FfData ff(nullptr, cell);
// $ff / $_FF_ cell: not supported.
- if (ff.has_d && !ff.has_clk && !ff.has_en)
+ if (ff.has_gclk)
return false;
std::string reg_name = cellname(cell);
for (int i = 0; i < chunks; i++)
{
- SigSpec sig_d;
+ SigSpec sig_d, sig_ad;
Const val_arst, val_srst;
- std::string reg_bit_name, sig_set_name, sig_clr_name, sig_arst_name;
+ std::string reg_bit_name, sig_set_name, sig_clr_name, sig_arst_name, sig_aload_name;
if (chunky) {
reg_bit_name = stringf("%s[%d]", reg_name.c_str(), i);
- if (ff.has_d)
+ if (ff.has_gclk || ff.has_clk)
sig_d = ff.sig_d[i];
+ if (ff.has_aload)
+ sig_ad = ff.sig_ad[i];
} else {
reg_bit_name = reg_name;
- if (ff.has_d)
- sig_d = ff.sig_d;
+ sig_d = ff.sig_d;
+ sig_ad = ff.sig_ad;
}
if (ff.has_arst)
val_arst = chunky ? ff.val_arst[i] : ff.val_arst;
val_srst = chunky ? ff.val_srst[i] : ff.val_srst;
// If there are constants in the sensitivity list, replace them with an intermediate wire
- if (ff.has_sr) {
- if (ff.sig_set[i].wire == NULL)
- {
- sig_set_name = next_auto_id();
- f << stringf("%s" "wire %s = ", indent.c_str(), sig_set_name.c_str());
- dump_const(f, ff.sig_set[i].data);
- f << stringf(";\n");
- }
- if (ff.sig_clr[i].wire == NULL)
- {
- sig_clr_name = next_auto_id();
- f << stringf("%s" "wire %s = ", indent.c_str(), sig_clr_name.c_str());
- dump_const(f, ff.sig_clr[i].data);
- f << stringf(";\n");
- }
- } else if (ff.has_arst) {
- if (ff.sig_arst[i].wire == NULL)
- {
- sig_arst_name = next_auto_id();
- f << stringf("%s" "wire %s = ", indent.c_str(), sig_arst_name.c_str());
- dump_const(f, ff.sig_arst[i].data);
- f << stringf(";\n");
+ if (ff.has_clk) {
+ if (ff.has_sr) {
+ if (ff.sig_set[i].wire == NULL)
+ {
+ sig_set_name = next_auto_id();
+ f << stringf("%s" "wire %s = ", indent.c_str(), sig_set_name.c_str());
+ dump_const(f, ff.sig_set[i].data);
+ f << stringf(";\n");
+ }
+ if (ff.sig_clr[i].wire == NULL)
+ {
+ sig_clr_name = next_auto_id();
+ f << stringf("%s" "wire %s = ", indent.c_str(), sig_clr_name.c_str());
+ dump_const(f, ff.sig_clr[i].data);
+ f << stringf(";\n");
+ }
+ } else if (ff.has_arst) {
+ if (ff.sig_arst[0].wire == NULL)
+ {
+ sig_arst_name = next_auto_id();
+ f << stringf("%s" "wire %s = ", indent.c_str(), sig_arst_name.c_str());
+ dump_const(f, ff.sig_arst[0].data);
+ f << stringf(";\n");
+ }
+ } else if (ff.has_aload) {
+ if (ff.sig_aload[0].wire == NULL)
+ {
+ sig_aload_name = next_auto_id();
+ f << stringf("%s" "wire %s = ", indent.c_str(), sig_aload_name.c_str());
+ dump_const(f, ff.sig_aload[0].data);
+ f << stringf(";\n");
+ }
}
}
f << stringf("%s", sig_clr_name.c_str());
else
dump_sigspec(f, ff.sig_clr[i]);
-
} else if (ff.has_arst) {
f << stringf(", %sedge ", ff.pol_arst ? "pos" : "neg");
- if (ff.sig_arst[i].wire == NULL)
+ if (ff.sig_arst[0].wire == NULL)
f << stringf("%s", sig_arst_name.c_str());
else
dump_sigspec(f, ff.sig_arst);
+ } else if (ff.has_aload) {
+ f << stringf(", %sedge ", ff.pol_aload ? "pos" : "neg");
+ if (ff.sig_aload[0].wire == NULL)
+ f << stringf("%s", sig_aload_name.c_str());
+ else
+ dump_sigspec(f, ff.sig_aload);
}
f << stringf(")\n");
f << stringf("%s" " else ", indent.c_str());
} else if (ff.has_arst) {
f << stringf("if (%s", ff.pol_arst ? "" : "!");
- if (ff.sig_arst[i].wire == NULL)
+ if (ff.sig_arst[0].wire == NULL)
f << stringf("%s", sig_arst_name.c_str());
else
dump_sigspec(f, ff.sig_arst);
dump_sigspec(f, val_arst);
f << stringf(";\n");
f << stringf("%s" " else ", indent.c_str());
+ } else if (ff.has_aload) {
+ f << stringf("if (%s", ff.pol_aload ? "" : "!");
+ if (ff.sig_aload[0].wire == NULL)
+ f << stringf("%s", sig_aload_name.c_str());
+ else
+ dump_sigspec(f, ff.sig_aload);
+ f << stringf(") %s <= ", reg_bit_name.c_str());
+ dump_sigspec(f, sig_ad);
+ f << stringf(";\n");
+ f << stringf("%s" " else ", indent.c_str());
}
- if (ff.has_srst && ff.has_en && ff.ce_over_srst) {
- f << stringf("if (%s", ff.pol_en ? "" : "!");
- dump_sigspec(f, ff.sig_en);
+ if (ff.has_srst && ff.has_ce && ff.ce_over_srst) {
+ f << stringf("if (%s", ff.pol_ce ? "" : "!");
+ dump_sigspec(f, ff.sig_ce);
f << stringf(")\n");
f << stringf("%s" " if (%s", indent.c_str(), ff.pol_srst ? "" : "!");
dump_sigspec(f, ff.sig_srst);
f << stringf(";\n");
f << stringf("%s" " else ", indent.c_str());
}
- if (ff.has_en) {
- f << stringf("if (%s", ff.pol_en ? "" : "!");
- dump_sigspec(f, ff.sig_en);
+ if (ff.has_ce) {
+ f << stringf("if (%s", ff.pol_ce ? "" : "!");
+ dump_sigspec(f, ff.sig_ce);
f << stringf(") ");
}
}
f << stringf("%s" " else if (%s", indent.c_str(), ff.pol_set ? "" : "!");
dump_sigspec(f, ff.sig_set[i]);
f << stringf(") %s = 1'b1;\n", reg_bit_name.c_str());
- if (ff.has_d)
+ if (ff.has_aload)
