soc/cores: rename spiopi to spi_opi
authorFlorent Kermarrec <florent@enjoy-digital.fr>
Thu, 6 Feb 2020 16:08:00 +0000 (17:08 +0100)
committerFlorent Kermarrec <florent@enjoy-digital.fr>
Thu, 6 Feb 2020 16:08:00 +0000 (17:08 +0100)
litex/soc/cores/spi_opi.py [new file with mode: 0644]
litex/soc/cores/spiopi.py [deleted file]

diff --git a/litex/soc/cores/spi_opi.py b/litex/soc/cores/spi_opi.py
new file mode 100644 (file)
index 0000000..c9e11d0
--- /dev/null
@@ -0,0 +1,1063 @@
+from litex.soc.interconnect.csr_eventmanager import *
+from litex.soc.interconnect import wishbone
+from litex.soc.integration.doc import AutoDoc, ModuleDoc
+from migen.genlib.cdc import MultiReg
+
+class SpiOpi(Module, AutoCSR, AutoDoc):
+    def __init__(self, pads, dq_delay_taps=31, sclk_name="SCLK_ODDR",
+                 iddr_name="SPI_IDDR", miso_name="MISO_FDRE", sim=False, spiread=False, prefetch_lines=1):
+        self.intro = ModuleDoc("""
+        Intro
+        ********
+
+        SpiOpi implements a dual-mode SPI or OPI interface. OPI is an octal (8-bit) wide
+        variant of SPI, which is unique to Macronix parts. It is concurrently interoperable
+        with SPI. The chip supports "DTR mode" (double transfer rate, e.g. DDR) where data
+        is transferred on each edge of the clock, and there is a source-synchronous DQS
+        associated with the input data.
+
+        The chip by default boots into SPI-only mode (unless NV bits are burned otherwise)
+        so to enable OPI, a config register needs to be written with SPI mode. Note that once
+        the config register is written, the only way to return to SPI mode is to change
+        it with OPI writes, or to issue a hardware reset. This has major implications for
+        reconfiguring the FPGA: a simple JTAG command to reload from SPI will not yank PROG_B low,
+        and so the SPI ROM will be in DOPI, and SPI loading will fail. Thus, system architects
+        must take into consideration a hard reset for the ROM whenever a bitstream reload
+        is demanded of the FPGA.
+
+        The SpiOpi architecture is split into two levels: a command manager, and a
+        cycle manager. The command manager is responsible for taking the current wishbone
+        request and CSR state and unpacking these into cycle-by-cycle requests. The cycle
+        manager is responsible for coordinating the cycle-by-cycle requests.
+
+        In SPI mode, this means marshalling byte-wide requests into a series of 8 serial cyles.
+
+        In OPI [DOPI] mode, this means marshalling 16-bit wide requests into a pair of back-to-back DDR
+        cycles. Note that because the cycles are DDR, this means one 16-bit wide request must be
+        issued every cycle to keep up with the interface.
+
+        For the output of data to ROM, expects a clock called "spinor_delayed" which is a delayed
+        version of "sys". The delay is necessary to get the correct phase relationship between
+        the SIO and SCLK in DTR/DDR mode, and it also has to compensate for the special-case
+        difference in the CCLK pad vs other I/O.
+
+        For the input, DQS signal is independently delayed relative to the DQ signals using
+        an IDELAYE2 block. At a REFCLK frequency of 200 MHz, each delay tap adds 78ps, so up
+        to a 2.418ns delay is possible between DQS and DQ. The goal is to delay DQS relative
+        to DQ, because the SPI chip launches both with concurrent rising edges (to within 0.6ns),
+        but the IDDR register needs the rising edge of DQS to be centered inside the DQ eye.
+
+        In DOPI mode, there is a prefetch buffer. It will read `prefetch_lines` cache lines of
+        data into the prefetch buffer. A cache line is 256 bits (or 8x32-bit words). The maximum
+        value is 63 lines (one line is necessary for synchronization margin). The downside of
+        setting prefetch_lines high is that the prefetcher is running constantly and burning
+        power, while throwing away most data. In practice, the CPU will typically consume data
+        at only slightly faster than the rate of read-out from DOPI-mode ROM, and once data
+        is consumed the prefetch resumes. Thus, prefetch_lines is probably optimally around
+        1-3 lines read-ahead of the CPU. Any higher than 3 lines probably just wastes power.
+        In short simulations, 1 line of prefetch seems to be enough to keep the prefetcher
+        ahead of the CPU even when it's simply running straight-line code.
+
+        Note the "sim" parameter exists because there seems to be a bug in xvlog that doesn't
+        correctly simulate the IDELAY machines. Setting "sim" to True removes the IDELAY machines
+        and passes the data through directly, but in real hardware the IDELAY machines are
+        necessary to meet timing between DQS and DQ.
+
+        dq_delay_taps probably doesn't need to be adjusted; it can be tweaked for timing
+        closure. The delays can also be adjusted at runtime.
+        """)
+        if prefetch_lines > 63:
+            prefetch_lines = 63
+
+        self.spi_mode = Signal(reset=1) # when reset is asserted, force into spi mode
+        cs_n = Signal(reset=1) # make sure CS is sane on reset, too
+
+        self.config = CSRStorage(fields=[
+            CSRField("dummy", size=5, description="Number of dummy cycles", reset=10),
+        ])
+
+        delay_type="VAR_LOAD"
+
+        # DQS input conditioning -----------------------------------------------------------------
+        dqs_iobuf = Signal()
+        self.clock_domains.cd_dqs = ClockDomain(reset_less=True)
+        self.comb += self.cd_dqs.clk.eq(dqs_iobuf)
+        self.specials += [
+            Instance("BUFR", i_I=pads.dqs, o_O=dqs_iobuf),
+        ]
+
+
+        # DQ connections -------------------------------------------------------------------------
+        # PHY API
+        self.do = Signal(16) # OPI data to SPI
+        self.di = Signal(16) # OPI data from SPI
+        self.tx = Signal() # when asserted OPI is transmitting data to SPI, otherwise, receiving
+
+        self.mosi = Signal() # SPI data to SPI
+        self.miso = Signal() # SPI data from SPI
+
+        # Delay programming API
+        self.delay_config = CSRStorage(fields=[
+            CSRField("d", size=5, description="Delay amount; each increment is 78ps", reset=31),
+            CSRField("load", size=1, description="Force delay taps to delay_d"),
+        ])
+        self.delay_status = CSRStatus(fields=[
+            CSRField("q", size=5, description="Readback of current delay amount, useful if inc/ce is used to set"),
+        ])
+        self.delay_update = Signal()
+        self.hw_delay_load = Signal()
+        self.sync += self.delay_update.eq(self.hw_delay_load | self.delay_config.fields.load)
+
+        # Break system API into rising/falling edge samples
+        do_rise = Signal(8) # data output presented on the rising edge
+        do_fall = Signal(8) # data output presented on the falling edge
+        self.comb += [do_rise.eq(self.do[8:]), do_fall.eq(self.do[:8])]
+
+        di_rise = Signal(8)
+        di_fall = Signal(8)
+        self.comb += self.di.eq(Cat(di_fall, di_rise))
+
+        # OPI DDR registers
+        dq = TSTriple(7) # dq[0] is special because it is also MOSI
+        dq_delayed = Signal(8)
+        self.specials += dq.get_tristate(pads.dq[1:])
+        for i in range(1, 8):
+            self.specials += Instance("ODDR",
+                p_DDR_CLK_EDGE="SAME_EDGE",
+                i_C=ClockSignal(), i_R=ResetSignal(), i_S=0, i_CE=1,
+                i_D1=do_rise[i], i_D2=do_fall[i], o_Q=dq.o[i-1],
+            )
+            if sim == False:
+                if i == 1: # only wire up o_CNTVALUEOUT for one instance
+                    self.specials += Instance("IDELAYE2",
+                         p_DELAY_SRC="IDATAIN", p_SIGNAL_PATTERN="DATA",
+                         p_CINVCTRL_SEL="FALSE", p_HIGH_PERFORMANCE_MODE="FALSE", p_REFCLK_FREQUENCY=200.0,
+                         p_PIPE_SEL="FALSE", p_IDELAY_VALUE=dq_delay_taps, p_IDELAY_TYPE=delay_type,
+
+                         i_C=ClockSignal(), i_CINVCTRL=0, i_REGRST=0, i_LDPIPEEN=0, i_INC=0, i_CE=0,
+                         i_LD=self.delay_update,
+                         i_CNTVALUEIN=self.delay_config.fields.d, o_CNTVALUEOUT=self.delay_status.fields.q,
+                         i_IDATAIN=dq.i[i-1], o_DATAOUT=dq_delayed[i],
+                    ),
+                else: # don't wire up o_CNTVALUEOUT for others
+                    self.specials += Instance("IDELAYE2",
+                          p_DELAY_SRC="IDATAIN", p_SIGNAL_PATTERN="DATA",
+                          p_CINVCTRL_SEL="FALSE", p_HIGH_PERFORMANCE_MODE="FALSE", p_REFCLK_FREQUENCY=200.0,
+                          p_PIPE_SEL="FALSE", p_IDELAY_VALUE=dq_delay_taps, p_IDELAY_TYPE=delay_type,
+
+                          i_C=ClockSignal(), i_CINVCTRL=0, i_REGRST=0, i_LDPIPEEN=0, i_INC=0, i_CE=0,
+                          i_LD=self.delay_update,
+                          i_CNTVALUEIN=self.delay_config.fields.d,
+                          i_IDATAIN=dq.i[i-1], o_DATAOUT=dq_delayed[i],
+                  ),
+            else:
+                self.comb += dq_delayed[i].eq(dq.i[i-1])
+            self.specials += Instance("IDDR", name="{}{}".format(iddr_name, str(i)),
+                p_DDR_CLK_EDGE="SAME_EDGE_PIPELINED",
+                i_C=dqs_iobuf, i_R=ResetSignal(), i_S=0, i_CE=1,
+                i_D=dq_delayed[i], o_Q1=di_rise[i], o_Q2=di_fall[i],
+            )
+        # SPI SDR register
+        self.specials += [
+            Instance("FDRE", name="{}".format(miso_name), i_C=~ClockSignal("spinor"), i_CE=1, i_R=0, o_Q=self.miso,
+                 i_D=dq_delayed[1],
+            )
+        ]
+
+        # bit 0 (MOSI) is special-cased to handle SPI mode
+        dq_mosi = TSTriple(1) # this has similar structure but an independent "oe" signal
+        self.specials += dq_mosi.get_tristate(pads.dq[0])
+        do_mux_rise = Signal() # mux signal for mosi/dq select of bit 0
+        do_mux_fall = Signal()
+        self.specials += [
+            Instance("ODDR",
+              p_DDR_CLK_EDGE="SAME_EDGE",
+              i_C=ClockSignal(), i_R=ResetSignal(), i_S=0, i_CE=1,
+              i_D1=do_mux_rise, i_D2=do_mux_fall, o_Q=dq_mosi.o,
+            ),
+            Instance("IDDR",
+              p_DDR_CLK_EDGE="SAME_EDGE_PIPELINED",
+              i_C=dqs_iobuf, i_R=ResetSignal(), i_S=0, i_CE=1,
+              o_Q1=di_rise[0], o_Q2=di_fall[0], i_D=dq_delayed[0],
+            ),
+        ]
+        if sim == False:
+            self.specials += [
+            Instance("IDELAYE2",
+                 p_DELAY_SRC="IDATAIN", p_SIGNAL_PATTERN="DATA",
+                 p_CINVCTRL_SEL="FALSE", p_HIGH_PERFORMANCE_MODE="FALSE", p_REFCLK_FREQUENCY=200.0,
+                 p_PIPE_SEL="FALSE", p_IDELAY_VALUE=dq_delay_taps, p_IDELAY_TYPE=delay_type,
+
+                 i_C=ClockSignal(), i_CINVCTRL=0, i_REGRST=0, i_LDPIPEEN=0, i_INC=0, i_CE=0,
+                 i_LD=self.delay_update,
+                 i_CNTVALUEIN=self.delay_config.fields.d,
+                 i_IDATAIN=dq_mosi.i, o_DATAOUT=dq_delayed[0],
+                 ),
+            ]
+        else:
+            self.comb += dq_delayed[0].eq(dq_mosi.i)
+
+        # wire up SCLK interface
+        clk_en = Signal()
+        self.specials += [
+            # de-activate the CCLK interface, parallel it with a GPIO
+            Instance("STARTUPE2",
+                 i_CLK=0, i_GSR=0, i_GTS=0, i_KEYCLEARB=0, i_PACK=0, i_USRDONEO=1, i_USRDONETS=1,
+                 i_USRCCLKO=0, i_USRCCLKTS=1,  # force to tristate
+                 ),
+            Instance("ODDR", name=sclk_name, # need to name this so we can constrain it properly
+                 p_DDR_CLK_EDGE="SAME_EDGE",
+                 i_C=ClockSignal("spinor"), i_R=ResetSignal("spinor"), i_S=0, i_CE=1,
+                 i_D1=clk_en, i_D2=0, o_Q=pads.sclk,
+                 )
+        ]
+
+        # wire up CS_N
+        spi_cs_n = Signal()
+        opi_cs_n = Signal()
+        self.comb += cs_n.eq( (self.spi_mode & spi_cs_n) | (~self.spi_mode & opi_cs_n) )
+        self.specials += [
+            Instance("ODDR",
+              p_DDR_CLK_EDGE="SAME_EDGE",
+              i_C=ClockSignal(), i_R=0, i_S=ResetSignal(), i_CE=1,
+              i_D1=cs_n, i_D2=cs_n, o_Q=pads.cs_n,
+            ),
+        ]
+
+        self.architecture = ModuleDoc("""
+        Architecture
+        **************
+
+        The machine is split into two separate pieces, one to handle SPI, and one to handle OPI.
