this->prefix = prefix;
}
- std::vector<int> importSigSpecWorker(RTLIL::SigSpec &sig, std::string &pf, bool undef_mode)
+ std::vector<int> importSigSpecWorker(RTLIL::SigSpec &sig, std::string &pf, bool undef_mode, bool dup_undef)
{
log_assert(!undef_mode || model_undef);
sigmap->apply(sig);
for (auto &c : sig.chunks)
if (c.wire == NULL) {
- vec.push_back(c.data.bits.at(0) == (undef_mode ? RTLIL::State::Sx : RTLIL::State::S1) ? ez->TRUE : ez->FALSE);
+ RTLIL::State bit = c.data.bits.at(0);
+ if (model_undef && dup_undef && bit == RTLIL::State::Sx)
+ vec.push_back(ez->literal());
+ else
+ vec.push_back(bit == (undef_mode ? RTLIL::State::Sx : RTLIL::State::S1) ? ez->TRUE : ez->FALSE);
} else {
std::string name = pf + stringf(c.wire->width == 1 ? "%s" : "%s [%d]", RTLIL::id2cstr(c.wire->name), c.offset);
vec.push_back(ez->literal(name));
{
log_assert(timestep != 0);
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
- return importSigSpecWorker(sig, pf, false);
+ return importSigSpecWorker(sig, pf, false, false);
+ }
+
+ std::vector<int> importDefSigSpec(RTLIL::SigSpec sig, int timestep = -1)
+ {
+ log_assert(timestep != 0);
+ std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
+ return importSigSpecWorker(sig, pf, false, true);
}
std::vector<int> importUndefSigSpec(RTLIL::SigSpec sig, int timestep = -1)
{
log_assert(timestep != 0);
std::string pf = "undef:" + prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
- return importSigSpecWorker(sig, pf, true);
+ return importSigSpecWorker(sig, pf, true, false);
+ }
+
+ int signals_eq(RTLIL::SigSpec lhs, RTLIL::SigSpec rhs, int timestep = -1)
+ {
+ assert(lhs.width == rhs.width);
+
+ std::vector<int> vec_lhs = importSigSpec(lhs, timestep);
+ std::vector<int> vec_rhs = importSigSpec(rhs, timestep);
+
+ if (!model_undef)
+ return ez->vec_eq(vec_lhs, vec_rhs);
+
+ std::vector<int> undef_lhs = importUndefSigSpec(lhs, timestep);
+ std::vector<int> undef_rhs = importUndefSigSpec(rhs, timestep);
+
+ std::vector<int> eq_bits;
+ for (int i = 0; i < lhs.width; i++)
+ eq_bits.push_back(ez->AND(ez->IFF(undef_lhs.at(i), undef_rhs.at(i)),
+ ez->IFF(ez->OR(vec_lhs.at(i), undef_lhs.at(i)), ez->OR(vec_rhs.at(i), undef_rhs.at(i)))));
+ return ez->expression(ezSAT::OpAnd, eq_bits);
}
void extendSignalWidth(std::vector<int> &vec_a, std::vector<int> &vec_b, RTLIL::Cell *cell, size_t y_width = 0, bool undef_mode = false)
vec_y.push_back(ez->literal());
}
+ void undefGating(std::vector<int> &vec_y, std::vector<int> &vec_yy, std::vector<int> &vec_undef)
+ {
+ assert(model_undef);
+ ez->assume(ez->expression(ezSAT::OpAnd, ez->vec_or(vec_undef, ez->vec_iff(vec_y, vec_yy))));
+ }
+
bool importCell(RTLIL::Cell *cell, int timestep = -1)
{
bool arith_undef_handled = false;
bool is_arith_compare = cell->type == "$lt" || cell->type == "$le" || cell->type == "$ge" || cell->type == "$gt";
+ int arith_undef_result = ez->FALSE;
if (model_undef && (cell->type == "$add" || cell->type == "$sub" || cell->type == "$mul" || cell->type == "$div" || cell->type == "$mod" || is_arith_compare))
{
std::vector<int> undef_y_bits(undef_y.size(), undef_y_bit);
ez->assume(ez->vec_eq(undef_y_bits, undef_y));
}
+
+ arith_undef_result = undef_y_bit;
arith_undef_handled = true;
}
cell->type == "$and" || cell->type == "$or" || cell->type == "$xor" || cell->type == "$xnor" ||
cell->type == "$add" || cell->type == "$sub")
{
- std::vector<int> a = importSigSpec(cell->connections.at("\\A"), timestep);
- std::vector<int> b = importSigSpec(cell->connections.at("\\B"), timestep);
- std::vector<int> y = importSigSpec(cell->connections.at("\\Y"), timestep);