f << stringf("%s" " else ", indent.c_str());
} else if (ff.has_arst) {
f << stringf("if (%s", ff.pol_arst ? "" : "!");
f << stringf(") %s = ", reg_bit_name.c_str());
dump_sigspec(f, val_arst);
f << stringf(";\n");
- if (ff.has_d)
+ if (ff.has_aload)
f << stringf("%s" " else ", indent.c_str());
}
- if (ff.has_d) {
- f << stringf("if (%s", ff.pol_en ? "" : "!");
- dump_sigspec(f, ff.sig_en);
+ if (ff.has_aload) {
+ f << stringf("if (%s", ff.pol_aload ? "" : "!");
+ dump_sigspec(f, ff.sig_aload);
f << stringf(") %s = ", reg_bit_name.c_str());
- dump_sigspec(f, sig_d);
+ dump_sigspec(f, sig_ad);
f << stringf(";\n");
}
}
YOSYS_NAMESPACE_BEGIN
+// Describes a flip-flop or a latch.
+//
+// If has_gclk, this is a formal verification FF with implicit global clock:
+// Q is simply previous cycle's D.
+//
+// Otherwise, the FF/latch can have any number of features selected by has_*
+// attributes that determine Q's value (in order of decreasing priority):
+//
+// - on start, register is initialized to val_init
+// - if has_sr is present:
+// - sig_clr is per-bit async clear, and sets the corresponding bit to 0
+// if active
+// - sig_set is per-bit async set, and sets the corresponding bit to 1
+// if active
+// - if has_arst is present:
+// - sig_arst is whole-reg async reset, and sets the whole register to val_arst
+// - if has_aload is present:
+// - sig_aload is whole-reg async load (aka latch gate enable), and sets the whole
+// register to sig_ad
+// - if has_clk is present, and we're currently on a clock edge:
+// - if has_ce is present and ce_over_srst is true:
+// - ignore clock edge (don't change value) unless sig_ce is active
+// - if has_srst is present:
+// - sig_srst is whole-reg sync reset and sets the register to val_srst
+// - if has_ce is present and ce_over_srst is false:
+// - ignore clock edge (don't change value) unless sig_ce is active
+// - set whole reg to sig_d
+// - if nothing of the above applies, the reg value remains unchanged
+//
+// Since the yosys FF cell library isn't fully generic, not all combinations
+// of the features above can be supported:
+//
+// - only one of has_srst, has_arst, has_sr can be used
+// - if has_clk is used together with has_aload, then has_srst, has_arst,
+// has_sr cannot be used
+//
+// The valid feature combinations are thus:
+//
+// - has_clk + optional has_ce [dff/dffe]
+// - has_clk + optional has_ce + has_arst [adff/adffe]
+// - has_clk + optional has_ce + has_aload [aldff/aldffe]
+// - has_clk + optional has_ce + has_sr [dffsr/dffsre]
+// - has_clk + optional has_ce + has_srst [sdff/sdffe/sdffce]
+// - has_aload [dlatch]
+// - has_aload + has_arst [adlatch]
+// - has_aload + has_sr [dlatchsr]
+// - has_sr [sr]
+// - has_arst [does not correspond to a native cell, represented as dlatch with const D input]
+// - empty set [not a cell — will be emitted as a simple direct connection]
+
struct FfData {
FfInitVals *initvals;
+ // The FF output.
SigSpec sig_q;
+ // The sync data input, present if has_clk or has_gclk.
SigSpec sig_d;
+ // The async data input, present if has_aload.
+ SigSpec sig_ad;
+ // The sync clock, present if has_clk.
SigSpec sig_clk;
- SigSpec sig_en;
+ // The clock enable, present if has_ce.
+ SigSpec sig_ce;
+ // The async load enable, present if has_aload.
+ SigSpec sig_aload;
+ // The async reset, preset if has_arst.
SigSpec sig_arst;
+ // The sync reset, preset if has_srst.
SigSpec sig_srst;
+ // The async clear (per-lane), present if has_sr.
SigSpec sig_clr;
+ // The async set (per-lane), present if has_sr.
SigSpec sig_set;
- bool has_d;
+ // True if this is a clocked (edge-sensitive) flip-flop.
bool has_clk;
- bool has_en;
+ // True if this is a $ff, exclusive with every other has_*.
+ bool has_gclk;
+ // True if this FF has a clock enable. Depends on has_clk.
+ bool has_ce;
+ // True if this FF has async load function — this includes D latches.
+ // If this and has_clk are both set, has_arst and has_sr cannot be set.
+ bool has_aload;
+ // True if this FF has sync set/reset. Depends on has_clk, exclusive
+ // with has_arst, has_sr, has_aload.
bool has_srst;
+ // True if this FF has async set/reset. Exclusive with has_srst,
+ // has_sr. If this and has_clk are both set, has_aload cannot be set.
bool has_arst;
+ // True if this FF has per-bit async set + clear. Exclusive with
+ // has_srst, has_arst. If this and has_clk are both set, has_aload
+ // cannot be set.
bool has_sr;
+ // If has_ce and has_srst are both set, determines their relative
+ // priorities: if true, inactive ce disables srst; if false, srst
+ // operates independent of ce.
bool ce_over_srst;
+ // True if this FF is a fine cell, false if it is a coarse cell.