+
+        SPI
+        =====
+        The SPI machine architecture is split into two levels: MAC and PHY.
+
+        The MAC layer is responsible for:
+        - receiving requests via CSR register to perform config/status/special command sequences,
+        and dispatching these to the SPI PHY
+        - translating wishbone bus requests into command sequences, and routing them to either OPI
+        or SPI PHY.
+        - managing the chip select to the chip, and ensuring that one dummy cycle is inserted after
+        chip select is asserted, or before it is de-asserted; and that the chip select "high" times
+        are adequate (1 cycle between reads, 4 cycles for all other operations)
+
+        On boot, the interface runs in SPI; once the wakeup sequence is executed, the chip permanently
+        switches to OPI mode unless the CR2 registers are written to fall back, or the
+        reset to the chip is asserted.
+
+        The PHY layers are responsible for the following tasks:
+        - Serializing and deserializing data, standardized on 8 bits for SPI and 16 bits for OPI
+        - counting dummy cycles
+        - managing the clock enable
+
+        PHY cycles are initiated with a "req" signal, which is only sampled for
+        one cycle and then ignored until the PHY issues an "ack" that the current cycle is complete.
+        Thus holding "req" high can allow the PHY to back-to-back issue cycles without pause.
+
+        OPI
+        =====
+        The OPI machine is split into three parts: a command controller, a Tx PHY, and an Rx PHY.
+
+        The Tx PHY is configured with a "dummy cycle" count register, as there is a variable length
+        delay for dummy cycles in OPI.
+
+        In OPI mode, read data is `mesochronous`, that is, they return at precisely the same frequency
+        as SCLK, but with an unknown phase relationship. The DQS strobe is provided as a "hint" to
+        the receiving side to help retime the data. The mesochronous nature of the read data is
+        why the Tx and Rx PHY must be split into two separate machines, as they are operating in
+        different clock domains.
+
+        DQS is implemented on the ROM as an extra data output that is guaranteed to change polarity with
+        each data byte; the skew mismatch of DQS to data is within +/-0.6ns or so. It turns out the mere
+        act of routing the DQS into a BUFR buffer before clocking the data into an IDDR primitive
+        is sufficient to delay the DQS signal and meet setup and hold time on the IDDR.
+
+        Once captured by the IDDR, the data is fed into a dual-clock FIFO to make the transition
+        from the DQS to sysclk domains cleanly.
+
+        Because of the latency involved in going from pin->IDDR->FIFO, excess read cycles are
+        required beyond the end of the requested cache line. However, there is virtually no
+        penalty in pre-filling the FIFO with data; if a new cache line has to be fetched,
+        the FIFO can simply be reset and all pointers zeroed. In fact, pre-filling the FIFO
+        can lead to great performance benefits if sequential cache lines are requested. In
+        simulation, a cache line can be filled in 10 bus cycles if it happens to be prefetched
+        (as opposed to 49 bus cycles for random reads). Either way, this compares favorably to
+        288 cycles for random reads in 100MHz SPI mode (or 576 for the spimemio.v, which runs at
+        50MHz).
+
+        The command controller is repsonsible for sequencing all commands other than fast reads. Most
+        commands have some special-case structure to them, and as more commands are implemented, the
+        state machine is expected to grow fairly large. Fast reads are directly handled in "tx_run"
+        mode, where the TxPhy and RxPhy run a tight loop to watch incoming read bus cycles, check
+        the current address, fill the prefetch fifo, and respond to bus cycles.
+
+        Writes to ROM might lock up the machine; a TODO is to test this and do something more sane,
+        like ignore writes by sending an ACK immediately while discarding the data.
+
+        Thus, an OPI read proceeds as follows:
+
+        - When BUS/STB are asserted:
+           TxPhy:
+
+           - capture bus_adr, and compare against the *next read* address pointer
+              - if they match, allow the PHYs to do the work
+
+           - if bus_adr and next read address don't match, save to next read address pointer, and
+             cycle wr/rd clk for 5 cycle while asserting reset to reset the FIFO
+           - initiate an 8DTRD with the read address pointer
+           - wait the specified dummy cycles
+
+           - greedily pre-fill the FIFO by continuing to clock DQS until either:
+             - the FIFO is full
+             - pre-fetch is aborted because bus_adr and next read address don't match and FIFO is reset
+
+           RxPHY:
+           - while CTI==2, assemble data into 32-bit words as soon as EMPTY is deasserted,
+             present a bus_ack, and increment the next read address pointer
+           - when CTI==7, ack the data, and wait until the next bus cycle with CTI==2 to resume
+             reading
+
+        - A FIFO_SYNC_MACRO is used to instantiate the FIFO. This is chosen because:
+           - we can specify RAMB18's, which seem to be under-utilized by the auto-inferred memories by migen
+           - the XPM_FIFO_ASYNC macro claims no instantiation support, and also looks like it has weird
+             requirements for resetting the pointers: you must check the reset outputs, and the time to
+             reset is reported to be as high as around 200ns (anecdotally -- could be just that the sim I
+             read on the web is using a really slow clock, but I'm guessing it's around 10 cycles).
+           - the FIFO_SYNC_MACRO has a well-specified fixed reset latency of 5 cycles.
+           - The main downside of FIFO_SYNC_MACRO over XPM_FIFO_ASYNC is that XPM_FIFO_ASYNC can automatically
+             allow for output data to be read at 32-bit widths, with writes at 16-bit widths. However, with a
+             bit of additional logic and pipelining, we can aggregate data into 32-bit words going into a
+             32-bit FIFO_SYNC_MACRO, which is what we do in this implementation.
+        """)
+        self.bus = wishbone.Interface()
+
+        self.command = CSRStorage(description="Write individual bits to issue special commands to SPI; setting multiple bits at once leads to undefined behavior.",
+            fields=[
+                CSRField("wakeup", size=1, description="Sequence through init & wakeup routine"),
+                CSRField("sector_erase", size=1, description="Erase a sector"),
+            ])
+        self.sector = CSRStorage(description="Sector to erase",
+            fields=[
+                CSRField("sector", size=32, description="Sector to erase")
+            ])
+        self.status = CSRStatus(description="Interface status",
+            fields=[
+                CSRField("wip", size=1, description="Operation in progress (write or erease)")
+            ])
+        # TODO: implement ECC detailed register readback, CRC checking
+
+        # PHY machine mux --------------------------------------------------------------------------
+        # clk_en mux
+        spi_clk_en = Signal()
+        opi_clk_en = Signal()
+        self.sync += clk_en.eq(~self.spi_mode & opi_clk_en | self.spi_mode & spi_clk_en)
+        # tristate mux
+        self.sync += [
+            dq.oe.eq(~self.spi_mode & self.tx),
+            dq_mosi.oe.eq(self.spi_mode | self.tx),
+        ]
+        # data out mux (no data in mux, as we can just sample data in all the time without harm)
+        self.comb += do_mux_rise.eq(~self.spi_mode & do_rise[0] | self.spi_mode & self.mosi)
+        self.comb += do_mux_fall.eq(~self.spi_mode & do_fall[0] | self.spi_mode & self.mosi)
+
+        has_dummy = Signal() # indicates if the current "req" requires dummy cycles to be appended (used for both OPI/SPI)
+        rom_addr = Signal(32, reset=0xFFFFFFFC)  # location of the internal ROM address pointer; reset to invalid address to force an address request on first read
+
+        # MAC/PHY abstraction for OPI
+        txphy_do = Signal(16) # two sources of data out for OPI, one from the PHY, one from MAC
+        txcmd_do = Signal(16)
+        opi_di = Signal(16)
+
+        # internal machines
+        opi_addr = Signal(32)
+        opi_fifo_rd = Signal(32)
+        opi_fifo_wd = Signal(32)
+        opi_reset_rx_req = Signal()
+        opi_reset_rx_ack = Signal()
+        opi_rx_run = Signal()
+
+        rx_almostempty = Signal()
+        rx_almostfull = Signal()
+        rx_empty = Signal()
+        rx_full = Signal()
+        rx_rdcount = Signal(9)
+        rx_rderr = Signal()
+        rx_wrcount = Signal(9)
+        rx_wrerr = Signal()
+        rx_rden = Signal()
+        rx_wren = Signal(reset=1)
+        rx_fifo_rst = Signal()
+
+        wrendiv = Signal()
+        wrendiv2 = Signal()
+        self.specials += [
+            # this next pair of async-clear flip flops creates a write-enable gate that (a) ignores the first
+            # two DQS strobes (as they are pipe-filling) and (b) alternates with the correct phase so we are
+            # sampling 32-bit data into the FIFO.
+            Instance("FDCE", name="FDCE_WREN",
+                 i_C=dqs_iobuf, i_D=~wrendiv, o_Q=wrendiv, i_CE=1, i_CLR=~rx_wren,
+            ),
+            Instance("FDCE", name="FDCE_WREN",
+                 i_C=dqs_iobuf, i_D=~wrendiv2, o_Q=wrendiv2, i_CE=wrendiv & ~wrendiv2, i_CLR=~rx_wren,
+            ),
+            # Direct FIFO primitive is more resource-efficient and faster than migen primitive.