+ std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
+ std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
+ std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
extendSignalWidth(a, b, y, cell);
+
+ std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
+
if (cell->type == "$and" || cell->type == "$_AND_")
- ez->assume(ez->vec_eq(ez->vec_and(a, b), y));
+ ez->assume(ez->vec_eq(ez->vec_and(a, b), yy));
if (cell->type == "$or" || cell->type == "$_OR_")
- ez->assume(ez->vec_eq(ez->vec_or(a, b), y));
+ ez->assume(ez->vec_eq(ez->vec_or(a, b), yy));
if (cell->type == "$xor" || cell->type == "$_XOR_")
- ez->assume(ez->vec_eq(ez->vec_xor(a, b), y));
+ ez->assume(ez->vec_eq(ez->vec_xor(a, b), yy));
if (cell->type == "$xnor")
- ez->assume(ez->vec_eq(ez->vec_not(ez->vec_xor(a, b)), y));
+ ez->assume(ez->vec_eq(ez->vec_not(ez->vec_xor(a, b)), yy));
if (cell->type == "$add")
- ez->assume(ez->vec_eq(ez->vec_add(a, b), y));
+ ez->assume(ez->vec_eq(ez->vec_add(a, b), yy));
if (cell->type == "$sub")
- ez->assume(ez->vec_eq(ez->vec_sub(a, b), y));
+ ez->assume(ez->vec_eq(ez->vec_sub(a, b), yy));
if (model_undef && !arith_undef_handled)
{
}
else
log_abort();
+
+ undefGating(y, yy, undef_y);
+ }
+ else if (model_undef)
+ {
+ std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
+ undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type == "$_INV_" || cell->type == "$not")
{
- std::vector<int> a = importSigSpec(cell->connections.at("\\A"), timestep);
- std::vector<int> y = importSigSpec(cell->connections.at("\\Y"), timestep);
+ std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
+ std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
extendSignalWidthUnary(a, y, cell);
- ez->assume(ez->vec_eq(ez->vec_not(a), y));
+
+ std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
+ ez->assume(ez->vec_eq(ez->vec_not(a), yy));
if (model_undef) {
std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
extendSignalWidthUnary(undef_a, undef_y, cell, true);
ez->assume(ez->vec_eq(undef_a, undef_y));
+ undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type == "$_MUX_" || cell->type == "$mux")
{
- std::vector<int> a = importSigSpec(cell->connections.at("\\A"), timestep);
- std::vector<int> b = importSigSpec(cell->connections.at("\\B"), timestep);
- std::vector<int> s = importSigSpec(cell->connections.at("\\S"), timestep);
- std::vector<int> y = importSigSpec(cell->connections.at("\\Y"), timestep);
- ez->assume(ez->vec_eq(ez->vec_ite(s.at(0), b, a), y));
+ std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
+ std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
+ std::vector<int> s = importDefSigSpec(cell->connections.at("\\S"), timestep);
+ std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
+
+ std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
+ ez->assume(ez->vec_eq(ez->vec_ite(s.at(0), b, a), yy));
if (model_undef)
{
std::vector<int> undef_ab = ez->vec_or(unequal_ab, ez->vec_or(undef_a, undef_b));
std::vector<int> yX = ez->vec_ite(undef_s.at(0), undef_ab, ez->vec_ite(s.at(0), undef_b, undef_a));
ez->assume(ez->vec_eq(yX, undef_y));
+ undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type == "$pmux" || cell->type == "$safe_pmux")
{
- std::vector<int> a = importSigSpec(cell->connections.at("\\A"), timestep);
- std::vector<int> b = importSigSpec(cell->connections.at("\\B"), timestep);
- std::vector<int> s = importSigSpec(cell->connections.at("\\S"), timestep);
- std::vector<int> y = importSigSpec(cell->connections.at("\\Y"), timestep);