+ // If true, width must be 1.
bool is_fine;
+ // Polarities, corresponding to sig_*. True means active-high, false
+ // means active-low.
bool pol_clk;
- bool pol_en;
+ bool pol_ce;
+ bool pol_aload;
bool pol_arst;
bool pol_srst;
bool pol_clr;
bool pol_set;
+ // The value loaded by sig_arst.
Const val_arst;
+ // The value loaded by sig_srst.
Const val_srst;
+ // The initial value at power-up.
Const val_init;
- Const val_d;
- bool d_is_const;
+ // The FF data width in bits.
int width;
dict<IdString, Const> attributes;
FfData(FfInitVals *initvals = nullptr, Cell *cell = nullptr) : initvals(initvals) {
width = 0;
- has_d = true;
has_clk = false;
- has_en = false;
+ has_gclk = false;
+ has_ce = false;
+ has_aload = false;
has_srst = false;
has_arst = false;
has_sr = false;
ce_over_srst = false;
is_fine = false;
pol_clk = false;
- pol_en = false;
+ pol_aload = false;
+ pol_ce = false;
pol_arst = false;
pol_srst = false;
pol_clr = false;
pol_set = false;
- d_is_const = false;
if (!cell)
return;
std::string type_str = cell->type.str();
if (cell->type.in(ID($ff), ID($dff), ID($dffe), ID($dffsr), ID($dffsre), ID($adff), ID($adffe), ID($sdff), ID($sdffe), ID($sdffce), ID($dlatch), ID($adlatch), ID($dlatchsr), ID($sr))) {
- if (cell->type == ID($sr)) {
- has_d = false;
- } else {
+ if (cell->type == ID($ff)) {
+ has_gclk = true;
sig_d = cell->getPort(ID::D);
- }
- if (!cell->type.in(ID($ff), ID($dlatch), ID($adlatch), ID($dlatchsr), ID($sr))) {
+ } else if (cell->type == ID($sr)) {
+ // No data input at all.
+ } else if (cell->type.in(ID($dlatch), ID($adlatch), ID($dlatchsr))) {
+ has_aload = true;
+ sig_aload = cell->getPort(ID::EN);
+ pol_aload = cell->getParam(ID::EN_POLARITY).as_bool();
+ sig_ad = cell->getPort(ID::D);
+ } else {
has_clk = true;
sig_clk = cell->getPort(ID::CLK);
pol_clk = cell->getParam(ID::CLK_POLARITY).as_bool();
+ sig_d = cell->getPort(ID::D);
}
- if (cell->type.in(ID($dffe), ID($dffsre), ID($adffe), ID($sdffe), ID($sdffce), ID($dlatch), ID($adlatch), ID($dlatchsr))) {
- has_en = true;
- sig_en = cell->getPort(ID::EN);
- pol_en = cell->getParam(ID::EN_POLARITY).as_bool();
+ if (cell->type.in(ID($dffe), ID($dffsre), ID($adffe), ID($sdffe), ID($sdffce))) {
+ has_ce = true;
+ sig_ce = cell->getPort(ID::EN);
+ pol_ce = cell->getParam(ID::EN_POLARITY).as_bool();
}
if (cell->type.in(ID($dffsr), ID($dffsre), ID($dlatchsr), ID($sr))) {
has_sr = true;
}
} else if (cell->type == ID($_FF_)) {
is_fine = true;
+ has_gclk = true;
sig_d = cell->getPort(ID::D);
} else if (type_str.substr(0, 5) == "$_SR_") {
is_fine = true;
- has_d = false;
has_sr = true;
pol_set = type_str[5] == 'P';
pol_clr = type_str[6] == 'P';
has_clk = true;
pol_clk = type_str[7] == 'P';
sig_clk = cell->getPort(ID::C);
- has_en = true;
- pol_en = type_str[8] == 'P';
- sig_en = cell->getPort(ID::E);
+ has_ce = true;
+ pol_ce = type_str[8] == 'P';
+ sig_ce = cell->getPort(ID::E);
} else if (type_str.substr(0, 6) == "$_DFF_" && type_str.size() == 10) {
is_fine = true;
sig_d = cell->getPort(ID::D);
pol_arst = type_str[8] == 'P';
sig_arst = cell->getPort(ID::R);
val_arst = type_str[9] == '1' ? State::S1 : State::S0;
- has_en = true;
- pol_en = type_str[10] == 'P';
- sig_en = cell->getPort(ID::E);
+ has_ce = true;
+ pol_ce = type_str[10] == 'P';
+ sig_ce = cell->getPort(ID::E);
} else if (type_str.substr(0, 8) == "$_DFFSR_" && type_str.size() == 12) {
is_fine = true;
sig_d = cell->getPort(ID::D);
pol_clr = type_str[11] == 'P';
sig_set = cell->getPort(ID::S);
sig_clr = cell->getPort(ID::R);
- has_en = true;
- pol_en = type_str[12] == 'P';
- sig_en = cell->getPort(ID::E);
+ has_ce = true;
+ pol_ce = type_str[12] == 'P';
+ sig_ce = cell->getPort(ID::E);
} else if (type_str.substr(0, 7) == "$_SDFF_" && type_str.size() == 11) {
is_fine = true;
sig_d = cell->getPort(ID::D);
pol_srst = type_str[9] == 'P';
sig_srst = cell->getPort(ID::R);
val_srst = type_str[10] == '1' ? State::S1 : State::S0;
- has_en = true;
- pol_en = type_str[11] == 'P';
- sig_en = cell->getPort(ID::E);
+ has_ce = true;
+ pol_ce = type_str[11] == 'P';
+ sig_ce = cell->getPort(ID::E);
} else if (type_str.substr(0, 9) == "$_SDFFCE_" && type_str.size() == 14) {
is_fine = true;
sig_d = cell->getPort(ID::D);
pol_srst = type_str[10] == 'P';
sig_srst = cell->getPort(ID::R);
val_srst = type_str[11] == '1' ? State::S1 : State::S0;