+            Instance("FIFO_DUALCLOCK_MACRO",
+                 p_DEVICE="7SERIES", p_FIFO_SIZE="18Kb", p_DATA_WIDTH=32, p_FIRST_WORD_FALL_THROUGH="TRUE",
+                 p_ALMOST_EMPTY_OFFSET=6, p_ALMOST_FULL_OFFSET=(512- (8*prefetch_lines)),
+
+                 o_ALMOSTEMPTY=rx_almostempty, o_ALMOSTFULL=rx_almostfull,
+                 o_DO=opi_fifo_rd, o_EMPTY=rx_empty, o_FULL=rx_full,
+                 o_RDCOUNT=rx_rdcount, o_RDERR=rx_rderr, o_WRCOUNT=rx_wrcount, o_WRERR=rx_wrerr,
+                 i_DI=opi_fifo_wd, i_RDCLK=ClockSignal(), i_RDEN=rx_rden,
+                 i_WRCLK=dqs_iobuf, i_WREN=wrendiv & wrendiv2, i_RST=rx_fifo_rst,
+            )
+        ]
+        self.sync.dqs += opi_di.eq(self.di)
+        self.comb += opi_fifo_wd.eq(Cat(opi_di, self.di))
+
+        #---------  OPI Rx Phy machine ------------------------------
+        self.submodules.rxphy = rxphy = FSM(reset_state="IDLE")
+        cti_pipe = Signal(3)
+        rxphy_cnt = Signal(3)
+        rxphy.act("IDLE",
+                  If(self.spi_mode,
+                     NextState("IDLE"),
+                  ).Else(
+                      NextValue(self.bus.ack, 0),
+                      If(opi_reset_rx_req,
+                         NextState("WAIT_RESET"),
+                         NextValue(rxphy_cnt, 6),
+                         NextValue(rx_wren, 0),
+                         NextValue(rx_fifo_rst, 1),
+                      ).Elif(opi_rx_run,
+                              NextValue(rx_wren, 1),
+                              If( (self.bus.cyc & self.bus.stb & ~self.bus.we) & ((self.bus.cti == 2) |
+                                 ((self.bus.cti == 7) & ~self.bus.ack) ), # handle case of non-pipelined read, ack is late
+                                 If(~rx_empty,
+                                    NextValue(self.bus.dat_r, opi_fifo_rd),
+                                    rx_rden.eq(1),
+                                    NextValue(opi_addr, opi_addr + 4),
+                                    NextValue(self.bus.ack, 1),
+                                 )
+                              )
+                      )
+                  )
+        )
+        rxphy.act("WAIT_RESET",
+                  NextValue(opi_addr, Cat(Signal(2), self.bus.adr)),
+                  NextValue(rxphy_cnt, rxphy_cnt - 1),
+                  If(rxphy_cnt == 0,
+                     NextValue(rx_fifo_rst, 0),
+                     opi_reset_rx_ack.eq(1),
+                     NextState("IDLE"),
+                  )
+        )
+
+
+        # TxPHY machine: OPI -------------------------------------------------------------------------
+        txphy_cnt = Signal(4)
+        tx_run = Signal()
+        txphy_cs_n = Signal(reset=1)
+        txcmd_cs_n = Signal(reset=1)
+        txphy_clken = Signal()
+        txcmd_clken = Signal()
+        txphy_oe = Signal()
+        txcmd_oe = Signal()
+        self.sync += opi_cs_n.eq( (tx_run & txphy_cs_n) | (~tx_run & txcmd_cs_n) )
+        self.comb += If( tx_run, self.do.eq(txphy_do) ).Else( self.do.eq(txcmd_do) )
+        self.comb += opi_clk_en.eq( (tx_run & txphy_clken) | (~tx_run & txcmd_clken) )
+        self.comb += self.tx.eq( (tx_run & txphy_oe) | (~tx_run & txcmd_oe) )
+        tx_almostfull = Signal()
+        self.sync += tx_almostfull.eq(rx_almostfull) # sync the rx_almostfull signal into the local clock domain
+        txphy_bus = Signal()
+        self.sync += txphy_bus.eq(self.bus.cyc & self.bus.stb & ~self.bus.we & (self.bus.cti == 2))
+        tx_resetcycle = Signal()
+
+        self.submodules.txphy = txphy = FSM(reset_state="RESET")
+        txphy.act("RESET",
+                  NextValue(opi_rx_run, 0),
+                  NextValue(txphy_oe, 0),
+                  NextValue(txphy_cs_n, 1),
+                  NextValue(txphy_clken, 0),
+                  # guarantee that the first state we go to out of reset is a four-cycle burst
+                  NextValue(txphy_cnt, 4),
+                  If(tx_run & ~self.spi_mode, NextState("TX_SETUP"))
+        )
+        txphy.act("TX_SETUP",
+                  NextValue(opi_rx_run, 0),
+                  NextValue(txphy_cnt, txphy_cnt - 1),
+                  If( txphy_cnt > 0,
+                      NextValue(txphy_cs_n, 1)
+                  ).Else(
+                      NextValue(txphy_cs_n, 0),
+                      NextValue(txphy_oe, 1),
+                      NextState("TX_CMD_CS_DELAY"),
+                  )
+        )
+        txphy.act("TX_CMD_CS_DELAY",  # meet setup timing for CS-to-clock
+                  NextState("TX_CMD"),
+        )
+        txphy.act("TX_CMD",
+                  NextValue(txphy_do, 0xEE11),
+                  NextValue(txphy_clken, 1),
+                  NextState("TX_ADRHI"),
+        )
+        txphy.act("TX_ADRHI",
+                  NextValue(txphy_do, opi_addr[16:] & 0x07FF), # mask off unused bits
+                  NextState("TX_ADRLO"),
+        )
+        txphy.act("TX_ADRLO",
+                  NextValue(txphy_do, opi_addr[:16]),
+                  NextValue(txphy_cnt, self.config.fields.dummy - 1),
+                  NextState("TX_DUMMY"),
+        )
+        txphy.act("TX_DUMMY",
+                  NextValue(txphy_oe, 0),
+                  NextValue(txphy_do, 0),
+                  NextValue(txphy_cnt, txphy_cnt - 1),
+                  If(txphy_cnt == 0,
+                     NextValue(opi_rx_run, 1),
+                     If(tx_resetcycle,
+                        NextValue(txphy_clken, 1),
+                        NextValue(opi_reset_rx_req, 1),
+                        NextState("TX_RESET_RX"),
+                     ).Else(
+                        NextState("TX_FILL"),
+                     )
+                  )
+        )
+        txphy.act("TX_FILL",
+                  If(tx_run,
+                     If( ((~txphy_bus & (self.bus.cyc & self.bus.stb & ~self.bus.we & (self.bus.cti == 2))) &
+                          (opi_addr[2:] != self.bus.adr)) | tx_resetcycle,
+                         # it's a new bus cycle, and the requested address is not equal to the current read buffer address
+                         NextValue(txphy_clken, 1),
+                         NextValue(opi_reset_rx_req, 1),
+                         NextState("TX_RESET_RX"),
+                     ).Else(
+                          If(tx_almostfull & ~self.bus.ack,
+                             NextValue(txphy_clken, 0)
+                          ).Else(
+                             NextValue(txphy_clken, 1)
+                          )
+                     ),
+                     If(~(self.bus.cyc & self.bus.stb),
+                        NextValue(opi_rx_run, 0),
+                     ).Else(
+                         NextValue(opi_rx_run, 1),
+                     )
+                  ).Else(
+                      NextValue(txphy_clken, 0),
+                      NextState("RESET")
+                  )
+        )
+        txphy.act("TX_RESET_RX", # keep clocking the RX until it acknowledges a reset
+                  NextValue(opi_rx_run, 0),
+                  NextValue(opi_reset_rx_req, 0),
+                  If(opi_reset_rx_ack,
+                     NextValue(txphy_clken, 0),
+                     NextValue(txphy_cnt, 0), # 1 cycle CS on back-to-back reads
+                     NextValue(txphy_cs_n, 1),
+                     NextState("TX_SETUP"),
+                  ).Else(
+                      NextValue(txphy_clken, 1),
+                  )
+        )
+
+        #---------  OPI CMD machine ------------------------------
+        self.submodules.opicmd = opicmd = FSM(reset_state="RESET")
+        opicmd.act("RESET",
+                   NextValue(txcmd_do, 0),
+                   NextValue(txcmd_oe, 0),
+                   NextValue(tx_run, 0),
+                   NextValue(txcmd_cs_n, 1),
+                   If(~self.spi_mode,
+                      NextState("IDLE"),
+                   ).Else(NextState("RESET_CYCLE")),
+        )
+        opicmd.act("RESET_CYCLE",
+                   NextValue(txcmd_cs_n, 0),
+                   If(opi_reset_rx_ack,
+                      NextValue(tx_run, 1),
+                      NextState("IDLE"),
+                   ).Else(
+                       NextValue(tx_run, 1),
+                       tx_resetcycle.eq(1),
+                   )
+        )
+        opicmd.act("IDLE",
+                   NextValue(txcmd_cs_n, 1),
+                   If(~self.spi_mode,  # this machine stays in idle once spi_mode is dropped
+                      ## The full form of this machine is as follows:
+                      # - First check if there is a CSR special command pending
+                      #   - if so, wait until the current bus cycle is done, then de-assert tx_run
+                      #   - then run the command
+                      # - Else wait until a bus cycle, and once it happens, put the system into run mode
+                      If(self.bus.cyc & self.bus.stb,
+                         If(~self.bus.we & (self.bus.cti ==2),
+                            NextState("TX_RUN")
+                         ).Else(
+                             # handle other cases here, e.g. what do we do if we get a write? probably
+                             # should just ACK it without doing anything so the CPU doesn't freeze...
+                         )
+                      ).Elif(self.command.re,
+                             NextState("DISPATCH_CMD"),
+                      )
+                   )
+        )
+        opicmd.act("TX_RUN",
+                   NextValue(tx_run, 1),
+                   If(self.command.re, # respond to commands
+                      NextState("WAIT_DISPATCH")
+                   )
+        )
+        opicmd.act("WAIT_DISPATCH", # wait until the current cycle is done, then stop TX and dispatch command
+                   If( ~(self.bus.cyc & self.bus.stb),
+                      NextValue(tx_run, 0),
+                      NextState("DISPATCH_CMD")
+                   )
+        )
+        opicmd.act("DISPATCH_CMD",
+                   If(self.command.fields.sector_erase,
+                      NextState("DO_SECTOR_ERASE"),
+                   ).Else(
+                       NextState("IDLE"),
+                   )
+        )
+        opicmd.act("DO_SECTOR_ERASE",
+                   # placeholder
+        )
+
+        # MAC/PHY abstraction for the SPI machine
+        spi_req = Signal()
+        spi_ack = Signal()
+        spi_do = Signal(8) # this is the API to the machine
+        spi_di = Signal(8)
+
+        # PHY machine: SPI -------------------------------------------------------------------------
+
+        # internal signals are:
+        # selection - self.spi_mode
+        # OPI - self.do(16), self.di(16), self.tx
+        # SPI - self.mosi, self.miso
+        # cs_n - both
+        # ecs_n - OPI
+        # clk_en - both
+
+        spicount = Signal(5)
+        spi_so = Signal(8) # this internal to the machine
+        spi_si = Signal(8)
+        spi_dummy = Signal()
+        spi_di_load = Signal() # spi_do load is pipelined back one cycle using this mechanism
+        spi_di_load2 = Signal()
+        spi_ack_pipe = Signal()
+        self.sync += [ # pipelining is required the MISO path is very slow (IOB->fabric FD), and a falling-edge retiming reg is used to meet timing
+            spi_di_load2.eq(spi_di_load),
+            If(spi_di_load2, spi_di.eq(Cat(self.miso, spi_si[:-1]))).Else(spi_di.eq(spi_di)),
+            spi_ack.eq(spi_ack_pipe),
+        ]
+        self.comb += self.mosi.eq(spi_so[7])
+        self.sync += spi_si.eq(Cat(self.miso, spi_si[:-1]))
+        self.submodules.spiphy = spiphy = FSM(reset_state="RESET")
+        spiphy.act("RESET",
+                   If(spi_req,
+                      NextState("REQ"),
+                      NextValue(spicount, 7),
+                      NextValue(spi_clk_en, 1),
+                      NextValue(spi_so, spi_do),
+                      NextValue(spi_dummy, has_dummy),
+                   ).Else(
+                       NextValue(spi_clk_en, 0),
+                       NextValue(spi_ack_pipe, 0),
+                       NextValue(spicount, 0),
+                       NextValue(spi_dummy, 0),
+                   )
+        )
+        spiphy.act("REQ",
+                   If(spicount > 0,
+                      NextValue(spicount, spicount-1),
+                      NextValue(spi_clk_en, 1),
+                      NextValue(spi_so, Cat(0, spi_so[:-1])),
+                      NextValue(spi_ack_pipe, 0),
+                   ).Elif( (spicount == 0) & spi_req & ~spi_dummy, # back-to-back transaction
+                          NextValue(spi_clk_en, 1),
+                          NextValue(spicount, 7),
+                          NextValue(spi_clk_en, 1),
+                          NextValue(spi_so, spi_do), # reload the so register
+                          spi_di_load.eq(1), # "naked" .eq() create single-cycle pulses that default back to 0
+                          NextValue(spi_ack_pipe, 1),
+                          NextValue(spi_dummy, has_dummy),
+                   ).Elif( (spicount == 0) & ~spi_req & ~spi_dummy, # go back to idle
+                          spi_di_load.eq(1),
+                          NextValue(spi_ack_pipe, 1),
+                          NextValue(spi_clk_en, 0),
+                          NextState("RESET"),
+                   ).Elif( (spicount == 0) & spi_dummy,
+                          spi_di_load.eq(1),
+                          NextValue(spicount, self.config.fields.dummy),
+                          NextValue(spi_clk_en, 1),
+                          NextValue(spi_ack_pipe, 0),
+                          NextValue(spi_so, 0),  # do a dummy with '0' as the output
+                          NextState("DUMMY"),
+                   ) # this actually should be a fully defined situation, no "Else" applicable
+        )
+        spiphy.act("DUMMY",
+                   If(spicount > 1, # instead of doing dummy-1, we stop at count == 1
+                      NextValue(spicount, spicount - 1),
+                      NextValue(spi_clk_en, 1),
+                   ).Elif(spicount <= 1 & spi_req,
+                          NextValue(spi_clk_en, 1),
+                          NextValue(spicount, 7),
+                          NextValue(spi_so, spi_do),  # reload the so register
+                          NextValue(spi_ack_pipe, 1), # finally ack the cycle
+                          NextValue(spi_dummy, has_dummy),
+                   ).Else(
+                       NextValue(spi_clk_en, 0),
+                       NextValue(spi_ack_pipe, 1),  # finally ack the cycle
+                       NextState("RESET")
+                   )
+        )
+
+
+        # SPI MAC machine -------------------------------------------------------------------------------
+        # default active on boot
+        addr_updated = Signal()
+        d_to_wb = Signal(32) # data going back to wishbone
+        mac_count = Signal(5)
+        new_cycle = Signal(1)
+        self.submodules.mac = mac = FSM(reset_state="RESET")
+        mac.act("RESET",
+                NextValue(self.spi_mode, 1),
+                NextValue(addr_updated, 0),
+                NextValue(d_to_wb, 0),
+                NextValue(spi_cs_n, 1),
+                NextValue(has_dummy, 0),
+                NextValue(spi_do, 0),