+ std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
+ std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
+ std::vector<int> s = importDefSigSpec(cell->connections.at("\\S"), timestep);
+ std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
std::vector<int> tmp = a;
for (size_t i = 0; i < s.size(); i++) {
std::vector<int> part_of_b(b.begin()+i*a.size(), b.begin()+(i+1)*a.size());
if (cell->type == "$pos" || cell->type == "$neg")
{
- std::vector<int> a = importSigSpec(cell->connections.at("\\A"), timestep);
- std::vector<int> y = importSigSpec(cell->connections.at("\\Y"), timestep);
+ std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
+ std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
extendSignalWidthUnary(a, y, cell);
+ std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
+
if (cell->type == "$pos") {
- ez->assume(ez->vec_eq(a, y));
+ ez->assume(ez->vec_eq(a, yy));
} else {
std::vector<int> zero(a.size(), ez->FALSE);
- ez->assume(ez->vec_eq(ez->vec_sub(zero, a), y));
+ ez->assume(ez->vec_eq(ez->vec_sub(zero, a), yy));
}
if (model_undef)
std::vector<int> undef_y_bits(undef_y.size(), undef_any_a);
ez->assume(ez->vec_eq(undef_y_bits, undef_y));
}
+
+ undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type == "$reduce_and" || cell->type == "$reduce_or" || cell->type == "$reduce_xor" ||
cell->type == "$reduce_xnor" || cell->type == "$reduce_bool" || cell->type == "$logic_not")
{
- std::vector<int> a = importSigSpec(cell->connections.at("\\A"), timestep);
- std::vector<int> y = importSigSpec(cell->connections.at("\\Y"), timestep);
+ std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
+ std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
+
+ std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
if (cell->type == "$reduce_and")
- ez->SET(ez->expression(ez->OpAnd, a), y.at(0));
+ ez->SET(ez->expression(ez->OpAnd, a), yy.at(0));
if (cell->type == "$reduce_or" || cell->type == "$reduce_bool")
- ez->SET(ez->expression(ez->OpOr, a), y.at(0));
+ ez->SET(ez->expression(ez->OpOr, a), yy.at(0));
if (cell->type == "$reduce_xor")
- ez->SET(ez->expression(ez->OpXor, a), y.at(0));
+ ez->SET(ez->expression(ez->OpXor, a), yy.at(0));
if (cell->type == "$reduce_xnor")
- ez->SET(ez->NOT(ez->expression(ez->OpXor, a)), y.at(0));
+ ez->SET(ez->NOT(ez->expression(ez->OpXor, a)), yy.at(0));
if (cell->type == "$logic_not")
- ez->SET(ez->NOT(ez->expression(ez->OpOr, a)), y.at(0));
+ ez->SET(ez->NOT(ez->expression(ez->OpOr, a)), yy.at(0));
for (size_t i = 1; i < y.size(); i++)
- ez->SET(ez->FALSE, y.at(i));
+ ez->SET(ez->FALSE, yy.at(i));
if (model_undef)
{
for (size_t i = 1; i < undef_y.size(); i++)
ez->SET(ez->FALSE, undef_y.at(i));
+
+ undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type == "$logic_and" || cell->type == "$logic_or")
{
- int a = ez->expression(ez->OpOr, importSigSpec(cell->connections.at("\\A"), timestep));
- int b = ez->expression(ez->OpOr, importSigSpec(cell->connections.at("\\B"), timestep));
- std::vector<int> y = importSigSpec(cell->connections.at("\\Y"), timestep);
+ std::vector<int> vec_a = importDefSigSpec(cell->connections.at("\\A"), timestep);
+ std::vector<int> vec_b = importDefSigSpec(cell->connections.at("\\B"), timestep);
+
+ int a = ez->expression(ez->OpOr, vec_a);
+ int b = ez->expression(ez->OpOr, vec_b);
+ std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
+
+ std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
if (cell->type == "$logic_and")
- ez->SET(ez->expression(ez->OpAnd, a, b), y.at(0));
+ ez->SET(ez->expression(ez->OpAnd, a, b), yy.at(0));
