brw_fs_sel_peephole.cpp \
brw_fs_vector_splitting.cpp \
brw_fs_visitor.cpp \
+ brw_gs.c \
brw_gs_state.c \
brw_gs_surface_state.c \
brw_interpolation_map.c \
brw_vec4_copy_propagation.cpp \
brw_vec4_cse.cpp \
brw_vec4_generator.cpp \
- brw_vec4_gs.c \
brw_vec4_gs_visitor.cpp \
brw_vec4_live_variables.cpp \
brw_vec4_reg_allocate.cpp \
--- /dev/null
+/*
+ * Copyright © 2013 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+/**
+ * \file brw_vec4_gs.c
+ *
+ * State atom for client-programmable geometry shaders, and support code.
+ */
+
+#include "brw_gs.h"
+#include "brw_context.h"
+#include "brw_vec4_gs_visitor.h"
+#include "brw_state.h"
+#include "brw_ff_gs.h"
+
+
+static bool
+do_gs_prog(struct brw_context *brw,
+ struct gl_shader_program *prog,
+ struct brw_geometry_program *gp,
+ struct brw_gs_prog_key *key)
+{
+ struct brw_stage_state *stage_state = &brw->gs.base;
+ struct brw_gs_compile c;
+ memset(&c, 0, sizeof(c));
+ c.key = *key;
+ c.gp = gp;
+
+ c.prog_data.include_primitive_id =
+ (gp->program.Base.InputsRead & VARYING_BIT_PRIMITIVE_ID) != 0;
+
+ c.prog_data.invocations = gp->program.Invocations;
+
+ /* Allocate the references to the uniforms that will end up in the
+ * prog_data associated with the compiled program, and which will be freed
+ * by the state cache.
+ *
+ * Note: param_count needs to be num_uniform_components * 4, since we add
+ * padding around uniform values below vec4 size, so the worst case is that
+ * every uniform is a float which gets padded to the size of a vec4.
+ */
+ struct gl_shader *gs = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
+ int param_count = gs->num_uniform_components * 4;
+
+ /* We also upload clip plane data as uniforms */
+ param_count += MAX_CLIP_PLANES * 4;
+
+ c.prog_data.base.base.param =
+ rzalloc_array(NULL, const gl_constant_value *, param_count);
+ c.prog_data.base.base.pull_param =
+ rzalloc_array(NULL, const gl_constant_value *, param_count);
+ /* Setting nr_params here NOT to the size of the param and pull_param
+ * arrays, but to the number of uniform components vec4_visitor
+ * needs. vec4_visitor::setup_uniforms() will set it back to a proper value.
+ */
+ c.prog_data.base.base.nr_params = ALIGN(param_count, 4) / 4 + gs->num_samplers;
+
+ if (brw->gen >= 7) {
+ if (gp->program.OutputType == GL_POINTS) {
+ /* When the output type is points, the geometry shader may output data
+ * to multiple streams, and EndPrimitive() has no effect. So we
+ * configure the hardware to interpret the control data as stream ID.
+ */
+ c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
+
+ /* We only have to emit control bits if we are using streams */
+ if (prog->Geom.UsesStreams)
+ c.control_data_bits_per_vertex = 2;
+ else
+ c.control_data_bits_per_vertex = 0;
+ } else {
+ /* When the output type is triangle_strip or line_strip, EndPrimitive()
+ * may be used to terminate the current strip and start a new one
+ * (similar to primitive restart), and outputting data to multiple
+ * streams is not supported. So we configure the hardware to interpret
+ * the control data as EndPrimitive information (a.k.a. "cut bits").
+ */
+ c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
+
+ /* We only need to output control data if the shader actually calls
+ * EndPrimitive().