+                NextValue(spi_req, 0),
+                NextValue(mac_count, 0),
+                NextState("WAKEUP_PRE"),
+                NextValue(new_cycle, 1),
+                If(self.spi_mode, NextValue(self.bus.ack, 0)),
+        )
+        if spiread:
+            mac.act("IDLE",
+                    If(self.spi_mode, # this machine stays in idle once spi_mode is dropped
+                        NextValue(self.bus.ack, 0),
+                        If((self.bus.cyc == 1) & (self.bus.stb == 1) & (self.bus.we == 0) & (self.bus.cti != 7), # read cycle requested, not end-of-burst
+                           If( (rom_addr[2:] != self.bus.adr) & new_cycle,
+                              NextValue(rom_addr, Cat(Signal(2, reset=0), self.bus.adr)),
+                              NextValue(addr_updated, 1),
+                              NextValue(spi_cs_n, 1), # raise CS in anticipation of a new address cycle
+                              NextState("SPI_READ_32_CS"),
+                           ).Elif( (rom_addr[2:] == self.bus.adr) | (~new_cycle & self.bus.cti == 2),
+                                   NextValue(mac_count, 3),  # get another beat of 4 bytes at the next address
+                                   NextState("SPI_READ_32")
+                           ).Else(
+                               NextValue(addr_updated, 0),
+                               NextValue(spi_cs_n, 0),
+                               NextState("SPI_READ_32"),
+                               NextValue(mac_count, 3),  # prep the MAC state counter to count out 4 bytes
+                           ),
+                        ).Elif(self.command.fields.wakeup,
+                               NextValue(spi_cs_n, 1),
+                               NextValue(self.command.storage, 0),  # clear all pending commands
+                               NextState("WAKEUP_PRE"),
+                        )
+                    )
+            )
+        else:
+            mac.act("IDLE",
+                    If(self.spi_mode, # this machine stays in idle once spi_mode is dropped
+                        If(self.command.fields.wakeup,
+                               NextValue(spi_cs_n, 1),
+                               NextValue(self.command.storage, 0),  # clear all pending commands
+                               NextState("WAKEUP_PRE"),
+                        )
+                    )
+            )
+
+        #---------  wakup chip ------------------------------
+        mac.act("WAKEUP_PRE",
+                NextValue(spi_cs_n, 1), # why isn't this sticking? i shouldn't have to put this here
+                NextValue(mac_count, 4),
+                NextState("WAKEUP_PRE_CS_WAIT")
+        )
+        mac.act("WAKEUP_PRE_CS_WAIT",
+                NextValue(mac_count, mac_count-1),
+                If(mac_count == 0,
+                   NextState("WAKEUP_WUP"),
+                   NextValue(spi_cs_n, 0),
+                )
+        )
+        mac.act("WAKEUP_WUP",
+                NextValue(mac_count, mac_count-1),
+                If(mac_count == 0,
+                   NextValue(spi_cs_n, 0),
+                   NextValue(spi_do, 0xab),  # wakeup from deep sleep
+                   NextValue(spi_req, 1),
+                   NextState("WAKEUP_WUP_WAIT"),
+                )
+        )
+        mac.act("WAKEUP_WUP_WAIT",
+                NextValue(spi_req, 0),
+                If(spi_ack,
+                   NextValue(spi_cs_n, 1),  # raise CS
+                   NextValue(mac_count, 4),  # for >4 cycles per specsheet
+                   NextState("WAKEUP_CR2_WREN_1")
+                )
+        )
+
+        #---------  WREN+CR2 - dummy cycles ------------------------------
+        mac.act("WAKEUP_CR2_WREN_1",
+                NextValue(mac_count, mac_count-1),
+                If(mac_count == 0,
+                   NextValue(spi_cs_n, 0),
+                   NextValue(spi_do, 0x06),  # WREN to unlock CR2 writing
+                   NextValue(spi_req, 1),
+                   NextState("WAKEUP_CR2_WREN_1_WAIT"),
+                )
+        )
+        mac.act("WAKEUP_CR2_WREN_1_WAIT",
+                NextValue(spi_req, 0),
+                If(spi_ack,
+                   NextValue(spi_cs_n, 1),
+                   NextValue(mac_count, 4),
+                   NextState("WAKEUP_CR2_DUMMY_CMD"),
+                )
+        )
+        mac.act("WAKEUP_CR2_DUMMY_CMD",
+                NextValue(mac_count, mac_count-1),
+                If(mac_count == 0,
+                   NextValue(spi_cs_n, 0),
+                   NextValue(spi_do, 0x72), # CR2 command
+                   NextValue(spi_req, 1),
+                   NextValue(mac_count, 2),
+                   NextState("WAKEUP_CR2_DUMMY_ADRHI"),
+                )
+        )
+        mac.act("WAKEUP_CR2_DUMMY_ADRHI",
+                NextValue(spi_do, 0x00),   # we want to send 00_00_03_00
+                If(spi_ack,
+                   NextValue(mac_count, mac_count -1),
+                ),
+                If(mac_count == 0,
+                   NextState("WAKEUP_CR2_DUMMY_ADRMID")
+                )
+        )
+        mac.act("WAKEUP_CR2_DUMMY_ADRMID",
+                NextValue(spi_do, 0x03),
+                If(spi_ack, NextState("WAKEUP_CR2_DUMMY_ADRLO")),
+        )
+        mac.act("WAKEUP_CR2_DUMMY_ADRLO",
+                NextValue(spi_do, 0x00),
+                If(spi_ack, NextState("WAKEUP_CR2_DUMMY_DATA")),
+        )
+        mac.act("WAKEUP_CR2_DUMMY_DATA",
+                NextValue(spi_do, 0x05),   # 10 dummy cycles as required for 84MHz-104MHz operation
+                If(spi_ack, NextState("WAKEUP_CR2_DUMMY_WAIT")),
+        )
+        mac.act("WAKEUP_CR2_DUMMY_WAIT",
+                NextValue(spi_req, 0),
+                If(spi_ack,
+                   NextValue(spi_cs_n, 1),
+                   NextValue(mac_count, 4),
+                   NextState("WAKEUP_CR2_WREN_2")
+                )
+        )
+
+        #---------  WREN+CR2 to DOPI mode ------------------------------
+        mac.act("WAKEUP_CR2_WREN_2",
+                NextValue(mac_count, mac_count-1),
+                If(mac_count == 0,
+                   NextValue(spi_cs_n, 0),
+                   NextValue(spi_do, 0x06),  # WREN to unlock CR2 writing
+                   NextValue(spi_req, 1),
+                   NextState("WAKEUP_CR2_WREN_2_WAIT"),
+                )
+        )
+        mac.act("WAKEUP_CR2_WREN_2_WAIT",
+                NextValue(spi_req, 0),
+                If(spi_ack,
+                   NextValue(spi_cs_n, 1),
+                   NextValue(mac_count, 4),
+                   NextState("WAKEUP_CR2_DOPI_CMD"),
+                )
+        )
+        mac.act("WAKEUP_CR2_DOPI_CMD",
+                NextValue(mac_count, mac_count-1),
+                If(mac_count == 0,
+                   NextValue(spi_cs_n, 0),
+                   NextValue(spi_do, 0x72),  # CR2 command
+                   NextValue(spi_req, 1),
+                   NextValue(mac_count, 4),
+                   NextState("WAKEUP_CR2_DOPI_ADR"),
+                )
+        )
+        mac.act("WAKEUP_CR2_DOPI_ADR",  # send 0x00_00_00_00 as address
+                NextValue(spi_do, 0x00),  # no need to raise CS or lower spi_req, this is back-to-back
+                If(spi_ack,
+                   NextValue(mac_count, mac_count - 1),
+                ),
+                If(mac_count == 0,
+                   NextState("WAKEUP_CR2_DOPI_DATA"),
+                )
+        ),
+        mac.act("WAKEUP_CR2_DOPI_DATA",
+                NextValue(spi_do, 2),    # enable DOPI mode
+                If(spi_ack, NextState("WAKEUP_CR2_DOPI_WAIT")),
+        )
+        mac.act("WAKEUP_CR2_DOPI_WAIT", # trailing CS wait
+                NextValue(spi_req, 0),
+                If(spi_ack,
+                   NextValue(spi_cs_n, 1),
+                   NextValue(mac_count, 4),
+                   NextState("WAKEUP_CS_EXIT")
+                )
+        )
+        mac.act("WAKEUP_CS_EXIT",
+                NextValue(self.spi_mode, 0),  # now enter DOPI mode
+                NextValue(mac_count, mac_count-1),
+                If(mac_count == 0,
+                   NextState("IDLE"),
+                )
+        )
+
+        if spiread:
+            #---------  SPI read machine ------------------------------
+            mac.act("SPI_READ_32",
+                    If(addr_updated,
+                       NextState("SPI_READ_32_CS"),
+                       NextValue(has_dummy, 0),
+                       NextValue(mac_count, 3),
+                       NextValue(spi_cs_n, 1),
+                       NextValue(spi_req, 0),
+                    ).Else(
+                        If(mac_count > 0,
+                           NextValue(has_dummy, 0),
+                           NextValue(spi_req, 1),
+                           NextState("SPI_READ_32_D")
+                        ).Else(
+                            NextValue(spi_req, 0),
+                            If(spi_ack,
+                               If(self.spi_mode,  # protect these in a spi_mode mux to prevent excess inference of logic to handle otherwise implicit dual-master situation
+                                   NextValue(self.bus.dat_r, Cat(d_to_wb[8:],spi_di)),
+                                   NextValue(self.bus.ack, 1),
+                               ),
+                               NextValue(rom_addr, rom_addr + 1),
+                               NextState("IDLE")
+                            )
+                        )
+                    )
+            )
+            mac.act("SPI_READ_32_D",
+                    If(spi_ack,
+                       # shift in one byte at a time to d_to_wb(32)
+                       NextValue(d_to_wb, Cat(d_to_wb[8:],spi_di,)),
+                       NextValue(mac_count, mac_count - 1),
+                       NextState("SPI_READ_32"),
+                       NextValue(rom_addr, rom_addr + 1),
+                    )
+            )
+            mac.act("SPI_READ_32_CS",
+                    NextValue(mac_count, mac_count-1),
+                    If(mac_count == 0,
+                       NextValue(spi_cs_n, 0),
+                       NextState("SPI_READ_32_A0"),
+                    )
+            )
+            mac.act("SPI_READ_32_A0",
+                    NextValue(spi_do, 0x0c), # 32-bit address write for "fast read" command
+                    NextValue(spi_req, 1),
+                    NextState("SPI_READ_32_A1"),
+            )
+            mac.act("SPI_READ_32_A1",
+                    NextValue(spi_do, rom_addr[24:] & 0x7), # queue up MSB to send, leave req high; mask off unused high bits
+                    If(spi_ack,
+                       NextState("SPI_READ_32_A2"),
+                    )
+            )
+            mac.act("SPI_READ_32_A2",
+                    NextValue(spi_do, rom_addr[16:24]),
+                    If(spi_ack,
+                       NextState("SPI_READ_32_A3"),
+                    )
+            )
+            mac.act("SPI_READ_32_A3",
+                    NextValue(spi_do, rom_addr[8:16]),
+                    If(spi_ack,
+                       NextState("SPI_READ_32_A4"),
+                    )
+            )
+            mac.act("SPI_READ_32_A4",
+                    NextValue(spi_do, rom_addr[:8]),
+                    If(spi_ack,
+                       NextState("SPI_READ_32_A5"),
+                    )
+            )
+            mac.act("SPI_READ_32_A5",
+                    NextValue(spi_do, 0),
+                    If(spi_ack,
+                       NextState("SPI_READ_32_DUMMY")
+                    )
+            )
+            mac.act("SPI_READ_32_DUMMY",
+                    NextValue(spi_req, 0),
+                    NextValue(addr_updated, 0),
+                    If(spi_ack,
+                       NextState("SPI_READ_32"),
+                       NextValue(mac_count, 3),  # prep the MAC state counter to count out 4 bytes
+                    ).Else(
+                        NextState("SPI_READ_32_DUMMY")
+                    )
+            )
+
+        # Handle ECS_n -----------------------------------------------------------------------------
+        # treat ECS_N as an async signal -- just a "rough guide" of problems
+        ecs_n = Signal()
+        self.specials += MultiReg(pads.ecs_n, ecs_n)
+
+        self.submodules.ev = EventManager()
+        self.ev.ecc_error = EventSourceProcess(description="An ECC event has happened on the current block; triggered by falling edge of ECC_N")
+        self.ev.finalize()
+        self.comb += self.ev.ecc_error.trigger.eq(ecs_n)
+        ecc_reported = Signal()
+        ecs_n_delay = Signal()
+        ecs_pulse = Signal()
+
+        self.ecc_address = CSRStatus(fields=[
+            CSRField("ecc_address", size=32, description="Address of the most recent ECC event")
+        ])
+        self.ecc_status = CSRStatus(fields=[
+            CSRField("ecc_error", size=1, description="Live status of the ECS_N bit (ECC error on current packet when low)"),
+            CSRField("ecc_overflow", size=1, description="More than one ECS_N event has happened since th last time ecc_address was checked")
+        ])
+
+        self.comb += self.ecc_status.fields.ecc_error.eq(ecs_n)
+        self.comb += [
+            ecs_pulse.eq(ecs_n_delay & ~ecs_n), # falling edge -> positive pulse
+            If(ecs_pulse,
+               self.ecc_address.fields.ecc_address.eq(rom_addr),
+               If(ecc_reported,
+                  self.ecc_status.fields.ecc_overflow.eq(1)
+               ).Else(
+                   self.ecc_status.fields.ecc_overflow.eq(self.ecc_status.fields.ecc_overflow),
+               )
+            ).Else(
+                self.ecc_address.fields.ecc_address.eq(self.ecc_address.fields.ecc_address),
+                If(self.ecc_status.we,
+                   self.ecc_status.fields.ecc_overflow.eq(0),
+                ).Else(
+                    self.ecc_status.fields.ecc_overflow.eq(self.ecc_status.fields.ecc_overflow),
+                )
+            )
+        ]
+        self.sync += [
+            ecs_n_delay.eq(ecs_n),
+            If(ecs_pulse,
+               ecc_reported.eq(1)
+            ).Elif(self.ecc_address.we,
+                ecc_reported.eq(0)
+            )
+        ]
diff --git a/litex/soc/cores/spiopi.py b/litex/soc/cores/spiopi.py
deleted file mode 100644 (file)
index c9237c3..0000000
+++ /dev/null
@@ -1,1063 +0,0 @@
-from litex.soc.interconnect.csr_eventmanager import *
-from litex.soc.interconnect import wishbone
-from litex.soc.integration.doc import AutoDoc, ModuleDoc
-from migen.genlib.cdc import MultiReg
-
-class SpiOpi(Module, AutoCSR, AutoDoc):
-    def __init__(self, pads, dq_delay_taps=31, sclk_name="SCLK_ODDR",
-                 iddr_name="SPI_IDDR", miso_name="MISO_FDRE", sim=False, spiread=False, prefetch_lines=1):
-        self.intro = ModuleDoc("""
-        Intro
-        ********
-        
-        SpiOpi implements a dual-mode SPI or OPI interface. OPI is an octal (8-bit) wide
-        variant of SPI, which is unique to Macronix parts. It is concurrently interoperable
-        with SPI. The chip supports "DTR mode" (double transfer rate, e.g. DDR) where data
-        is transferred on each edge of the clock, and there is a source-synchronous DQS
-        associated with the input data.