else
- ez->SET(ez->expression(ez->OpOr, a, b), y.at(0));
+ ez->SET(ez->expression(ez->OpOr, a, b), yy.at(0));
for (size_t i = 1; i < y.size(); i++)
- ez->SET(ez->FALSE, y.at(i));
+ ez->SET(ez->FALSE, yy.at(i));
if (model_undef)
{
- std::vector<int> vec_a = importSigSpec(cell->connections.at("\\A"), timestep);
- std::vector<int> vec_b = importSigSpec(cell->connections.at("\\B"), timestep);
std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
for (size_t i = 1; i < undef_y.size(); i++)
ez->SET(ez->FALSE, undef_y.at(i));
+
+ undefGating(y, yy, undef_y);
}
return true;
}
if (cell->type == "$lt" || cell->type == "$le" || cell->type == "$eq" || cell->type == "$ne" || cell->type == "$ge" || cell->type == "$gt")
{
bool is_signed = cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool();
- std::vector<int> a = importSigSpec(cell->connections.at("\\A"), timestep);
- std::vector<int> b = importSigSpec(cell->connections.at("\\B"), timestep);
- std::vector<int> y = importSigSpec(cell->connections.at("\\Y"), timestep);
+ std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
+ std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
+ std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
extendSignalWidth(a, b, cell);
+ std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
+
if (cell->type == "$lt")
- ez->SET(is_signed ? ez->vec_lt_signed(a, b) : ez->vec_lt_unsigned(a, b), y.at(0));
+ ez->SET(is_signed ? ez->vec_lt_signed(a, b) : ez->vec_lt_unsigned(a, b), yy.at(0));
if (cell->type == "$le")
- ez->SET(is_signed ? ez->vec_le_signed(a, b) : ez->vec_le_unsigned(a, b), y.at(0));
+ ez->SET(is_signed ? ez->vec_le_signed(a, b) : ez->vec_le_unsigned(a, b), yy.at(0));
if (cell->type == "$eq")
- ez->SET(ez->vec_eq(a, b), y.at(0));
+ ez->SET(ez->vec_eq(a, b), yy.at(0));
if (cell->type == "$ne")
- ez->SET(ez->vec_ne(a, b), y.at(0));
+ ez->SET(ez->vec_ne(a, b), yy.at(0));
if (cell->type == "$ge")
- ez->SET(is_signed ? ez->vec_ge_signed(a, b) : ez->vec_ge_unsigned(a, b), y.at(0));
+ ez->SET(is_signed ? ez->vec_ge_signed(a, b) : ez->vec_ge_unsigned(a, b), yy.at(0));
if (cell->type == "$gt")
- ez->SET(is_signed ? ez->vec_gt_signed(a, b) : ez->vec_gt_unsigned(a, b), y.at(0));
+ ez->SET(is_signed ? ez->vec_gt_signed(a, b) : ez->vec_gt_unsigned(a, b), yy.at(0));
for (size_t i = 1; i < y.size(); i++)
- ez->SET(ez->FALSE, y.at(i));
+ ez->SET(ez->FALSE, yy.at(i));
if (model_undef && (cell->type == "$eq" || cell->type == "$ne"))
{
for (size_t i = 1; i < undef_y.size(); i++)
ez->SET(ez->FALSE, undef_y.at(i));
ez->SET(undef_y_bit, undef_y.at(0));
+
+ undefGating(y, yy, undef_y);
}
else
+ {
+ if (model_undef) {
+ std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
+ undefGating(y, yy, undef_y);
+ }
log_assert(!model_undef || arith_undef_handled);
+ }
return true;
}
if (cell->type == "$shl" || cell->type == "$shr" || cell->type == "$sshl" || cell->type == "$sshr")
{
- std::vector<int> a = importSigSpec(cell->connections.at("\\A"), timestep);
- std::vector<int> b = importSigSpec(cell->connections.at("\\B"), timestep);
- std::vector<int> y = importSigSpec(cell->connections.at("\\Y"), timestep);
+ std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
+ std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
+ std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
char shift_left = cell->type == "$shl" || cell->type == "$sshl";
bool sign_extend = cell->type == "$sshr" && cell->parameters["\\A_SIGNED"].as_bool();
while (y.size() > a.size())
a.push_back(cell->parameters["\\A_SIGNED"].as_bool() ? a.back() : ez->FALSE);