+ */
+ c.control_data_bits_per_vertex = gp->program.UsesEndPrimitive ? 1 : 0;
+ }
+ } else {
+ /* There are no control data bits in gen6. */
+ c.control_data_bits_per_vertex = 0;
+
+ /* If it is using transform feedback, enable it */
+ if (prog->TransformFeedback.NumVarying)
+ c.prog_data.gen6_xfb_enabled = true;
+ else
+ c.prog_data.gen6_xfb_enabled = false;
+ }
+ c.control_data_header_size_bits =
+ gp->program.VerticesOut * c.control_data_bits_per_vertex;
+
+ /* 1 HWORD = 32 bytes = 256 bits */
+ c.prog_data.control_data_header_size_hwords =
+ ALIGN(c.control_data_header_size_bits, 256) / 256;
+
+ GLbitfield64 outputs_written = gp->program.Base.OutputsWritten;
+
+ /* In order for legacy clipping to work, we need to populate the clip
+ * distance varying slots whenever clipping is enabled, even if the vertex
+ * shader doesn't write to gl_ClipDistance.
+ */
+ if (c.key.base.userclip_active) {
+ outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
+ outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
+ }
+
+ brw_compute_vue_map(brw, &c.prog_data.base.vue_map, outputs_written);
+
+ /* Compute the output vertex size.
+ *
+ * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
+ * Size (p168):
+ *
+ * [0,62] indicating [1,63] 16B units
+ *
+ * Specifies the size of each vertex stored in the GS output entry
+ * (following any Control Header data) as a number of 128-bit units
+ * (minus one).
+ *
+ * Programming Restrictions: The vertex size must be programmed as a
+ * multiple of 32B units with the following exception: Rendering is
+ * disabled (as per SOL stage state) and the vertex size output by the
+ * GS thread is 16B.
+ *
+ * If rendering is enabled (as per SOL state) the vertex size must be
+ * programmed as a multiple of 32B units. In other words, the only time
+ * software can program a vertex size with an odd number of 16B units
+ * is when rendering is disabled.
+ *
+ * Note: B=bytes in the above text.
+ *
+ * It doesn't seem worth the extra trouble to optimize the case where the
+ * vertex size is 16B (especially since this would require special-casing
+ * the GEN assembly that writes to the URB). So we just set the vertex
+ * size to a multiple of 32B (2 vec4's) in all cases.
+ *
+ * The maximum output vertex size is 62*16 = 992 bytes (31 hwords). We
+ * budget that as follows:
+ *
+ * 512 bytes for varyings (a varying component is 4 bytes and
+ * gl_MaxGeometryOutputComponents = 128)
+ * 16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
+ * bytes)
+ * 16 bytes overhead for gl_Position (we allocate it a slot in the VUE
+ * even if it's not used)
+ * 32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
+ * whenever clip planes are enabled, even if the shader doesn't
+ * write to gl_ClipDistance)
+ * 16 bytes overhead since the VUE size must be a multiple of 32 bytes
+ * (see below)--this causes up to 1 VUE slot to be wasted
+ * 400 bytes available for varying packing overhead
+ *
+ * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
+ * per interpolation type, so this is plenty.
+ *
+ */
+ unsigned output_vertex_size_bytes = c.prog_data.base.vue_map.num_slots * 16;
+ assert(brw->gen == 6 ||
+ output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
+ c.prog_data.output_vertex_size_hwords =
+ ALIGN(output_vertex_size_bytes, 32) / 32;
+
+ /* Compute URB entry size. The maximum allowed URB entry size is 32k.
+ * That divides up as follows:
+ *
+ * 64 bytes for the control data header (cut indices or StreamID bits)
+ * 4096 bytes for varyings (a varying component is 4 bytes and
+ * gl_MaxGeometryTotalOutputComponents = 1024)
+ * 4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
+ * bytes/vertex and gl_MaxGeometryOutputVertices is 256)
+ * 4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
+ * even if it's not used)
+ * 8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
+ * whenever clip planes are enabled, even if the shader doesn't
+ * write to gl_ClipDistance)
+ * 4096 bytes overhead since the VUE size must be a multiple of 32
+ * bytes (see above)--this causes up to 1 VUE slot to be wasted
+ * 8128 bytes available for varying packing overhead
+ *
+ * Worst-case varying packing overhead is 3/4 of a varying slot per
+ * interpolation type, which works out to 3072 bytes, so this would allow
+ * us to accommodate 2 interpolation types without any danger of running
+ * out of URB space.
+ *
+ * In practice, the risk of running out of URB space is very small, since
+ * the above figures are all worst-case, and most of them scale with the
+ * number of output vertices. So we'll just calculate the amount of space
+ * we need, and if it's too large, fail to compile.