-        
-        The chip by default boots into SPI-only mode (unless NV bits are burned otherwise)
-        so to enable OPI, a config register needs to be written with SPI mode. Note that once
-        the config register is written, the only way to return to SPI mode is to change
-        it with OPI writes, or to issue a hardware reset. This has major implications for
-        reconfiguring the FPGA: a simple JTAG command to reload from SPI will not yank PROG_B low,
-        and so the SPI ROM will be in DOPI, and SPI loading will fail. Thus, system architects
-        must take into consideration a hard reset for the ROM whenever a bitstream reload
-        is demanded of the FPGA. 
-        
-        The SpiOpi architecture is split into two levels: a command manager, and a
-        cycle manager. The command manager is responsible for taking the current wishbone
-        request and CSR state and unpacking these into cycle-by-cycle requests. The cycle
-        manager is responsible for coordinating the cycle-by-cycle requests. 
-        
-        In SPI mode, this means marshalling byte-wide requests into a series of 8 serial cyles.
-        
-        In OPI [DOPI] mode, this means marshalling 16-bit wide requests into a pair of back-to-back DDR
-        cycles. Note that because the cycles are DDR, this means one 16-bit wide request must be
-        issued every cycle to keep up with the interface. 
-        
-        For the output of data to ROM, expects a clock called "spinor_delayed" which is a delayed 
-        version of "sys". The delay is necessary to get the correct phase relationship between 
-        the SIO and SCLK in DTR/DDR mode, and it also has to compensate for the special-case
-        difference in the CCLK pad vs other I/O.
-        
-        For the input, DQS signal is independently delayed relative to the DQ signals using
-        an IDELAYE2 block. At a REFCLK frequency of 200 MHz, each delay tap adds 78ps, so up
-        to a 2.418ns delay is possible between DQS and DQ. The goal is to delay DQS relative
-        to DQ, because the SPI chip launches both with concurrent rising edges (to within 0.6ns),
-        but the IDDR register needs the rising edge of DQS to be centered inside the DQ eye.
-        
-        In DOPI mode, there is a prefetch buffer. It will read `prefetch_lines` cache lines of 
-        data into the prefetch buffer. A cache line is 256 bits (or 8x32-bit words). The maximum 
-        value is 63 lines (one line is necessary for synchronization margin). The downside of
-        setting prefetch_lines high is that the prefetcher is running constantly and burning
-        power, while throwing away most data. In practice, the CPU will typically consume data
-        at only slightly faster than the rate of read-out from DOPI-mode ROM, and once data
-        is consumed the prefetch resumes. Thus, prefetch_lines is probably optimally around
-        1-3 lines read-ahead of the CPU. Any higher than 3 lines probably just wastes power.
-        In short simulations, 1 line of prefetch seems to be enough to keep the prefetcher
-        ahead of the CPU even when it's simply running straight-line code.
-        
-        Note the "sim" parameter exists because there seems to be a bug in xvlog that doesn't
-        correctly simulate the IDELAY machines. Setting "sim" to True removes the IDELAY machines
-        and passes the data through directly, but in real hardware the IDELAY machines are
-        necessary to meet timing between DQS and DQ.  
-        
-        dq_delay_taps probably doesn't need to be adjusted; it can be tweaked for timing
-        closure. The delays can also be adjusted at runtime.
-        """)
-        if prefetch_lines > 63:
-            prefetch_lines = 63
-
-        self.spi_mode = Signal(reset=1) # when reset is asserted, force into spi mode
-        cs_n = Signal(reset=1) # make sure CS is sane on reset, too
-
-        self.config = CSRStorage(fields=[
-            CSRField("dummy", size=5, description="Number of dummy cycles", reset=10),
-        ])
-
-        delay_type="VAR_LOAD"
-
-        # DQS input conditioning -----------------------------------------------------------------
-        dqs_iobuf = Signal()
-        self.clock_domains.cd_dqs = ClockDomain(reset_less=True)
-        self.comb += self.cd_dqs.clk.eq(dqs_iobuf)
-        self.specials += [
-            Instance("BUFR", i_I=pads.dqs, o_O=dqs_iobuf),
-        ]
-
-
-        # DQ connections -------------------------------------------------------------------------
-        # PHY API
-        self.do = Signal(16) # OPI data to SPI
-        self.di = Signal(16) # OPI data from SPI
-        self.tx = Signal() # when asserted OPI is transmitting data to SPI, otherwise, receiving
-
-        self.mosi = Signal() # SPI data to SPI
-        self.miso = Signal() # SPI data from SPI
-
-        # Delay programming API
-        self.delay_config = CSRStorage(fields=[
-            CSRField("d", size=5, description="Delay amount; each increment is 78ps", reset=31),
-            CSRField("load", size=1, description="Force delay taps to delay_d"),
-        ])
-        self.delay_status = CSRStatus(fields=[
-            CSRField("q", size=5, description="Readback of current delay amount, useful if inc/ce is used to set"),
-        ])
-        self.delay_update = Signal()
-        self.hw_delay_load = Signal()
-        self.sync += self.delay_update.eq(self.hw_delay_load | self.delay_config.fields.load)
-
-        # Break system API into rising/falling edge samples
-        do_rise = Signal(8) # data output presented on the rising edge
-        do_fall = Signal(8) # data output presented on the falling edge
-        self.comb += [do_rise.eq(self.do[8:]), do_fall.eq(self.do[:8])]
-
-        di_rise = Signal(8)
-        di_fall = Signal(8)
-        self.comb += self.di.eq(Cat(di_fall, di_rise))
-
-        # OPI DDR registers
-        dq = TSTriple(7) # dq[0] is special because it is also MOSI
-        dq_delayed = Signal(8)
-        self.specials += dq.get_tristate(pads.dq[1:])
-        for i in range(1, 8):
-            self.specials += Instance("ODDR",
-                p_DDR_CLK_EDGE="SAME_EDGE",
-                i_C=ClockSignal(), i_R=ResetSignal(), i_S=0, i_CE=1,
-                i_D1=do_rise[i], i_D2=do_fall[i], o_Q=dq.o[i-1],
-            )
-            if sim == False:
-                if i == 1: # only wire up o_CNTVALUEOUT for one instance
-                    self.specials += Instance("IDELAYE2",
-                         p_DELAY_SRC="IDATAIN", p_SIGNAL_PATTERN="DATA",
-                         p_CINVCTRL_SEL="FALSE", p_HIGH_PERFORMANCE_MODE="FALSE", p_REFCLK_FREQUENCY=200.0,
-                         p_PIPE_SEL="FALSE", p_IDELAY_VALUE=dq_delay_taps, p_IDELAY_TYPE=delay_type,
-
-                         i_C=ClockSignal(), i_CINVCTRL=0, i_REGRST=0, i_LDPIPEEN=0, i_INC=0, i_CE=0,
-                         i_LD=self.delay_update,
-                         i_CNTVALUEIN=self.delay_config.fields.d, o_CNTVALUEOUT=self.delay_status.fields.q,
-                         i_IDATAIN=dq.i[i-1], o_DATAOUT=dq_delayed[i],
-                    ),
-                else: # don't wire up o_CNTVALUEOUT for others
-                    self.specials += Instance("IDELAYE2",
-                          p_DELAY_SRC="IDATAIN", p_SIGNAL_PATTERN="DATA",
-                          p_CINVCTRL_SEL="FALSE", p_HIGH_PERFORMANCE_MODE="FALSE", p_REFCLK_FREQUENCY=200.0,
-                          p_PIPE_SEL="FALSE", p_IDELAY_VALUE=dq_delay_taps, p_IDELAY_TYPE=delay_type,
-
-                          i_C=ClockSignal(), i_CINVCTRL=0, i_REGRST=0, i_LDPIPEEN=0, i_INC=0, i_CE=0,
-                          i_LD=self.delay_update,
-                          i_CNTVALUEIN=self.delay_config.fields.d,
-                          i_IDATAIN=dq.i[i-1], o_DATAOUT=dq_delayed[i],
-                  ),
-            else:
-                self.comb += dq_delayed[i].eq(dq.i[i-1])
-            self.specials += Instance("IDDR", name="{}{}".format(iddr_name, str(i)),
-                p_DDR_CLK_EDGE="SAME_EDGE_PIPELINED",
-                i_C=dqs_iobuf, i_R=ResetSignal(), i_S=0, i_CE=1,
-                i_D=dq_delayed[i], o_Q1=di_rise[i], o_Q2=di_fall[i],
-            )
-        # SPI SDR register
-        self.specials += [
-            Instance("FDRE", name="{}".format(miso_name), i_C=~ClockSignal("spinor"), i_CE=1, i_R=0, o_Q=self.miso,
-                 i_D=dq_delayed[1],
-            )
-        ]
-
-        # bit 0 (MOSI) is special-cased to handle SPI mode
-        dq_mosi = TSTriple(1) # this has similar structure but an independent "oe" signal
-        self.specials += dq_mosi.get_tristate(pads.dq[0])
-        do_mux_rise = Signal() # mux signal for mosi/dq select of bit 0
-        do_mux_fall = Signal()
-        self.specials += [
-            Instance("ODDR",
-              p_DDR_CLK_EDGE="SAME_EDGE",
-              i_C=ClockSignal(), i_R=ResetSignal(), i_S=0, i_CE=1,
-              i_D1=do_mux_rise, i_D2=do_mux_fall, o_Q=dq_mosi.o,
-            ),
-            Instance("IDDR",
-              p_DDR_CLK_EDGE="SAME_EDGE_PIPELINED",
-              i_C=dqs_iobuf, i_R=ResetSignal(), i_S=0, i_CE=1,
-              o_Q1=di_rise[0], o_Q2=di_fall[0], i_D=dq_delayed[0],
-            ),
-        ]
-        if sim == False:
-            self.specials += [
-            Instance("IDELAYE2",
-                 p_DELAY_SRC="IDATAIN", p_SIGNAL_PATTERN="DATA",
-                 p_CINVCTRL_SEL="FALSE", p_HIGH_PERFORMANCE_MODE="FALSE", p_REFCLK_FREQUENCY=200.0,
-                 p_PIPE_SEL="FALSE", p_IDELAY_VALUE=dq_delay_taps, p_IDELAY_TYPE=delay_type,
-
-                 i_C=ClockSignal(), i_CINVCTRL=0, i_REGRST=0, i_LDPIPEEN=0, i_INC=0, i_CE=0,
-                 i_LD=self.delay_update,
-                 i_CNTVALUEIN=self.delay_config.fields.d,
-                 i_IDATAIN=dq_mosi.i, o_DATAOUT=dq_delayed[0],
-                 ),
-            ]
-        else:
-            self.comb += dq_delayed[0].eq(dq_mosi.i)
-
-        # wire up SCLK interface
-        clk_en = Signal()
-        self.specials += [
-            # de-activate the CCLK interface, parallel it with a GPIO
-            Instance("STARTUPE2",
-                 i_CLK=0, i_GSR=0, i_GTS=0, i_KEYCLEARB=0, i_PACK=0, i_USRDONEO=1, i_USRDONETS=1,
-                 i_USRCCLKO=0, i_USRCCLKTS=1,  # force to tristate
-                 ),
-            Instance("ODDR", name=sclk_name, # need to name this so we can constrain it properly
-                 p_DDR_CLK_EDGE="SAME_EDGE",
-                 i_C=ClockSignal("spinor"), i_R=ResetSignal("spinor"), i_S=0, i_CE=1,
-                 i_D1=clk_en, i_D2=0, o_Q=pads.sclk,
-                 )
-        ]
-
-        # wire up CS_N
-        spi_cs_n = Signal()
-        opi_cs_n = Signal()
-        self.comb += cs_n.eq( (self.spi_mode & spi_cs_n) | (~self.spi_mode & opi_cs_n) )
-        self.specials += [
-            Instance("ODDR",
-              p_DDR_CLK_EDGE="SAME_EDGE",
-              i_C=ClockSignal(), i_R=0, i_S=ResetSignal(), i_CE=1,
-              i_D1=cs_n, i_D2=cs_n, o_Q=pads.cs_n,
-            ),
-        ]
-
-        self.architecture = ModuleDoc("""
-        Architecture
-        **************
-        
-        The machine is split into two separate pieces, one to handle SPI, and one to handle OPI.