- has_en = true;
- pol_en = type_str[12] == 'P';
- sig_en = cell->getPort(ID::E);
+ has_ce = true;
+ pol_ce = type_str[12] == 'P';
+ sig_ce = cell->getPort(ID::E);
ce_over_srst = true;
} else if (type_str.substr(0, 9) == "$_DLATCH_" && type_str.size() == 11) {
is_fine = true;
- sig_d = cell->getPort(ID::D);
- has_en = true;
- pol_en = type_str[9] == 'P';
- sig_en = cell->getPort(ID::E);
+ has_aload = true;
+ sig_ad = cell->getPort(ID::D);
+ has_aload = true;
+ pol_aload = type_str[9] == 'P';
+ sig_aload = cell->getPort(ID::E);
} else if (type_str.substr(0, 9) == "$_DLATCH_" && type_str.size() == 13) {
is_fine = true;
- sig_d = cell->getPort(ID::D);
- has_en = true;
- pol_en = type_str[9] == 'P';
- sig_en = cell->getPort(ID::E);
+ has_aload = true;
+ sig_ad = cell->getPort(ID::D);
+ has_aload = true;
+ pol_aload = type_str[9] == 'P';
+ sig_aload = cell->getPort(ID::E);
has_arst = true;
pol_arst = type_str[10] == 'P';
sig_arst = cell->getPort(ID::R);
val_arst = type_str[11] == '1' ? State::S1 : State::S0;
} else if (type_str.substr(0, 11) == "$_DLATCHSR_" && type_str.size() == 15) {
is_fine = true;
- sig_d = cell->getPort(ID::D);
- has_en = true;
- pol_en = type_str[11] == 'P';
- sig_en = cell->getPort(ID::E);
+ has_aload = true;
+ sig_ad = cell->getPort(ID::D);
+ has_aload = true;
+ pol_aload = type_str[11] == 'P';
+ sig_aload = cell->getPort(ID::E);
has_sr = true;
pol_set = type_str[12] == 'P';
pol_clr = type_str[13] == 'P';
} else {
log_assert(0);
}
- if (has_d && sig_d.is_fully_const()) {
- d_is_const = true;
- val_d = sig_d.as_const();
- if (has_en && !has_clk && !has_sr && !has_arst) {
- // Plain D latches with const D treated specially.
- has_en = has_d = false;
- has_arst = true;
- sig_arst = sig_en;
- pol_arst = pol_en;
- val_arst = val_d;
- }
+ if (has_aload && !has_clk && !has_sr && !has_arst && sig_ad.is_fully_const()) {
+ // Plain D latches with const D treated specially.
+ has_aload = false;
+ has_arst = true;
+ sig_arst = sig_aload;
+ pol_arst = pol_aload;
+ val_arst = sig_ad.as_const();
}
}
FfData slice(const std::vector<int> &bits) {
FfData res(initvals);
res.sig_clk = sig_clk;
- res.sig_en = sig_en;
+ res.sig_ce = sig_ce;
+ res.sig_aload = sig_aload;
res.sig_arst = sig_arst;
res.sig_srst = sig_srst;
- res.has_d = has_d;
res.has_clk = has_clk;
- res.has_en = has_en;
+ res.has_gclk = has_gclk;
+ res.has_ce = has_ce;
+ res.has_aload = has_aload;
res.has_arst = has_arst;
res.has_srst = has_srst;
res.has_sr = has_sr;
res.ce_over_srst = ce_over_srst;
res.is_fine = is_fine;
res.pol_clk = pol_clk;
- res.pol_en = pol_en;
+ res.pol_ce = pol_ce;
+ res.pol_aload = pol_aload;
res.pol_arst = pol_arst;
res.pol_srst = pol_srst;
res.pol_clr = pol_clr;
res.attributes = attributes;
for (int i : bits) {
res.sig_q.append(sig_q[i]);
- if (has_d)
+ if (has_clk || has_gclk)
res.sig_d.append(sig_d[i]);
+ if (has_aload)
+ res.sig_ad.append(sig_ad[i]);
if (has_sr) {
res.sig_clr.append(sig_clr[i]);
res.sig_set.append(sig_set[i]);
res.val_init.bits.push_back(val_init[i]);
}
res.width = GetSize(res.sig_q);
- // Slicing bits out may cause D to become const.
- if (has_d && res.sig_d.is_fully_const()) {
- res.d_is_const = true;
- res.val_d = res.sig_d.as_const();
- }
return res;
}
void unmap_ce(Module *module) {
- if (!has_en)
+ if (!has_ce)
return;
log_assert(has_clk);
if (has_srst && ce_over_srst)
unmap_srst(module);
if (!is_fine) {
- if (pol_en)
- sig_d = module->Mux(NEW_ID, sig_q, sig_d, sig_en);
+ if (pol_ce)
+ sig_d = module->Mux(NEW_ID, sig_q, sig_d, sig_ce);
else
- sig_d = module->Mux(NEW_ID, sig_d, sig_q, sig_en);
+ sig_d = module->Mux(NEW_ID, sig_d, sig_q, sig_ce);
} else {
- if (pol_en)
- sig_d = module->MuxGate(NEW_ID, sig_q, sig_d, sig_en);
+ if (pol_ce)
+ sig_d = module->MuxGate(NEW_ID, sig_q, sig_d, sig_ce);
else
- sig_d = module->MuxGate(NEW_ID, sig_d, sig_q, sig_en);
+ sig_d = module->MuxGate(NEW_ID, sig_d, sig_q, sig_ce);
}
- has_en = false;
+ has_ce = false;
}
void unmap_srst(Module *module) {
if (!has_srst)
return;
- if (has_en && !ce_over_srst)
+ if (has_ce && !ce_over_srst)
unmap_ce(module);
if (!is_fine) {
Cell *emit(Module *module, IdString name) {
if (!width)
return nullptr;
- if (!has_d && !has_sr) {
+ if (!has_aload && !has_clk && !has_gclk && !has_sr) {
if (has_arst) {
// Convert this case to a D latch.