+ *
+ * The above is for gen7+ where we have a single URB entry that will hold
+ * all the output. In gen6, we will have to allocate URB entries for every
+ * vertex we emit, so our URB entries only need to be large enough to hold
+ * a single vertex. Also, gen6 does not have a control data header.
+ */
+ unsigned output_size_bytes;
+ if (brw->gen >= 7) {
+ output_size_bytes =
+ c.prog_data.output_vertex_size_hwords * 32 * gp->program.VerticesOut;
+ output_size_bytes += 32 * c.prog_data.control_data_header_size_hwords;
+ } else {
+ output_size_bytes = c.prog_data.output_vertex_size_hwords * 32;
+ }
+
+ /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
+ * which comes before the control header.
+ */
+ if (brw->gen >= 8)
+ output_size_bytes += 32;
+
+ assert(output_size_bytes >= 1);
+ int max_output_size_bytes = GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES;
+ if (brw->gen == 6)
+ max_output_size_bytes = GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES;
+ if (output_size_bytes > max_output_size_bytes)
+ return false;
+
+
+ /* URB entry sizes are stored as a multiple of 64 bytes in gen7+ and
+ * a multiple of 128 bytes in gen6.
+ */
+ if (brw->gen >= 7)
+ c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
+ else
+ c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;
+
+ c.prog_data.output_topology =
+ get_hw_prim_for_gl_prim(gp->program.OutputType);
+
+ brw_compute_vue_map(brw, &c.input_vue_map, c.key.input_varyings);
+
+ /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
+ * need to program a URB read length of ceiling(num_slots / 2).
+ */
+ c.prog_data.base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
+
+ void *mem_ctx = ralloc_context(NULL);
+ unsigned program_size;
+ const unsigned *program =
+ brw_gs_emit(brw, prog, &c, mem_ctx, &program_size);
+ if (program == NULL) {
+ ralloc_free(mem_ctx);
+ return false;
+ }
+
+ /* Scratch space is used for register spilling */
+ if (c.base.last_scratch) {
+ perf_debug("Geometry shader triggered register spilling. "
+ "Try reducing the number of live vec4 values to "
+ "improve performance.\n");
+
+ c.prog_data.base.base.total_scratch
+ = brw_get_scratch_size(c.base.last_scratch*REG_SIZE);
+
+ brw_get_scratch_bo(brw, &stage_state->scratch_bo,
+ c.prog_data.base.base.total_scratch *
+ brw->max_gs_threads);
+ }
+
+ brw_upload_cache(&brw->cache, BRW_GS_PROG,
+ &c.key, sizeof(c.key),
+ program, program_size,
+ &c.prog_data, sizeof(c.prog_data),
+ &stage_state->prog_offset, &brw->gs.prog_data);
+ ralloc_free(mem_ctx);
+
+ return true;
+}
+
+
+static void
+brw_upload_gs_prog(struct brw_context *brw)
+{
+ struct gl_context *ctx = &brw->ctx;
+ struct brw_stage_state *stage_state = &brw->gs.base;
+ struct brw_gs_prog_key key;
+ /* BRW_NEW_GEOMETRY_PROGRAM */
+ struct brw_geometry_program *gp =
+ (struct brw_geometry_program *) brw->geometry_program;
+
+ if (gp == NULL) {
+ /* No geometry shader. Vertex data just passes straight through. */
+ if (brw->state.dirty.brw & BRW_NEW_VUE_MAP_VS) {
+ brw->vue_map_geom_out = brw->vue_map_vs;
+ brw->state.dirty.brw |= BRW_NEW_VUE_MAP_GEOM_OUT;
+ }
+
+ if (brw->gen == 6 &&
+ (brw->state.dirty.brw & BRW_NEW_TRANSFORM_FEEDBACK)) {
+ gen6_brw_upload_ff_gs_prog(brw);
+ return;
+ }
+
+ /* Other state atoms had better not try to access prog_data, since
+ * there's no GS program.