+ std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
+
std::vector<int> tmp = a;
for (size_t i = 0; i < b.size(); i++)
{
}
tmp = ez->vec_ite(b.at(i), tmp_shifted, tmp);
}
- ez->assume(ez->vec_eq(tmp, y));
+ ez->assume(ez->vec_eq(tmp, yy));
if (model_undef)
{
int undef_any_b = ez->expression(ezSAT::OpOr, undef_b);
std::vector<int> undef_all_y_bits(undef_y.size(), undef_any_b);
ez->assume(ez->vec_eq(ez->vec_or(tmp, undef_all_y_bits), undef_y));
+ undefGating(y, yy, undef_y);
}
return true;
}
- if (cell->type == "$mul") {
- std::vector<int> a = importSigSpec(cell->connections.at("\\A"), timestep);
- std::vector<int> b = importSigSpec(cell->connections.at("\\B"), timestep);
- std::vector<int> y = importSigSpec(cell->connections.at("\\Y"), timestep);
+ if (cell->type == "$mul")
+ {
+ std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
+ std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
+ std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
extendSignalWidth(a, b, y, cell);
+
+ std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
+
std::vector<int> tmp(a.size(), ez->FALSE);
for (int i = 0; i < int(a.size()); i++)
{
shifted_a.at(j) = a.at(j-i);
tmp = ez->vec_ite(b.at(i), ez->vec_add(tmp, shifted_a), tmp);
}
- ez->assume(ez->vec_eq(tmp, y));
- log_assert(!model_undef || arith_undef_handled);
+ ez->assume(ez->vec_eq(tmp, yy));
+
+ if (model_undef) {
+ log_assert(arith_undef_handled);
+ std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
+ undefGating(y, yy, undef_y);
+ }
return true;
}
if (cell->type == "$div" || cell->type == "$mod")
{
- std::vector<int> a = importSigSpec(cell->connections.at("\\A"), timestep);
- std::vector<int> b = importSigSpec(cell->connections.at("\\B"), timestep);
- std::vector<int> y = importSigSpec(cell->connections.at("\\Y"), timestep);
+ std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
+ std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
+ std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
extendSignalWidth(a, b, y, cell);
+ std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
+
std::vector<int> a_u, b_u;
if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool()) {
a_u = ez->vec_ite(a.back(), ez->vec_neg(a), a);
chain_buf.erase(chain_buf.begin() + a_u.size(), chain_buf.end());
}
- std::vector<int> y_tmp = ignore_div_by_zero ? y : ez->vec_var(y.size());
+ std::vector<int> y_tmp = ignore_div_by_zero ? yy : ez->vec_var(y.size());
if (cell->type == "$div") {
if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool())
ez->assume(ez->vec_eq(y_tmp, ez->vec_ite(ez->XOR(a.back(), b.back()), ez->vec_neg(y_u), y_u)));
else
div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), ez->FALSE);
}
- ez->assume(ez->vec_eq(y, ez->vec_ite(ez->expression(ezSAT::OpOr, b), y_tmp, div_zero_result)));
+ ez->assume(ez->vec_eq(yy, ez->vec_ite(ez->expression(ezSAT::OpOr, b), y_tmp, div_zero_result)));
}
- log_assert(!model_undef || arith_undef_handled);
+ if (model_undef) {
+ log_assert(arith_undef_handled);
+ std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
+ undefGating(y, yy, undef_y);
+ }
return true;
}
if (timestep == 1) {
initial_state.add((*sigmap)(cell->connections.at("\\Q")));
} else {
- std::vector<int> d = importSigSpec(cell->connections.at("\\D"), timestep-1);
- std::vector<int> q = importSigSpec(cell->connections.at("\\Q"), timestep);
+ std::vector<int> d = importDefSigSpec(cell->connections.at("\\D"), timestep-1);
+ std::vector<int> q = importDefSigSpec(cell->connections.at("\\Q"), timestep);
ez->assume(ez->vec_eq(d, q));
}