ['flt', 'fge', 'feq', 'fne',
+ 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
+ optimizations += [
+ ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
+ ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
+ ((op, '#d', ('bcsel', a, '#b', '#c')),
+ ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
+ ]
+
print nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render()