-        
-        SPI
-        =====
-        The SPI machine architecture is split into two levels: MAC and PHY. 
-        
-        The MAC layer is responsible for:
-        - receiving requests via CSR register to perform config/status/special command sequences,
-        and dispatching these to the SPI PHY
-        - translating wishbone bus requests into command sequences, and routing them to either OPI
-        or SPI PHY.
-        - managing the chip select to the chip, and ensuring that one dummy cycle is inserted after
-        chip select is asserted, or before it is de-asserted; and that the chip select "high" times
-        are adequate (1 cycle between reads, 4 cycles for all other operations)
-        
-        On boot, the interface runs in SPI; once the wakeup sequence is executed, the chip permanently
-        switches to OPI mode unless the CR2 registers are written to fall back, or the 
-        reset to the chip is asserted.
-          
-        The PHY layers are responsible for the following tasks:
-        - Serializing and deserializing data, standardized on 8 bits for SPI and 16 bits for OPI
-        - counting dummy cycles
-        - managing the clock enable
-        
-        PHY cycles are initiated with a "req" signal, which is only sampled for 
-        one cycle and then ignored until the PHY issues an "ack" that the current cycle is complete. 
-        Thus holding "req" high can allow the PHY to back-to-back issue cycles without pause.
-        
-        OPI
-        =====
-        The OPI machine is split into three parts: a command controller, a Tx PHY, and an Rx PHY. 
-        
-        The Tx PHY is configured with a "dummy cycle" count register, as there is a variable length
-        delay for dummy cycles in OPI.
-        
-        In OPI mode, read data is `mesochronous`, that is, they return at precisely the same frequency
-        as SCLK, but with an unknown phase relationship. The DQS strobe is provided as a "hint" to
-        the receiving side to help retime the data. The mesochronous nature of the read data is
-        why the Tx and Rx PHY must be split into two separate machines, as they are operating in
-        different clock domains.
-        
-        DQS is implemented on the ROM as an extra data output that is guaranteed to change polarity with 
-        each data byte; the skew mismatch of DQS to data is within +/-0.6ns or so. It turns out the mere
-        act of routing the DQS into a BUFR buffer before clocking the data into an IDDR primitive
-        is sufficient to delay the DQS signal and meet setup and hold time on the IDDR. 
-        
-        Once captured by the IDDR, the data is fed into a dual-clock FIFO to make the transition
-        from the DQS to sysclk domains cleanly. 
-        
-        Because of the latency involved in going from pin->IDDR->FIFO, excess read cycles are
-        required beyond the end of the requested cache line. However, there is virtually no 
-        penalty in pre-filling the FIFO with data; if a new cache line has to be fetched, 
-        the FIFO can simply be reset and all pointers zeroed. In fact, pre-filling the FIFO
-        can lead to great performance benefits if sequential cache lines are requested. In
-        simulation, a cache line can be filled in 10 bus cycles if it happens to be prefetched
-        (as opposed to 49 bus cycles for random reads). Either way, this compares favorably to
-        288 cycles for random reads in 100MHz SPI mode (or 576 for the spimemio.v, which runs at 
-        50MHz).   
-        
-        The command controller is repsonsible for sequencing all commands other than fast reads. Most
-        commands have some special-case structure to them, and as more commands are implemented, the
-        state machine is expected to grow fairly large. Fast reads are directly handled in "tx_run"
-        mode, where the TxPhy and RxPhy run a tight loop to watch incoming read bus cycles, check
-        the current address, fill the prefetch fifo, and respond to bus cycles. 
-        
-        Writes to ROM might lock up the machine; a TODO is to test this and do something more sane,
-        like ignore writes by sending an ACK immediately while discarding the data.
-        
-        Thus, an OPI read proceeds as follows:
-        
-        - When BUS/STB are asserted:
-           TxPhy:
-           
-           - capture bus_adr, and compare against the *next read* address pointer
-              - if they match, allow the PHYs to do the work
-           
-           - if bus_adr and next read address don't match, save to next read address pointer, and 
-             cycle wr/rd clk for 5 cycle while asserting reset to reset the FIFO
-           - initiate an 8DTRD with the read address pointer
-           - wait the specified dummy cycles
-
-           - greedily pre-fill the FIFO by continuing to clock DQS until either:
-             - the FIFO is full
-             - pre-fetch is aborted because bus_adr and next read address don't match and FIFO is reset
-        
-           RxPHY:
-           - while CTI==2, assemble data into 32-bit words as soon as EMPTY is deasserted,
-             present a bus_ack, and increment the next read address pointer
-           - when CTI==7, ack the data, and wait until the next bus cycle with CTI==2 to resume
-             reading
-        
-        - A FIFO_SYNC_MACRO is used to instantiate the FIFO. This is chosen because:
-           - we can specify RAMB18's, which seem to be under-utilized by the auto-inferred memories by migen
-           - the XPM_FIFO_ASYNC macro claims no instantiation support, and also looks like it has weird
-             requirements for resetting the pointers: you must check the reset outputs, and the time to
-             reset is reported to be as high as around 200ns (anecdotally -- could be just that the sim I
-             read on the web is using a really slow clock, but I'm guessing it's around 10 cycles). 
-           - the FIFO_SYNC_MACRO has a well-specified fixed reset latency of 5 cycles.
-           - The main downside of FIFO_SYNC_MACRO over XPM_FIFO_ASYNC is that XPM_FIFO_ASYNC can automatically 
-             allow for output data to be read at 32-bit widths, with writes at 16-bit widths. However, with a
-             bit of additional logic and pipelining, we can aggregate data into 32-bit words going into a
-             32-bit FIFO_SYNC_MACRO, which is what we do in this implementation. 
-        """)
-        self.bus = wishbone.Interface()
-
-        self.command = CSRStorage(description="Write individual bits to issue special commands to SPI; setting multiple bits at once leads to undefined behavior.",
-            fields=[
-                CSRField("wakeup", size=1, description="Sequence through init & wakeup routine"),
-                CSRField("sector_erase", size=1, description="Erase a sector"),
-            ])
-        self.sector = CSRStorage(description="Sector to erase",
-            fields=[
-                CSRField("sector", size=32, description="Sector to erase")
-            ])
-        self.status = CSRStatus(description="Interface status",
-            fields=[
-                CSRField("wip", size=1, description="Operation in progress (write or erease)")
-            ])
-        # TODO: implement ECC detailed register readback, CRC checking
-
-        # PHY machine mux --------------------------------------------------------------------------
-        # clk_en mux
-        spi_clk_en = Signal()
-        opi_clk_en = Signal()
-        self.sync += clk_en.eq(~self.spi_mode & opi_clk_en | self.spi_mode & spi_clk_en)
-        # tristate mux
-        self.sync += [
-            dq.oe.eq(~self.spi_mode & self.tx),
-            dq_mosi.oe.eq(self.spi_mode | self.tx),
-        ]
-        # data out mux (no data in mux, as we can just sample data in all the time without harm)
-        self.comb += do_mux_rise.eq(~self.spi_mode & do_rise[0] | self.spi_mode & self.mosi)
-        self.comb += do_mux_fall.eq(~self.spi_mode & do_fall[0] | self.spi_mode & self.mosi)
-
-        has_dummy = Signal() # indicates if the current "req" requires dummy cycles to be appended (used for both OPI/SPI)
-        rom_addr = Signal(32, reset=0xFFFFFFFC)  # location of the internal ROM address pointer; reset to invalid address to force an address request on first read
-
-        # MAC/PHY abstraction for OPI
-        txphy_do = Signal(16) # two sources of data out for OPI, one from the PHY, one from MAC
-        txcmd_do = Signal(16)
-        opi_di = Signal(16)
-
-        # internal machines
-        opi_addr = Signal(32)
-        opi_fifo_rd = Signal(32)
-        opi_fifo_wd = Signal(32)
-        opi_reset_rx_req = Signal()
-        opi_reset_rx_ack = Signal()
-        opi_rx_run = Signal()
-
-        rx_almostempty = Signal()
-        rx_almostfull = Signal()
-        rx_empty = Signal()
-        rx_full = Signal()
-        rx_rdcount = Signal(9)
-        rx_rderr = Signal()
-        rx_wrcount = Signal(9)
-        rx_wrerr = Signal()
-        rx_rden = Signal()
-        rx_wren = Signal(reset=1)
-        rx_fifo_rst = Signal()
-
-        wrendiv = Signal()
-        wrendiv2 = Signal()
-        self.specials += [
-            # this next pair of async-clear flip flops creates a write-enable gate that (a) ignores the first
-            # two DQS strobes (as they are pipe-filling) and (b) alternates with the correct phase so we are
-            # sampling 32-bit data into the FIFO.
-            Instance("FDCE", name="FDCE_WREN",
-                 i_C=dqs_iobuf, i_D=~wrendiv, o_Q=wrendiv, i_CE=1, i_CLR=~rx_wren,
-            ),
-            Instance("FDCE", name="FDCE_WREN",
-                 i_C=dqs_iobuf, i_D=~wrendiv2, o_Q=wrendiv2, i_CE=wrendiv & ~wrendiv2, i_CLR=~rx_wren,
-            ),
-            # Direct FIFO primitive is more resource-efficient and faster than migen primitive.