+ */
+ brw->gs.prog_data = NULL;
+ brw->gs.base.prog_data = NULL;
+
+ return;
+ }
+
+ struct gl_program *prog = &gp->program.Base;
+
+ memset(&key, 0, sizeof(key));
+
+ key.base.program_string_id = gp->id;
+ brw_setup_vec4_key_clip_info(brw, &key.base,
+ gp->program.Base.UsesClipDistanceOut);
+
+ /* _NEW_LIGHT | _NEW_BUFFERS */
+ key.base.clamp_vertex_color = ctx->Light._ClampVertexColor;
+
+ /* _NEW_TEXTURE */
+ brw_populate_sampler_prog_key_data(ctx, prog, stage_state->sampler_count,
+ &key.base.tex);
+
+ /* BRW_NEW_VUE_MAP_VS */
+ key.input_varyings = brw->vue_map_vs.slots_valid;
+
+ if (!brw_search_cache(&brw->cache, BRW_GS_PROG,
+ &key, sizeof(key),
+ &stage_state->prog_offset, &brw->gs.prog_data)) {
+ bool success =
+ do_gs_prog(brw, ctx->_Shader->CurrentProgram[MESA_SHADER_GEOMETRY], gp,
+ &key);
+ assert(success);
+ (void)success;
+ }
+ brw->gs.base.prog_data = &brw->gs.prog_data->base.base;
+
+ if (memcmp(&brw->vs.prog_data->base.vue_map, &brw->vue_map_geom_out,
+ sizeof(brw->vue_map_geom_out)) != 0) {
+ brw->vue_map_geom_out = brw->gs.prog_data->base.vue_map;
+ brw->state.dirty.brw |= BRW_NEW_VUE_MAP_GEOM_OUT;
+ }
+}
+
+
+const struct brw_tracked_state brw_gs_prog = {
+ .dirty = {
+ .mesa = (_NEW_LIGHT | _NEW_BUFFERS | _NEW_TEXTURE),
+ .brw = (BRW_NEW_GEOMETRY_PROGRAM |
+ BRW_NEW_VUE_MAP_VS |
+ BRW_NEW_TRANSFORM_FEEDBACK),
+ },
+ .emit = brw_upload_gs_prog
+};
+
+
+bool
+brw_gs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
+{
+ struct brw_context *brw = brw_context(ctx);
+ struct brw_gs_prog_key key;
+ uint32_t old_prog_offset = brw->gs.base.prog_offset;
+ struct brw_gs_prog_data *old_prog_data = brw->gs.prog_data;
+ bool success;
+
+ if (!prog->_LinkedShaders[MESA_SHADER_GEOMETRY])
+ return true;
+
+ struct gl_geometry_program *gp = (struct gl_geometry_program *)
+ prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->Program;
+ struct brw_geometry_program *bgp = brw_geometry_program(gp);
+
+ memset(&key, 0, sizeof(key));
+
+ brw_vec4_setup_prog_key_for_precompile(ctx, &key.base, bgp->id, &gp->Base);
+
+ /* Assume that the set of varyings coming in from the vertex shader exactly
+ * matches what the geometry shader requires.
+ */
+ key.input_varyings = gp->Base.InputsRead;
+
+ success = do_gs_prog(brw, prog, bgp, &key);
+
+ brw->gs.base.prog_offset = old_prog_offset;
+ brw->gs.prog_data = old_prog_data;
+
+ return success;
+}
+
+
+bool
+brw_gs_prog_data_compare(const void *in_a, const void *in_b)
+{
+ const struct brw_gs_prog_data *a = in_a;
+ const struct brw_gs_prog_data *b = in_b;
+
+ /* Compare the base structure. */
+ if (!brw_stage_prog_data_compare(&a->base.base, &b->base.base))
+ return false;
+
+ /* Compare the rest of the struct. */
+ const unsigned offset = sizeof(struct brw_stage_prog_data);
+ if (memcmp(((char *) a) + offset, ((char *) b) + offset,
+ sizeof(struct brw_gs_prog_data) - offset)) {
+ return false;
+ }
+
+ return true;
+}
--- /dev/null
+/*
+ * Copyright © 2013 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+#ifndef BRW_VEC4_GS_H
+#define BRW_VEC4_GS_H
+
+#include <stdbool.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct gl_context;
+struct gl_shader_program;
+
+bool brw_gs_precompile(struct gl_context *ctx, struct gl_shader_program *prog);
+bool brw_gs_prog_data_compare(const void *a, const void *b);
+
+#ifdef __cplusplus
+} /* extern "C" */
+#endif
+
+#endif /* BRW_VEC4_GS_H */
#include "brw_context.h"
}
#include "brw_vs.h"
-#include "brw_vec4_gs.h"
+#include "brw_gs.h"
#include "brw_fs.h"
#include "brw_cfg.h"
#include "glsl/ir_optimization.h"
#include "brw_state.h"
#include "brw_vs.h"
#include "brw_wm.h"
-#include "brw_vs.h"
-#include "brw_vec4_gs.h"
+#include "brw_gs.h"
#define FILE_DEBUG_FLAG DEBUG_STATE
+++ /dev/null
-/*
- * Copyright © 2013 Intel Corporation
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
-
-/**
- * \file brw_vec4_gs.c
- *
- * State atom for client-programmable geometry shaders, and support code.