- has_d = has_en = true;
+ has_aload = true;
has_arst = false;
- sig_d = val_arst;
- sig_en = sig_arst;
- pol_en = pol_arst;
+ sig_ad = val_arst;
+ sig_aload = sig_arst;
+ pol_aload = pol_arst;
} else {
// No control inputs left. Turn into a const driver.
if (initvals)
initvals->set_init(sig_q, val_init);
Cell *cell;
if (!is_fine) {
- if (!has_d) {
- log_assert(has_sr);
- cell = module->addSr(name, sig_set, sig_clr, sig_q, pol_set, pol_clr);
- } else if (!has_clk && !has_en) {
+ if (has_gclk) {
+ log_assert(!has_clk);
+ log_assert(!has_ce);
+ log_assert(!has_aload);
log_assert(!has_arst);
log_assert(!has_srst);
log_assert(!has_sr);
cell = module->addFf(name, sig_d, sig_q);
+ } else if (!has_aload && !has_clk) {
+ log_assert(has_sr);
+ cell = module->addSr(name, sig_set, sig_clr, sig_q, pol_set, pol_clr);
} else if (!has_clk) {
log_assert(!has_srst);
if (has_sr)
- cell = module->addDlatchsr(name, sig_en, sig_set, sig_clr, sig_d, sig_q, pol_en, pol_set, pol_clr);
+ cell = module->addDlatchsr(name, sig_aload, sig_set, sig_clr, sig_ad, sig_q, pol_aload, pol_set, pol_clr);
else if (has_arst)
- cell = module->addAdlatch(name, sig_en, sig_arst, sig_d, sig_q, val_arst, pol_en, pol_arst);
+ cell = module->addAdlatch(name, sig_aload, sig_arst, sig_ad, sig_q, val_arst, pol_aload, pol_arst);
else
- cell = module->addDlatch(name, sig_en, sig_d, sig_q, pol_en);
+ cell = module->addDlatch(name, sig_aload, sig_ad, sig_q, pol_aload);
} else {
if (has_sr) {
- if (has_en)
- cell = module->addDffsre(name, sig_clk, sig_en, sig_set, sig_clr, sig_d, sig_q, pol_clk, pol_en, pol_set, pol_clr);
+ if (has_ce)
+ cell = module->addDffsre(name, sig_clk, sig_ce, sig_set, sig_clr, sig_d, sig_q, pol_clk, pol_ce, pol_set, pol_clr);
else
cell = module->addDffsr(name, sig_clk, sig_set, sig_clr, sig_d, sig_q, pol_clk, pol_set, pol_clr);
} else if (has_arst) {
- if (has_en)
- cell = module->addAdffe(name, sig_clk, sig_en, sig_arst, sig_d, sig_q, val_arst, pol_clk, pol_en, pol_arst);
+ if (has_ce)
+ cell = module->addAdffe(name, sig_clk, sig_ce, sig_arst, sig_d, sig_q, val_arst, pol_clk, pol_ce, pol_arst);
else
cell = module->addAdff(name, sig_clk, sig_arst, sig_d, sig_q, val_arst, pol_clk, pol_arst);
} else if (has_srst) {
- if (has_en)
+ if (has_ce)
if (ce_over_srst)
- cell = module->addSdffce(name, sig_clk, sig_en, sig_srst, sig_d, sig_q, val_srst, pol_clk, pol_en, pol_srst);
+ cell = module->addSdffce(name, sig_clk, sig_ce, sig_srst, sig_d, sig_q, val_srst, pol_clk, pol_ce, pol_srst);
else
- cell = module->addSdffe(name, sig_clk, sig_en, sig_srst, sig_d, sig_q, val_srst, pol_clk, pol_en, pol_srst);
+ cell = module->addSdffe(name, sig_clk, sig_ce, sig_srst, sig_d, sig_q, val_srst, pol_clk, pol_ce, pol_srst);
else
cell = module->addSdff(name, sig_clk, sig_srst, sig_d, sig_q, val_srst, pol_clk, pol_srst);
} else {
- if (has_en)
- cell = module->addDffe(name, sig_clk, sig_en, sig_d, sig_q, pol_clk, pol_en);
+ if (has_ce)
+ cell = module->addDffe(name, sig_clk, sig_ce, sig_d, sig_q, pol_clk, pol_ce);
else
cell = module->addDff(name, sig_clk, sig_d, sig_q, pol_clk);
}
}
} else {
- if (!has_d) {
- log_assert(has_sr);
- cell = module->addSrGate(name, sig_set, sig_clr, sig_q, pol_set, pol_clr);
- } else if (!has_clk && !has_en) {
+ if (has_gclk) {
+ log_assert(!has_clk);
+ log_assert(!has_ce);
+ log_assert(!has_aload);
log_assert(!has_arst);
log_assert(!has_srst);
log_assert(!has_sr);
cell = module->addFfGate(name, sig_d, sig_q);
+ } else if (!has_aload && !has_clk) {
+ log_assert(has_sr);
+ cell = module->addSrGate(name, sig_set, sig_clr, sig_q, pol_set, pol_clr);
} else if (!has_clk) {
log_assert(!has_srst);
if (has_sr)
- cell = module->addDlatchsrGate(name, sig_en, sig_set, sig_clr, sig_d, sig_q, pol_en, pol_set, pol_clr);