-            Instance("FIFO_DUALCLOCK_MACRO",
-                 p_DEVICE="7SERIES", p_FIFO_SIZE="18Kb", p_DATA_WIDTH=32, p_FIRST_WORD_FALL_THROUGH="TRUE",
-                 p_ALMOST_EMPTY_OFFSET=6, p_ALMOST_FULL_OFFSET=(512- (8*prefetch_lines)),
-
-                 o_ALMOSTEMPTY=rx_almostempty, o_ALMOSTFULL=rx_almostfull,
-                 o_DO=opi_fifo_rd, o_EMPTY=rx_empty, o_FULL=rx_full,
-                 o_RDCOUNT=rx_rdcount, o_RDERR=rx_rderr, o_WRCOUNT=rx_wrcount, o_WRERR=rx_wrerr,
-                 i_DI=opi_fifo_wd, i_RDCLK=ClockSignal(), i_RDEN=rx_rden,
-                 i_WRCLK=dqs_iobuf, i_WREN=wrendiv & wrendiv2, i_RST=rx_fifo_rst,
-            )
-        ]
-        self.sync.dqs += opi_di.eq(self.di)
-        self.comb += opi_fifo_wd.eq(Cat(opi_di, self.di))
-
-        #---------  OPI Rx Phy machine ------------------------------
-        self.submodules.rxphy = rxphy = FSM(reset_state="IDLE")
-        cti_pipe = Signal(3)
-        rxphy_cnt = Signal(3)
-        rxphy.act("IDLE",
-                  If(self.spi_mode,
-                     NextState("IDLE"),
-                  ).Else(
-                      NextValue(self.bus.ack, 0),
-                      If(opi_reset_rx_req,
-                         NextState("WAIT_RESET"),
-                         NextValue(rxphy_cnt, 6),
-                         NextValue(rx_wren, 0),
-                         NextValue(rx_fifo_rst, 1),
-                      ).Elif(opi_rx_run,
-                              NextValue(rx_wren, 1),
-                              If( (self.bus.cyc & self.bus.stb & ~self.bus.we) & ((self.bus.cti == 2) |
-                                 ((self.bus.cti == 7) & ~self.bus.ack) ), # handle case of non-pipelined read, ack is late
-                                 If(~rx_empty,
-                                    NextValue(self.bus.dat_r, opi_fifo_rd),
-                                    rx_rden.eq(1),
-                                    NextValue(opi_addr, opi_addr + 4),
-                                    NextValue(self.bus.ack, 1),
-                                 )
-                              )
-                      )
-                  )
-        )
-        rxphy.act("WAIT_RESET",
-                  NextValue(opi_addr, Cat(Signal(2), self.bus.adr)),
-                  NextValue(rxphy_cnt, rxphy_cnt - 1),
-                  If(rxphy_cnt == 0,
-                     NextValue(rx_fifo_rst, 0),
-                     opi_reset_rx_ack.eq(1),
-                     NextState("IDLE"),
-                  )
-        )
-
-
-        # TxPHY machine: OPI -------------------------------------------------------------------------
-        txphy_cnt = Signal(4)
-        tx_run = Signal()
-        txphy_cs_n = Signal(reset=1)
-        txcmd_cs_n = Signal(reset=1)
-        txphy_clken = Signal()
-        txcmd_clken = Signal()
-        txphy_oe = Signal()
-        txcmd_oe = Signal()
-        self.sync += opi_cs_n.eq( (tx_run & txphy_cs_n) | (~tx_run & txcmd_cs_n) )
-        self.comb += If( tx_run, self.do.eq(txphy_do) ).Else( self.do.eq(txcmd_do) )
-        self.comb += opi_clk_en.eq( (tx_run & txphy_clken) | (~tx_run & txcmd_clken) )
-        self.comb += self.tx.eq( (tx_run & txphy_oe) | (~tx_run & txcmd_oe) )
-        tx_almostfull = Signal()
-        self.sync += tx_almostfull.eq(rx_almostfull) # sync the rx_almostfull signal into the local clock domain
-        txphy_bus = Signal()
-        self.sync += txphy_bus.eq(self.bus.cyc & self.bus.stb & ~self.bus.we & (self.bus.cti == 2))
-        tx_resetcycle = Signal()
-
-        self.submodules.txphy = txphy = FSM(reset_state="RESET")
-        txphy.act("RESET",
-                  NextValue(opi_rx_run, 0),
-                  NextValue(txphy_oe, 0),
-                  NextValue(txphy_cs_n, 1),
-                  NextValue(txphy_clken, 0),
-                  # guarantee that the first state we go to out of reset is a four-cycle burst
-                  NextValue(txphy_cnt, 4),
-                  If(tx_run & ~self.spi_mode, NextState("TX_SETUP"))
-        )
-        txphy.act("TX_SETUP",
-                  NextValue(opi_rx_run, 0),
-                  NextValue(txphy_cnt, txphy_cnt - 1),
-                  If( txphy_cnt > 0,
-                      NextValue(txphy_cs_n, 1)
-                  ).Else(
-                      NextValue(txphy_cs_n, 0),
-                      NextValue(txphy_oe, 1),
-                      NextState("TX_CMD_CS_DELAY"),
-                  )
-        )
-        txphy.act("TX_CMD_CS_DELAY",  # meet setup timing for CS-to-clock
-                  NextState("TX_CMD"),
-        )
-        txphy.act("TX_CMD",
-                  NextValue(txphy_do, 0xEE11),
-                  NextValue(txphy_clken, 1),
-                  NextState("TX_ADRHI"),
-        )
-        txphy.act("TX_ADRHI",
-                  NextValue(txphy_do, opi_addr[16:] & 0x07FF), # mask off unused bits
-                  NextState("TX_ADRLO"),
-        )
-        txphy.act("TX_ADRLO",
-                  NextValue(txphy_do, opi_addr[:16]),
-                  NextValue(txphy_cnt, self.config.fields.dummy - 1),
-                  NextState("TX_DUMMY"),
-        )
-        txphy.act("TX_DUMMY",
-                  NextValue(txphy_oe, 0),
-                  NextValue(txphy_do, 0),
-                  NextValue(txphy_cnt, txphy_cnt - 1),
-                  If(txphy_cnt == 0,
-                     NextValue(opi_rx_run, 1),
-                     If(tx_resetcycle,
-                        NextValue(txphy_clken, 1),
-                        NextValue(opi_reset_rx_req, 1),
-                        NextState("TX_RESET_RX"),
-                     ).Else(
-                        NextState("TX_FILL"),
-                     )
-                  )
-        )
-        txphy.act("TX_FILL",
-                  If(tx_run,
-                     If( ((~txphy_bus & (self.bus.cyc & self.bus.stb & ~self.bus.we & (self.bus.cti == 2))) &
-                          (opi_addr[2:] != self.bus.adr)) | tx_resetcycle,
-                         # it's a new bus cycle, and the requested address is not equal to the current read buffer address
-                         NextValue(txphy_clken, 1),
-                         NextValue(opi_reset_rx_req, 1),
-                         NextState("TX_RESET_RX"),
-                     ).Else(
-                          If(tx_almostfull & ~self.bus.ack,
-                             NextValue(txphy_clken, 0)
-                          ).Else(
-                             NextValue(txphy_clken, 1)
-                          )
-                     ),
-                     If(~(self.bus.cyc & self.bus.stb),
-                        NextValue(opi_rx_run, 0),
-                     ).Else(
-                         NextValue(opi_rx_run, 1),
-                     )
-                  ).Else(
-                      NextValue(txphy_clken, 0),
-                      NextState("RESET")
-                  )
-        )
-        txphy.act("TX_RESET_RX", # keep clocking the RX until it acknowledges a reset
-                  NextValue(opi_rx_run, 0),
-                  NextValue(opi_reset_rx_req, 0),
-                  If(opi_reset_rx_ack,
-                     NextValue(txphy_clken, 0),
-                     NextValue(txphy_cnt, 0), # 1 cycle CS on back-to-back reads
-                     NextValue(txphy_cs_n, 1),
-                     NextState("TX_SETUP"),
-                  ).Else(
-                      NextValue(txphy_clken, 1),
-                  )
-        )
-
-        #---------  OPI CMD machine ------------------------------
-        self.submodules.opicmd = opicmd = FSM(reset_state="RESET")
-        opicmd.act("RESET",
-                   NextValue(txcmd_do, 0),
-                   NextValue(txcmd_oe, 0),
-                   NextValue(tx_run, 0),
-                   NextValue(txcmd_cs_n, 1),
-                   If(~self.spi_mode,
-                      NextState("IDLE"),
-                   ).Else(NextState("RESET_CYCLE")),
-        )
-        opicmd.act("RESET_CYCLE",
-                   NextValue(txcmd_cs_n, 0),
-                   If(opi_reset_rx_ack,
-                      NextValue(tx_run, 1),
-                      NextState("IDLE"),
-                   ).Else(
-                       NextValue(tx_run, 1),
-                       tx_resetcycle.eq(1),
-                   )
-        )
-        opicmd.act("IDLE",
-                   NextValue(txcmd_cs_n, 1),
-                   If(~self.spi_mode,  # this machine stays in idle once spi_mode is dropped
-                      ## The full form of this machine is as follows:
-                      # - First check if there is a CSR special command pending
-                      #   - if so, wait until the current bus cycle is done, then de-assert tx_run
-                      #   - then run the command
-                      # - Else wait until a bus cycle, and once it happens, put the system into run mode
-                      If(self.bus.cyc & self.bus.stb,
-                         If(~self.bus.we & (self.bus.cti ==2),
-                            NextState("TX_RUN")
-                         ).Else(
-                             # handle other cases here, e.g. what do we do if we get a write? probably
-                             # should just ACK it without doing anything so the CPU doesn't freeze...
-                         )
-                      ).Elif(self.command.re,
-                             NextState("DISPATCH_CMD"),
-                      )
-                   )
-        )
-        opicmd.act("TX_RUN",
-                   NextValue(tx_run, 1),
-                   If(self.command.re, # respond to commands
-                      NextState("WAIT_DISPATCH")
-                   )
-        )
-        opicmd.act("WAIT_DISPATCH", # wait until the current cycle is done, then stop TX and dispatch command
-                   If( ~(self.bus.cyc & self.bus.stb),
-                      NextValue(tx_run, 0),
-                      NextState("DISPATCH_CMD")
-                   )
-        )
-        opicmd.act("DISPATCH_CMD",
-                   If(self.command.fields.sector_erase,
-                      NextState("DO_SECTOR_ERASE"),
-                   ).Else(
-                       NextState("IDLE"),
-                   )
-        )
-        opicmd.act("DO_SECTOR_ERASE",
-                   # placeholder
-        )
-
-        # MAC/PHY abstraction for the SPI machine
-        spi_req = Signal()
-        spi_ack = Signal()
-        spi_do = Signal(8) # this is the API to the machine
-        spi_di = Signal(8)
-
-        # PHY machine: SPI -------------------------------------------------------------------------
-
-        # internal signals are:
-        # selection - self.spi_mode
-        # OPI - self.do(16), self.di(16), self.tx
-        # SPI - self.mosi, self.miso
-        # cs_n - both
-        # ecs_n - OPI
-        # clk_en - both
-
-        spicount = Signal(5)
-        spi_so = Signal(8) # this internal to the machine
-        spi_si = Signal(8)
-        spi_dummy = Signal()
-        spi_di_load = Signal() # spi_do load is pipelined back one cycle using this mechanism
-        spi_di_load2 = Signal()
-        spi_ack_pipe = Signal()
-        self.sync += [ # pipelining is required the MISO path is very slow (IOB->fabric FD), and a falling-edge retiming reg is used to meet timing
-            spi_di_load2.eq(spi_di_load),
-            If(spi_di_load2, spi_di.eq(Cat(self.miso, spi_si[:-1]))).Else(spi_di.eq(spi_di)),
-            spi_ack.eq(spi_ack_pipe),
-        ]
-        self.comb += self.mosi.eq(spi_so[7])
-        self.sync += spi_si.eq(Cat(self.miso, spi_si[:-1]))
-        self.submodules.spiphy = spiphy = FSM(reset_state="RESET")
-        spiphy.act("RESET",
-                   If(spi_req,
-                      NextState("REQ"),
-                      NextValue(spicount, 7),
-                      NextValue(spi_clk_en, 1),
-                      NextValue(spi_so, spi_do),
-                      NextValue(spi_dummy, has_dummy),
-                   ).Else(
-                       NextValue(spi_clk_en, 0),
-                       NextValue(spi_ack_pipe, 0),
-                       NextValue(spicount, 0),
-                       NextValue(spi_dummy, 0),
-                   )
-        )
-        spiphy.act("REQ",
-                   If(spicount > 0,
-                      NextValue(spicount, spicount-1),
-                      NextValue(spi_clk_en, 1),
-                      NextValue(spi_so, Cat(0, spi_so[:-1])),
-                      NextValue(spi_ack_pipe, 0),
-                   ).Elif( (spicount == 0) & spi_req & ~spi_dummy, # back-to-back transaction
-                          NextValue(spi_clk_en, 1),
-                          NextValue(spicount, 7),
-                          NextValue(spi_clk_en, 1),
-                          NextValue(spi_so, spi_do), # reload the so register
-                          spi_di_load.eq(1), # "naked" .eq() create single-cycle pulses that default back to 0
-                          NextValue(spi_ack_pipe, 1),
-                          NextValue(spi_dummy, has_dummy),
-                   ).Elif( (spicount == 0) & ~spi_req & ~spi_dummy, # go back to idle
-                          spi_di_load.eq(1),
-                          NextValue(spi_ack_pipe, 1),
-                          NextValue(spi_clk_en, 0),
-                          NextState("RESET"),
-                   ).Elif( (spicount == 0) & spi_dummy,
-                          spi_di_load.eq(1),
-                          NextValue(spicount, self.config.fields.dummy),
-                          NextValue(spi_clk_en, 1),
-                          NextValue(spi_ack_pipe, 0),
-                          NextValue(spi_so, 0),  # do a dummy with '0' as the output
-                          NextState("DUMMY"),
-                   ) # this actually should be a fully defined situation, no "Else" applicable
-        )
-        spiphy.act("DUMMY",
-                   If(spicount > 1, # instead of doing dummy-1, we stop at count == 1
-                      NextValue(spicount, spicount - 1),
-                      NextValue(spi_clk_en, 1),
-                   ).Elif(spicount <= 1 & spi_req,
-                          NextValue(spi_clk_en, 1),
-                          NextValue(spicount, 7),
-                          NextValue(spi_so, spi_do),  # reload the so register
-                          NextValue(spi_ack_pipe, 1), # finally ack the cycle
-                          NextValue(spi_dummy, has_dummy),
-                   ).Else(
-                       NextValue(spi_clk_en, 0),
-                       NextValue(spi_ack_pipe, 1),  # finally ack the cycle
-                       NextState("RESET")
-                   )
-        )
-
-
-        # SPI MAC machine -------------------------------------------------------------------------------