- */
-
-#include "brw_vec4_gs.h"
-#include "brw_context.h"
-#include "brw_vec4_gs_visitor.h"
-#include "brw_state.h"
-#include "brw_ff_gs.h"
-
-
-static bool
-do_gs_prog(struct brw_context *brw,
- struct gl_shader_program *prog,
- struct brw_geometry_program *gp,
- struct brw_gs_prog_key *key)
-{
- struct brw_stage_state *stage_state = &brw->gs.base;
- struct brw_gs_compile c;
- memset(&c, 0, sizeof(c));
- c.key = *key;
- c.gp = gp;
-
- c.prog_data.include_primitive_id =
- (gp->program.Base.InputsRead & VARYING_BIT_PRIMITIVE_ID) != 0;
-
- c.prog_data.invocations = gp->program.Invocations;
-
- /* Allocate the references to the uniforms that will end up in the
- * prog_data associated with the compiled program, and which will be freed
- * by the state cache.
- *
- * Note: param_count needs to be num_uniform_components * 4, since we add
- * padding around uniform values below vec4 size, so the worst case is that
- * every uniform is a float which gets padded to the size of a vec4.
- */
- struct gl_shader *gs = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
- int param_count = gs->num_uniform_components * 4;
-
- /* We also upload clip plane data as uniforms */
- param_count += MAX_CLIP_PLANES * 4;
-
- c.prog_data.base.base.param =
- rzalloc_array(NULL, const gl_constant_value *, param_count);
- c.prog_data.base.base.pull_param =
- rzalloc_array(NULL, const gl_constant_value *, param_count);
- /* Setting nr_params here NOT to the size of the param and pull_param
- * arrays, but to the number of uniform components vec4_visitor
- * needs. vec4_visitor::setup_uniforms() will set it back to a proper value.
- */
- c.prog_data.base.base.nr_params = ALIGN(param_count, 4) / 4 + gs->num_samplers;
-
- if (brw->gen >= 7) {
- if (gp->program.OutputType == GL_POINTS) {
- /* When the output type is points, the geometry shader may output data
- * to multiple streams, and EndPrimitive() has no effect. So we
- * configure the hardware to interpret the control data as stream ID.
- */
- c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
-
- /* We only have to emit control bits if we are using streams */
- if (prog->Geom.UsesStreams)
- c.control_data_bits_per_vertex = 2;
- else
- c.control_data_bits_per_vertex = 0;
- } else {
- /* When the output type is triangle_strip or line_strip, EndPrimitive()
- * may be used to terminate the current strip and start a new one
- * (similar to primitive restart), and outputting data to multiple
- * streams is not supported. So we configure the hardware to interpret
- * the control data as EndPrimitive information (a.k.a. "cut bits").
- */
- c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
-
- /* We only need to output control data if the shader actually calls
- * EndPrimitive().