+ cell = module->addDlatchsrGate(name, sig_aload, sig_set, sig_clr, sig_ad, sig_q, pol_aload, pol_set, pol_clr);
else if (has_arst)
- cell = module->addAdlatchGate(name, sig_en, sig_arst, sig_d, sig_q, val_arst.as_bool(), pol_en, pol_arst);
+ cell = module->addAdlatchGate(name, sig_aload, sig_arst, sig_ad, sig_q, val_arst.as_bool(), pol_aload, pol_arst);
else
- cell = module->addDlatchGate(name, sig_en, sig_d, sig_q, pol_en);
+ cell = module->addDlatchGate(name, sig_aload, sig_ad, sig_q, pol_aload);
} else {
if (has_sr) {
- if (has_en)
- cell = module->addDffsreGate(name, sig_clk, sig_en, sig_set, sig_clr, sig_d, sig_q, pol_clk, pol_en, pol_set, pol_clr);
+ if (has_ce)
+ cell = module->addDffsreGate(name, sig_clk, sig_ce, sig_set, sig_clr, sig_d, sig_q, pol_clk, pol_ce, pol_set, pol_clr);
else
cell = module->addDffsrGate(name, sig_clk, sig_set, sig_clr, sig_d, sig_q, pol_clk, pol_set, pol_clr);
} else if (has_arst) {
- if (has_en)
- cell = module->addAdffeGate(name, sig_clk, sig_en, sig_arst, sig_d, sig_q, val_arst.as_bool(), pol_clk, pol_en, pol_arst);
+ if (has_ce)
+ cell = module->addAdffeGate(name, sig_clk, sig_ce, sig_arst, sig_d, sig_q, val_arst.as_bool(), pol_clk, pol_ce, pol_arst);
else
cell = module->addAdffGate(name, sig_clk, sig_arst, sig_d, sig_q, val_arst.as_bool(), pol_clk, pol_arst);
} else if (has_srst) {
- if (has_en)
+ if (has_ce)
if (ce_over_srst)
- cell = module->addSdffceGate(name, sig_clk, sig_en, sig_srst, sig_d, sig_q, val_srst.as_bool(), pol_clk, pol_en, pol_srst);
+ cell = module->addSdffceGate(name, sig_clk, sig_ce, sig_srst, sig_d, sig_q, val_srst.as_bool(), pol_clk, pol_ce, pol_srst);
else
- cell = module->addSdffeGate(name, sig_clk, sig_en, sig_srst, sig_d, sig_q, val_srst.as_bool(), pol_clk, pol_en, pol_srst);
+ cell = module->addSdffeGate(name, sig_clk, sig_ce, sig_srst, sig_d, sig_q, val_srst.as_bool(), pol_clk, pol_ce, pol_srst);
else
cell = module->addSdffGate(name, sig_clk, sig_srst, sig_d, sig_q, val_srst.as_bool(), pol_clk, pol_srst);
} else {
- if (has_en)
- cell = module->addDffeGate(name, sig_clk, sig_en, sig_d, sig_q, pol_clk, pol_en);
+ if (has_ce)
+ cell = module->addDffeGate(name, sig_clk, sig_ce, sig_d, sig_q, pol_clk, pol_ce);
else
cell = module->addDffGate(name, sig_clk, sig_d, sig_q, pol_clk);
}
FfData cur_ff(initvals, cell);
- log_assert(cur_ff.has_d);
+ // Reject latches and $ff.
+ if (!cur_ff.has_clk)
+ return false;
+
log_assert((*sigmap)(cur_ff.sig_d[idx]) == bit);
if (!found) {
ff.sig_clk = cur_ff.sig_clk;
- ff.sig_en = cur_ff.sig_en;
+ ff.sig_ce = cur_ff.sig_ce;
+ ff.sig_aload = cur_ff.sig_aload;
ff.sig_srst = cur_ff.sig_srst;
ff.sig_arst = cur_ff.sig_arst;
ff.has_clk = cur_ff.has_clk;
- ff.has_en = cur_ff.has_en;
+ ff.has_ce = cur_ff.has_ce;
+ ff.has_aload = cur_ff.has_aload;
ff.has_srst = cur_ff.has_srst;
ff.has_arst = cur_ff.has_arst;
ff.has_sr = cur_ff.has_sr;
ff.ce_over_srst = cur_ff.ce_over_srst;
ff.pol_clk = cur_ff.pol_clk;
- ff.pol_en = cur_ff.pol_en;
+ ff.pol_ce = cur_ff.pol_ce;
+ ff.pol_aload = cur_ff.pol_aload;
ff.pol_arst = cur_ff.pol_arst;
ff.pol_srst = cur_ff.pol_srst;
ff.pol_clr = cur_ff.pol_clr;
} else {
if (ff.has_clk != cur_ff.has_clk)
return false;
- if (ff.has_en != cur_ff.has_en)
+ if (ff.has_ce != cur_ff.has_ce)
+ return false;
+ if (ff.has_aload != cur_ff.has_aload)
return false;
if (ff.has_srst != cur_ff.has_srst)
return false;
if (ff.pol_clk != cur_ff.pol_clk)
return false;
}
- if (ff.has_en) {
- if (ff.sig_en != cur_ff.sig_en)
+ if (ff.has_ce) {
+ if (ff.sig_ce != cur_ff.sig_ce)
+ return false;
+ if (ff.pol_ce != cur_ff.pol_ce)
+ return false;
+ }
+ if (ff.has_aload) {
+ if (ff.sig_aload != cur_ff.sig_aload)