-        # default active on boot
-        addr_updated = Signal()
-        d_to_wb = Signal(32) # data going back to wishbone
-        mac_count = Signal(5)
-        new_cycle = Signal(1)
-        self.submodules.mac = mac = FSM(reset_state="RESET")
-        mac.act("RESET",
-                NextValue(self.spi_mode, 1),
-                NextValue(addr_updated, 0),
-                NextValue(d_to_wb, 0),
-                NextValue(spi_cs_n, 1),
-                NextValue(has_dummy, 0),
-                NextValue(spi_do, 0),
-                NextValue(spi_req, 0),
-                NextValue(mac_count, 0),
-                NextState("WAKEUP_PRE"),
-                NextValue(new_cycle, 1),
-                If(self.spi_mode, NextValue(self.bus.ack, 0)),
-        )
-        if spiread:
-            mac.act("IDLE",
-                    If(self.spi_mode, # this machine stays in idle once spi_mode is dropped
-                        NextValue(self.bus.ack, 0),
-                        If((self.bus.cyc == 1) & (self.bus.stb == 1) & (self.bus.we == 0) & (self.bus.cti != 7), # read cycle requested, not end-of-burst
-                           If( (rom_addr[2:] != self.bus.adr) & new_cycle,
-                              NextValue(rom_addr, Cat(Signal(2, reset=0), self.bus.adr)),
-                              NextValue(addr_updated, 1),
-                              NextValue(spi_cs_n, 1), # raise CS in anticipation of a new address cycle
-                              NextState("SPI_READ_32_CS"),
-                           ).Elif( (rom_addr[2:] == self.bus.adr) | (~new_cycle & self.bus.cti == 2),
-                                   NextValue(mac_count, 3),  # get another beat of 4 bytes at the next address
-                                   NextState("SPI_READ_32")
-                           ).Else(
-                               NextValue(addr_updated, 0),
-                               NextValue(spi_cs_n, 0),
-                               NextState("SPI_READ_32"),
-                               NextValue(mac_count, 3),  # prep the MAC state counter to count out 4 bytes
-                           ),
-                        ).Elif(self.command.fields.wakeup,
-                               NextValue(spi_cs_n, 1),
-                               NextValue(self.command.storage, 0),  # clear all pending commands
-                               NextState("WAKEUP_PRE"),
-                        )
-                    )
-            )
-        else:
-            mac.act("IDLE",
-                    If(self.spi_mode, # this machine stays in idle once spi_mode is dropped
-                        If(self.command.fields.wakeup,
-                               NextValue(spi_cs_n, 1),
-                               NextValue(self.command.storage, 0),  # clear all pending commands
-                               NextState("WAKEUP_PRE"),
-                        )
-                    )
-            )
-
-        #---------  wakup chip ------------------------------
-        mac.act("WAKEUP_PRE",
-                NextValue(spi_cs_n, 1), # why isn't this sticking? i shouldn't have to put this here
-                NextValue(mac_count, 4),
-                NextState("WAKEUP_PRE_CS_WAIT")
-        )
-        mac.act("WAKEUP_PRE_CS_WAIT",
-                NextValue(mac_count, mac_count-1),
-                If(mac_count == 0,
-                   NextState("WAKEUP_WUP"),
-                   NextValue(spi_cs_n, 0),
-                )
-        )
-        mac.act("WAKEUP_WUP",
-                NextValue(mac_count, mac_count-1),
-                If(mac_count == 0,
-                   NextValue(spi_cs_n, 0),
-                   NextValue(spi_do, 0xab),  # wakeup from deep sleep
-                   NextValue(spi_req, 1),
-                   NextState("WAKEUP_WUP_WAIT"),
-                )
-        )
-        mac.act("WAKEUP_WUP_WAIT",
-                NextValue(spi_req, 0),
-                If(spi_ack,
-                   NextValue(spi_cs_n, 1),  # raise CS
-                   NextValue(mac_count, 4),  # for >4 cycles per specsheet
-                   NextState("WAKEUP_CR2_WREN_1")
-                )
-        )
-
-        #---------  WREN+CR2 - dummy cycles ------------------------------
-        mac.act("WAKEUP_CR2_WREN_1",
-                NextValue(mac_count, mac_count-1),
-                If(mac_count == 0,
-                   NextValue(spi_cs_n, 0),
-                   NextValue(spi_do, 0x06),  # WREN to unlock CR2 writing
-                   NextValue(spi_req, 1),
-                   NextState("WAKEUP_CR2_WREN_1_WAIT"),
-                )
-        )
-        mac.act("WAKEUP_CR2_WREN_1_WAIT",
-                NextValue(spi_req, 0),
-                If(spi_ack,
-                   NextValue(spi_cs_n, 1),
-                   NextValue(mac_count, 4),
-                   NextState("WAKEUP_CR2_DUMMY_CMD"),
-                )
-        )
-        mac.act("WAKEUP_CR2_DUMMY_CMD",
-                NextValue(mac_count, mac_count-1),
-                If(mac_count == 0,
-                   NextValue(spi_cs_n, 0),
-                   NextValue(spi_do, 0x72), # CR2 command
-                   NextValue(spi_req, 1),
-                   NextValue(mac_count, 2),
-                   NextState("WAKEUP_CR2_DUMMY_ADRHI"),
-                )
-        )
-        mac.act("WAKEUP_CR2_DUMMY_ADRHI",
-                NextValue(spi_do, 0x00),   # we want to send 00_00_03_00
-                If(spi_ack,
-                   NextValue(mac_count, mac_count -1),
-                ),
-                If(mac_count == 0,
-                   NextState("WAKEUP_CR2_DUMMY_ADRMID")
-                )
-        )
-        mac.act("WAKEUP_CR2_DUMMY_ADRMID",
-                NextValue(spi_do, 0x03),
-                If(spi_ack, NextState("WAKEUP_CR2_DUMMY_ADRLO")),
-        )
-        mac.act("WAKEUP_CR2_DUMMY_ADRLO",
-                NextValue(spi_do, 0x00),
-                If(spi_ack, NextState("WAKEUP_CR2_DUMMY_DATA")),
-        )
-        mac.act("WAKEUP_CR2_DUMMY_DATA",
-                NextValue(spi_do, 0x05),   # 10 dummy cycles as required for 84MHz-104MHz operation
-                If(spi_ack, NextState("WAKEUP_CR2_DUMMY_WAIT")),
-        )
-        mac.act("WAKEUP_CR2_DUMMY_WAIT",
-                NextValue(spi_req, 0),
-                If(spi_ack,
-                   NextValue(spi_cs_n, 1),
-                   NextValue(mac_count, 4),
-                   NextState("WAKEUP_CR2_WREN_2")
-                )
-        )
-
-        #---------  WREN+CR2 to DOPI mode ------------------------------
-        mac.act("WAKEUP_CR2_WREN_2",
-                NextValue(mac_count, mac_count-1),
-                If(mac_count == 0,
-                   NextValue(spi_cs_n, 0),
-                   NextValue(spi_do, 0x06),  # WREN to unlock CR2 writing
-                   NextValue(spi_req, 1),
-                   NextState("WAKEUP_CR2_WREN_2_WAIT"),
-                )
-        )
-        mac.act("WAKEUP_CR2_WREN_2_WAIT",
-                NextValue(spi_req, 0),
-                If(spi_ack,
-                   NextValue(spi_cs_n, 1),
-                   NextValue(mac_count, 4),
-                   NextState("WAKEUP_CR2_DOPI_CMD"),
-                )
-        )
-        mac.act("WAKEUP_CR2_DOPI_CMD",
-                NextValue(mac_count, mac_count-1),
-                If(mac_count == 0,
-                   NextValue(spi_cs_n, 0),
-                   NextValue(spi_do, 0x72),  # CR2 command
-                   NextValue(spi_req, 1),
-                   NextValue(mac_count, 4),
-                   NextState("WAKEUP_CR2_DOPI_ADR"),
-                )
-        )
-        mac.act("WAKEUP_CR2_DOPI_ADR",  # send 0x00_00_00_00 as address
-                NextValue(spi_do, 0x00),  # no need to raise CS or lower spi_req, this is back-to-back
-                If(spi_ack,
-                   NextValue(mac_count, mac_count - 1),
-                ),
-                If(mac_count == 0,
-                   NextState("WAKEUP_CR2_DOPI_DATA"),
-                )
-        ),
-        mac.act("WAKEUP_CR2_DOPI_DATA",
-                NextValue(spi_do, 2),    # enable DOPI mode
-                If(spi_ack, NextState("WAKEUP_CR2_DOPI_WAIT")),
-        )
-        mac.act("WAKEUP_CR2_DOPI_WAIT", # trailing CS wait
-                NextValue(spi_req, 0),
-                If(spi_ack,
-                   NextValue(spi_cs_n, 1),
-                   NextValue(mac_count, 4),
-                   NextState("WAKEUP_CS_EXIT")
-                )
-        )
-        mac.act("WAKEUP_CS_EXIT",
-                NextValue(self.spi_mode, 0),  # now enter DOPI mode
-                NextValue(mac_count, mac_count-1),
-                If(mac_count == 0,
-                   NextState("IDLE"),
-                )
-        )
-
-        if spiread:
-            #---------  SPI read machine ------------------------------
-            mac.act("SPI_READ_32",
-                    If(addr_updated,
-                       NextState("SPI_READ_32_CS"),
-                       NextValue(has_dummy, 0),
-                       NextValue(mac_count, 3),
-                       NextValue(spi_cs_n, 1),
-                       NextValue(spi_req, 0),
-                    ).Else(
-                        If(mac_count > 0,
-                           NextValue(has_dummy, 0),
-                           NextValue(spi_req, 1),
-                           NextState("SPI_READ_32_D")
-                        ).Else(
-                            NextValue(spi_req, 0),
-                            If(spi_ack,
-                               If(self.spi_mode,  # protect these in a spi_mode mux to prevent excess inference of logic to handle otherwise implicit dual-master situation
-                                   NextValue(self.bus.dat_r, Cat(d_to_wb[8:],spi_di)),
-                                   NextValue(self.bus.ack, 1),
-                               ),
-                               NextValue(rom_addr, rom_addr + 1),
-                               NextState("IDLE")
-                            )
-                        )
-                    )
-            )
-            mac.act("SPI_READ_32_D",
-                    If(spi_ack,
-                       # shift in one byte at a time to d_to_wb(32)
-                       NextValue(d_to_wb, Cat(d_to_wb[8:],spi_di,)),
-                       NextValue(mac_count, mac_count - 1),
-                       NextState("SPI_READ_32"),
-                       NextValue(rom_addr, rom_addr + 1),
-                    )
-            )
-            mac.act("SPI_READ_32_CS",
-                    NextValue(mac_count, mac_count-1),
-                    If(mac_count == 0,
-                       NextValue(spi_cs_n, 0),
-                       NextState("SPI_READ_32_A0"),
-                    )
-            )
-            mac.act("SPI_READ_32_A0",
-                    NextValue(spi_do, 0x0c), # 32-bit address write for "fast read" command
-                    NextValue(spi_req, 1),
-                    NextState("SPI_READ_32_A1"),
-            )
-            mac.act("SPI_READ_32_A1",
-                    NextValue(spi_do, rom_addr[24:] & 0x7), # queue up MSB to send, leave req high; mask off unused high bits
-                    If(spi_ack,
-                       NextState("SPI_READ_32_A2"),
-                    )
-            )
-            mac.act("SPI_READ_32_A2",
-                    NextValue(spi_do, rom_addr[16:24]),
-                    If(spi_ack,
-                       NextState("SPI_READ_32_A3"),
-                    )
-            )
-            mac.act("SPI_READ_32_A3",
-                    NextValue(spi_do, rom_addr[8:16]),
-                    If(spi_ack,
-                       NextState("SPI_READ_32_A4"),
-                    )
-            )
-            mac.act("SPI_READ_32_A4",
-                    NextValue(spi_do, rom_addr[:8]),
-                    If(spi_ack,
-                       NextState("SPI_READ_32_A5"),
-                    )
-            )
-            mac.act("SPI_READ_32_A5",
-                    NextValue(spi_do, 0),
-                    If(spi_ack,
-                       NextState("SPI_READ_32_DUMMY")
-                    )
-            )
-            mac.act("SPI_READ_32_DUMMY",
-                    NextValue(spi_req, 0),
-                    NextValue(addr_updated, 0),
-                    If(spi_ack,
-                       NextState("SPI_READ_32"),
-                       NextValue(mac_count, 3),  # prep the MAC state counter to count out 4 bytes
-                    ).Else(
-                        NextState("SPI_READ_32_DUMMY")
-                    )
-            )
-
-        # Handle ECS_n -----------------------------------------------------------------------------
-        # treat ECS_N as an async signal -- just a "rough guide" of problems
-        ecs_n = Signal()
-        self.specials += MultiReg(pads.ecs_n, ecs_n)
-
-        self.submodules.ev = EventManager()
-        self.ev.ecc_error = EventSourceProcess(description="An ECC event has happened on the current block; triggered by falling edge of ECC_N")
-        self.ev.finalize()
-        self.comb += self.ev.ecc_error.trigger.eq(ecs_n)
-        ecc_reported = Signal()
-        ecs_n_delay = Signal()
-        ecs_pulse = Signal()
-
-        self.ecc_address = CSRStatus(fields=[
-            CSRField("ecc_address", size=32, description="Address of the most recent ECC event")
-        ])
-        self.ecc_status = CSRStatus(fields=[
-            CSRField("ecc_error", size=1, description="Live status of the ECS_N bit (ECC error on current packet when low)"),
-            CSRField("ecc_overflow", size=1, description="More than one ECS_N event has happened since th last time ecc_address was checked")
-        ])
-
-        self.comb += self.ecc_status.fields.ecc_error.eq(ecs_n)
-        self.comb += [
-            ecs_pulse.eq(ecs_n_delay & ~ecs_n), # falling edge -> positive pulse
-            If(ecs_pulse,
-               self.ecc_address.fields.ecc_address.eq(rom_addr),
-               If(ecc_reported,
-                  self.ecc_status.fields.ecc_overflow.eq(1)
-               ).Else(
-                   self.ecc_status.fields.ecc_overflow.eq(self.ecc_status.fields.ecc_overflow),
-               )
-            ).Else(
-                self.ecc_address.fields.ecc_address.eq(self.ecc_address.fields.ecc_address),
-                If(self.ecc_status.we,
-                   self.ecc_status.fields.ecc_overflow.eq(0),
-                ).Else(
-                    self.ecc_status.fields.ecc_overflow.eq(self.ecc_status.fields.ecc_overflow),
-                )
-            )
-        ]
-        self.sync += [
-            ecs_n_delay.eq(ecs_n),
-            If(ecs_pulse,
-               ecc_reported.eq(1)
-            ).Elif(self.ecc_address.we,
-                ecc_reported.eq(0)
-            )
-        ]