- */
- c.control_data_bits_per_vertex = gp->program.UsesEndPrimitive ? 1 : 0;
- }
- } else {
- /* There are no control data bits in gen6. */
- c.control_data_bits_per_vertex = 0;
-
- /* If it is using transform feedback, enable it */
- if (prog->TransformFeedback.NumVarying)
- c.prog_data.gen6_xfb_enabled = true;
- else
- c.prog_data.gen6_xfb_enabled = false;
- }
- c.control_data_header_size_bits =
- gp->program.VerticesOut * c.control_data_bits_per_vertex;
-
- /* 1 HWORD = 32 bytes = 256 bits */
- c.prog_data.control_data_header_size_hwords =
- ALIGN(c.control_data_header_size_bits, 256) / 256;
-
- GLbitfield64 outputs_written = gp->program.Base.OutputsWritten;
-
- /* In order for legacy clipping to work, we need to populate the clip
- * distance varying slots whenever clipping is enabled, even if the vertex
- * shader doesn't write to gl_ClipDistance.
- */
- if (c.key.base.userclip_active) {
- outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
- outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
- }
-
- brw_compute_vue_map(brw, &c.prog_data.base.vue_map, outputs_written);
-
- /* Compute the output vertex size.
- *
- * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
- * Size (p168):
- *
- * [0,62] indicating [1,63] 16B units
- *
- * Specifies the size of each vertex stored in the GS output entry
- * (following any Control Header data) as a number of 128-bit units
- * (minus one).
- *
- * Programming Restrictions: The vertex size must be programmed as a
- * multiple of 32B units with the following exception: Rendering is
- * disabled (as per SOL stage state) and the vertex size output by the
- * GS thread is 16B.
- *
- * If rendering is enabled (as per SOL state) the vertex size must be
- * programmed as a multiple of 32B units. In other words, the only time
- * software can program a vertex size with an odd number of 16B units
- * is when rendering is disabled.
- *
- * Note: B=bytes in the above text.
- *
- * It doesn't seem worth the extra trouble to optimize the case where the
- * vertex size is 16B (especially since this would require special-casing
- * the GEN assembly that writes to the URB). So we just set the vertex
- * size to a multiple of 32B (2 vec4's) in all cases.
- *
- * The maximum output vertex size is 62*16 = 992 bytes (31 hwords). We
- * budget that as follows:
- *
- * 512 bytes for varyings (a varying component is 4 bytes and
- * gl_MaxGeometryOutputComponents = 128)
- * 16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
- * bytes)
- * 16 bytes overhead for gl_Position (we allocate it a slot in the VUE
- * even if it's not used)
- * 32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
- * whenever clip planes are enabled, even if the shader doesn't
- * write to gl_ClipDistance)
- * 16 bytes overhead since the VUE size must be a multiple of 32 bytes
- * (see below)--this causes up to 1 VUE slot to be wasted
- * 400 bytes available for varying packing overhead
- *
- * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
- * per interpolation type, so this is plenty.
- *
- */
- unsigned output_vertex_size_bytes = c.prog_data.base.vue_map.num_slots * 16;
- assert(brw->gen == 6 ||
- output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
- c.prog_data.output_vertex_size_hwords =
- ALIGN(output_vertex_size_bytes, 32) / 32;
-
- /* Compute URB entry size. The maximum allowed URB entry size is 32k.
- * That divides up as follows:
- *
- * 64 bytes for the control data header (cut indices or StreamID bits)
- * 4096 bytes for varyings (a varying component is 4 bytes and
- * gl_MaxGeometryTotalOutputComponents = 1024)
- * 4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
- * bytes/vertex and gl_MaxGeometryOutputVertices is 256)
- * 4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
- * even if it's not used)
- * 8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
- * whenever clip planes are enabled, even if the shader doesn't
- * write to gl_ClipDistance)
- * 4096 bytes overhead since the VUE size must be a multiple of 32
- * bytes (see above)--this causes up to 1 VUE slot to be wasted
- * 8128 bytes available for varying packing overhead
- *
- * Worst-case varying packing overhead is 3/4 of a varying slot per
- * interpolation type, which works out to 3072 bytes, so this would allow
- * us to accommodate 2 interpolation types without any danger of running
- * out of URB space.
- *
- * In practice, the risk of running out of URB space is very small, since
- * the above figures are all worst-case, and most of them scale with the
- * number of output vertices. So we'll just calculate the amount of space
- * we need, and if it's too large, fail to compile.