return false;
- if (ff.pol_en != cur_ff.pol_en)
+ if (ff.pol_aload != cur_ff.pol_aload)
return false;
}
if (ff.has_srst) {
return false;
if (ff.pol_srst != cur_ff.pol_srst)
return false;
- if (ff.has_en && ff.ce_over_srst != cur_ff.ce_over_srst)
+ if (ff.has_ce && ff.ce_over_srst != cur_ff.ce_over_srst)
return false;
}
if (ff.has_arst) {
ff.width++;
ff.sig_d.append(cur_ff.sig_d[idx]);
+ ff.sig_ad.append(ff.has_aload ? cur_ff.sig_ad[idx] : State::Sx);
ff.sig_q.append(cur_ff.sig_q[idx]);
ff.sig_clr.append(ff.has_sr ? cur_ff.sig_clr[idx] : State::S0);
ff.sig_set.append(ff.has_sr ? cur_ff.sig_set[idx] : State::S0);
if (!found) {
ff.sig_clk = cur_ff.sig_clk;
- ff.sig_en = cur_ff.sig_en;
+ ff.sig_ce = cur_ff.sig_ce;
+ ff.sig_aload = cur_ff.sig_aload;
ff.sig_srst = cur_ff.sig_srst;
ff.sig_arst = cur_ff.sig_arst;
- ff.has_d = cur_ff.has_d;
ff.has_clk = cur_ff.has_clk;
- ff.has_en = cur_ff.has_en;
+ ff.has_gclk = cur_ff.has_gclk;
+ ff.has_ce = cur_ff.has_ce;
+ ff.has_aload = cur_ff.has_aload;
ff.has_srst = cur_ff.has_srst;
ff.has_arst = cur_ff.has_arst;
ff.has_sr = cur_ff.has_sr;
ff.ce_over_srst = cur_ff.ce_over_srst;
ff.pol_clk = cur_ff.pol_clk;
- ff.pol_en = cur_ff.pol_en;
+ ff.pol_ce = cur_ff.pol_ce;
+ ff.pol_aload = cur_ff.pol_aload;
ff.pol_arst = cur_ff.pol_arst;
ff.pol_srst = cur_ff.pol_srst;
ff.pol_clr = cur_ff.pol_clr;
ff.pol_set = cur_ff.pol_set;
} else {
- if (ff.has_d != cur_ff.has_d)
+ if (ff.has_gclk != cur_ff.has_gclk)
return false;
if (ff.has_clk != cur_ff.has_clk)
return false;
- if (ff.has_en != cur_ff.has_en)
+ if (ff.has_ce != cur_ff.has_ce)
+ return false;
+ if (ff.has_aload != cur_ff.has_aload)
return false;
if (ff.has_srst != cur_ff.has_srst)
return false;
if (ff.pol_clk != cur_ff.pol_clk)
return false;
}
- if (ff.has_en) {
- if (ff.sig_en != cur_ff.sig_en)
+ if (ff.has_ce) {
+ if (ff.sig_ce != cur_ff.sig_ce)
+ return false;
+ if (ff.pol_ce != cur_ff.pol_ce)
+ return false;
+ }
+ if (ff.has_aload) {
+ if (ff.sig_aload != cur_ff.sig_aload)
return false;
- if (ff.pol_en != cur_ff.pol_en)
+ if (ff.pol_aload != cur_ff.pol_aload)
return false;
}
if (ff.has_srst) {
return false;
if (ff.pol_srst != cur_ff.pol_srst)
return false;
- if (ff.has_en && ff.ce_over_srst != cur_ff.ce_over_srst)
+ if (ff.has_ce && ff.ce_over_srst != cur_ff.ce_over_srst)
return false;
}
if (ff.has_arst) {
}
ff.width++;
- ff.sig_d.append(ff.has_d ? cur_ff.sig_d[idx] : State::Sx);
+ ff.sig_d.append((ff.has_clk || ff.has_gclk) ? cur_ff.sig_d[idx] : State::Sx);
+ ff.sig_ad.append(ff.has_aload ? cur_ff.sig_ad[idx] : State::Sx);
ff.sig_q.append(cur_ff.sig_q[idx]);
ff.sig_clr.append(ff.has_sr ? cur_ff.sig_clr[idx] : State::S0);
ff.sig_set.append(ff.has_sr ? cur_ff.sig_set[idx] : State::S0);
ff.sig_clk = port.clk;
ff.pol_clk = port.clk_polarity;
if (port.en != State::S1) {
- ff.has_en = true;
- ff.pol_en = true;
- ff.sig_en = port.en;
+ ff.has_ce = true;
+ ff.pol_ce = true;
+ ff.sig_ce = port.en;
}
if (port.arst != State::S0) {
ff.has_arst = true;
ff.pol_srst = true;
ff.sig_srst = port.srst;
ff.val_srst = port.srst_value;
- ff.ce_over_srst = ff.has_en && port.ce_over_srst;
+ ff.ce_over_srst = ff.has_ce && port.ce_over_srst;
}
ff.sig_d = sig_d;
ff.sig_q = port.data;
FfData ff(initvals);
ff.width = 1;
ff.sig_q = cond_q;
- ff.has_d = true;
ff.sig_d = cond;
ff.has_clk = true;
ff.sig_clk = rport.clk;
ff.pol_clk = rport.clk_polarity;
if (rport.en != State::S1) {
- ff.has_en = true;
- ff.sig_en = rport.en;
- ff.pol_en = true;
+ ff.has_ce = true;
+ ff.sig_ce = rport.en;
+ ff.pol_ce = true;
}
if (rport.arst != State::S0) {
ff.has_arst = true;
FfData ff(nullptr, cell);
// Latches and FFs with async inputs are not supported — use clk2fflogic or async2sync first.