- *
- * The above is for gen7+ where we have a single URB entry that will hold
- * all the output. In gen6, we will have to allocate URB entries for every
- * vertex we emit, so our URB entries only need to be large enough to hold
- * a single vertex. Also, gen6 does not have a control data header.
- */
- unsigned output_size_bytes;
- if (brw->gen >= 7) {
- output_size_bytes =
- c.prog_data.output_vertex_size_hwords * 32 * gp->program.VerticesOut;
- output_size_bytes += 32 * c.prog_data.control_data_header_size_hwords;
- } else {
- output_size_bytes = c.prog_data.output_vertex_size_hwords * 32;
- }
-
- /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
- * which comes before the control header.
- */
- if (brw->gen >= 8)
- output_size_bytes += 32;
-
- assert(output_size_bytes >= 1);
- int max_output_size_bytes = GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES;
- if (brw->gen == 6)
- max_output_size_bytes = GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES;
- if (output_size_bytes > max_output_size_bytes)
- return false;
-
-
- /* URB entry sizes are stored as a multiple of 64 bytes in gen7+ and
- * a multiple of 128 bytes in gen6.
- */
- if (brw->gen >= 7)
- c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
- else
- c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;
-
- c.prog_data.output_topology =
- get_hw_prim_for_gl_prim(gp->program.OutputType);
-
- brw_compute_vue_map(brw, &c.input_vue_map, c.key.input_varyings);
-
- /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
- * need to program a URB read length of ceiling(num_slots / 2).
- */
- c.prog_data.base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
-
- void *mem_ctx = ralloc_context(NULL);
- unsigned program_size;
- const unsigned *program =
- brw_gs_emit(brw, prog, &c, mem_ctx, &program_size);
- if (program == NULL) {
- ralloc_free(mem_ctx);
- return false;
- }
-
- /* Scratch space is used for register spilling */
- if (c.base.last_scratch) {
- perf_debug("Geometry shader triggered register spilling. "
- "Try reducing the number of live vec4 values to "
- "improve performance.\n");
-
- c.prog_data.base.base.total_scratch
- = brw_get_scratch_size(c.base.last_scratch*REG_SIZE);
-
- brw_get_scratch_bo(brw, &stage_state->scratch_bo,
- c.prog_data.base.base.total_scratch *
- brw->max_gs_threads);
- }
-
- brw_upload_cache(&brw->cache, BRW_GS_PROG,
- &c.key, sizeof(c.key),
- program, program_size,
- &c.prog_data, sizeof(c.prog_data),
- &stage_state->prog_offset, &brw->gs.prog_data);
- ralloc_free(mem_ctx);
-
- return true;
-}
-
-
-static void
-brw_upload_gs_prog(struct brw_context *brw)
-{
- struct gl_context *ctx = &brw->ctx;
- struct brw_stage_state *stage_state = &brw->gs.base;
- struct brw_gs_prog_key key;
- /* BRW_NEW_GEOMETRY_PROGRAM */
- struct brw_geometry_program *gp =
- (struct brw_geometry_program *) brw->geometry_program;
-
- if (gp == NULL) {
- /* No geometry shader. Vertex data just passes straight through. */
- if (brw->state.dirty.brw & BRW_NEW_VUE_MAP_VS) {
- brw->vue_map_geom_out = brw->vue_map_vs;
- brw->state.dirty.brw |= BRW_NEW_VUE_MAP_GEOM_OUT;
- }
-
- if (brw->gen == 6 &&
- (brw->state.dirty.brw & BRW_NEW_TRANSFORM_FEEDBACK)) {
- gen6_brw_upload_ff_gs_prog(brw);
- return;
- }
-
- /* Other state atoms had better not try to access prog_data, since
- * there's no GS program.
- */
- brw->gs.prog_data = NULL;
- brw->gs.base.prog_data = NULL;
-
- return;
- }
-
- struct gl_program *prog = &gp->program.Base;
-
- memset(&key, 0, sizeof(key));
-
- key.base.program_string_id = gp->id;
- brw_setup_vec4_key_clip_info(brw, &key.base,
- gp->program.Base.UsesClipDistanceOut);
-
- /* _NEW_LIGHT | _NEW_BUFFERS */
- key.base.clamp_vertex_color = ctx->Light._ClampVertexColor;
-
- /* _NEW_TEXTURE */
- brw_populate_sampler_prog_key_data(ctx, prog, stage_state->sampler_count,
- &key.base.tex);
-
- /* BRW_NEW_VUE_MAP_VS */
- key.input_varyings = brw->vue_map_vs.slots_valid;
-
- if (!brw_search_cache(&brw->cache, BRW_GS_PROG,
- &key, sizeof(key),
- &stage_state->prog_offset, &brw->gs.prog_data)) {
- bool success =
- do_gs_prog(brw, ctx->_Shader->CurrentProgram[MESA_SHADER_GEOMETRY], gp,
- &key);
- assert(success);
- (void)success;
- }
- brw->gs.base.prog_data = &brw->gs.prog_data->base.base;
-
- if (memcmp(&brw->vs.prog_data->base.vue_map, &brw->vue_map_geom_out,
- sizeof(brw->vue_map_geom_out)) != 0) {
- brw->vue_map_geom_out = brw->gs.prog_data->base.vue_map;
- brw->state.dirty.brw |= BRW_NEW_VUE_MAP_GEOM_OUT;
- }
-}
-
-
-const struct brw_tracked_state brw_gs_prog = {
- .dirty = {
- .mesa = (_NEW_LIGHT | _NEW_BUFFERS | _NEW_TEXTURE),
- .brw = (BRW_NEW_GEOMETRY_PROGRAM |
- BRW_NEW_VUE_MAP_VS |
- BRW_NEW_TRANSFORM_FEEDBACK),
- },
- .emit = brw_upload_gs_prog
-};
-
-
-bool
-brw_gs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
-{
- struct brw_context *brw = brw_context(ctx);
- struct brw_gs_prog_key key;
- uint32_t old_prog_offset = brw->gs.base.prog_offset;
- struct brw_gs_prog_data *old_prog_data = brw->gs.prog_data;
- bool success;
-
- if (!prog->_LinkedShaders[MESA_SHADER_GEOMETRY])
- return true;
-
- struct gl_geometry_program *gp = (struct gl_geometry_program *)
- prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->Program;
- struct brw_geometry_program *bgp = brw_geometry_program(gp);
-
- memset(&key, 0, sizeof(key));
-
- brw_vec4_setup_prog_key_for_precompile(ctx, &key.base, bgp->id, &gp->Base);
-
- /* Assume that the set of varyings coming in from the vertex shader exactly
- * matches what the geometry shader requires.
- */
- key.input_varyings = gp->Base.InputsRead;
-
- success = do_gs_prog(brw, prog, bgp, &key);
-
- brw->gs.base.prog_offset = old_prog_offset;
- brw->gs.prog_data = old_prog_data;
-
- return success;
-}
-
-
-bool
-brw_gs_prog_data_compare(const void *in_a, const void *in_b)
-{
- const struct brw_gs_prog_data *a = in_a;
- const struct brw_gs_prog_data *b = in_b;
-
- /* Compare the base structure. */
- if (!brw_stage_prog_data_compare(&a->base.base, &b->base.base))
- return false;
-
- /* Compare the rest of the struct. */
- const unsigned offset = sizeof(struct brw_stage_prog_data);
- if (memcmp(((char *) a) + offset, ((char *) b) + offset,
- sizeof(struct brw_gs_prog_data) - offset)) {
- return false;
- }
-
- return true;
-}
+++ /dev/null
-/*
- * Copyright © 2013 Intel Corporation
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
-
-#ifndef BRW_VEC4_GS_H
-#define BRW_VEC4_GS_H
-
-#include <stdbool.h>
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-struct gl_context;
-struct gl_shader_program;
-
-bool brw_gs_precompile(struct gl_context *ctx, struct gl_shader_program *prog);
-bool brw_gs_prog_data_compare(const void *a, const void *b);
-
-#ifdef __cplusplus
-} /* extern "C" */
-#endif
-
-#endif /* BRW_VEC4_GS_H */