- if (!ff.has_d || ff.has_arst || ff.has_sr || (ff.has_en && !ff.has_clk))
+ if (ff.has_aload || ff.has_arst || ff.has_sr)
return false;
if (timestep == 1)
std::vector<int> undef_d;
if (model_undef)
undef_d = importUndefSigSpec(cell->getPort(ID::D), timestep-1);
- if (ff.has_srst && ff.has_en && ff.ce_over_srst) {
+ if (ff.has_srst && ff.has_ce && ff.ce_over_srst) {
int srst = importDefSigSpec(ff.sig_srst, timestep-1).at(0);
std::vector<int> rval = importDefSigSpec(ff.val_srst, timestep-1);
int undef_srst;
else
std::tie(d, undef_d) = mux(srst, undef_srst, rval, undef_rval, d, undef_d);
}
- if (ff.has_en) {
- int en = importDefSigSpec(ff.sig_en, timestep-1).at(0);
+ if (ff.has_ce) {
+ int ce = importDefSigSpec(ff.sig_ce, timestep-1).at(0);
std::vector<int> old_q = importDefSigSpec(ff.sig_q, timestep-1);
- int undef_en;
+ int undef_ce;
std::vector<int> undef_old_q;
if (model_undef) {
- undef_en = importUndefSigSpec(ff.sig_en, timestep-1).at(0);
+ undef_ce = importUndefSigSpec(ff.sig_ce, timestep-1).at(0);
undef_old_q = importUndefSigSpec(ff.sig_q, timestep-1);
}
- if (ff.pol_en)
- std::tie(d, undef_d) = mux(en, undef_en, old_q, undef_old_q, d, undef_d);
+ if (ff.pol_ce)
+ std::tie(d, undef_d) = mux(ce, undef_ce, old_q, undef_old_q, d, undef_d);
else
- std::tie(d, undef_d) = mux(en, undef_en, d, undef_d, old_q, undef_old_q);
+ std::tie(d, undef_d) = mux(ce, undef_ce, d, undef_d, old_q, undef_old_q);
}
- if (ff.has_srst && !(ff.has_en && ff.ce_over_srst)) {
+ if (ff.has_srst && !(ff.has_ce && ff.ce_over_srst)) {
int srst = importDefSigSpec(ff.sig_srst, timestep-1).at(0);
std::vector<int> rval = importDefSigSpec(ff.val_srst, timestep-1);
int undef_srst;
// port_ren is an upper bound on when we care about the value fetched
// from memory this cycle.
int ren = ezSAT::CONST_TRUE;
- if (ff.has_en) {
- ren = qcsat.importSigBit(ff.sig_en);
- if (!ff.pol_en)
+ if (ff.has_ce) {
+ ren = qcsat.importSigBit(ff.sig_ce);
+ if (!ff.pol_ce)
ren = qcsat.ez->NOT(ren);
}
if (ff.has_srst) {
log("output latches are not supported.\n");
return;
}
+ if (ff.has_aload) {
+ log("output FF has async load, not supported.\n");
+ return;
+ }
if (ff.has_sr) {
// Latches and FFs with SR are not supported.
log("output FF has both set and reset, not supported.\n");
log("merging output FF to cell.\n");
merger.remove_output_ff(bits);
- if (ff.has_en && !ff.pol_en)
- ff.sig_en = module->LogicNot(NEW_ID, ff.sig_en);
+ if (ff.has_ce && !ff.pol_ce)
+ ff.sig_ce = module->LogicNot(NEW_ID, ff.sig_ce);
if (ff.has_arst && !ff.pol_arst)
ff.sig_arst = module->LogicNot(NEW_ID, ff.sig_arst);
if (ff.has_srst && !ff.pol_srst)
port.clk = ff.sig_clk;
port.clk_enable = true;
port.clk_polarity = ff.pol_clk;
- if (ff.has_en)
- port.en = ff.sig_en;
+ if (ff.has_ce)
+ port.en = ff.sig_ce;
else
port.en = State::S1;
if (ff.has_arst) {
log("address latches are not supported.\n");
return;
}
+ if (ff.has_aload) {
+ log("address FF has async load, not supported.\n");
+ return;
+ }
if (ff.has_sr || ff.has_arst) {
log("address FF has async set and/or reset, not supported.\n");
return;
}
}
+ if (ff.has_aload) {
+ if (ff.sig_aload == (ff.pol_aload ? State::S0 : State::S1) || (!opt.keepdc && ff.sig_aload == State::Sx)) {
+ // Always-inactive enable — remove.
+ log("Removing never-active async load on %s (%s) from module %s.\n",
+ log_id(cell), log_id(cell->type), log_id(module));
+ ff.has_aload = false;
+ changed = true;
+ } else if (ff.sig_aload == (ff.pol_aload ? State::S1 : State::S0)) {
+ // Always-active enable. Make a comb circuit, nuke the FF/latch.
+ log("Handling always-active async load on %s (%s) from module %s (changing to combinatorial circuit).\n",
+ log_id(cell), log_id(cell->type), log_id(module));
+ initvals.remove_init(ff.sig_q);
+ module->remove(cell);
+ if (ff.has_sr) {
+ SigSpec tmp;
+ if (ff.is_fine) {
+ if (ff.pol_set)
+ tmp = module->MuxGate(NEW_ID, ff.sig_ad, State::S1, ff.sig_set);
+ else
+ tmp = module->MuxGate(NEW_ID, State::S1, ff.sig_ad, ff.sig_set);
+ if (ff.pol_clr)
+ module->addMuxGate(NEW_ID, tmp, State::S0, ff.sig_clr, ff.sig_q);
+ else
+ module->addMuxGate(NEW_ID, State::S0, tmp, ff.sig_clr, ff.sig_q);
+ } else {
+ if (ff.pol_set)
+ tmp = module->Or(NEW_ID, ff.sig_ad, ff.sig_set);
+ else
+ tmp = module->Or(NEW_ID, ff.sig_ad, module->Not(NEW_ID, ff.sig_set));
+ if (ff.pol_clr)
+ module->addAnd(NEW_ID, tmp, module->Not(NEW_ID, ff.sig_clr), ff.sig_q);
+ else
+ module->addAnd(NEW_ID, tmp, ff.sig_clr, ff.sig_q);
+ }
+ } else if (ff.has_arst) {
+ if (ff.is_fine) {
+ if (ff.pol_arst)
+ module->addMuxGate(NEW_ID, ff.sig_ad, ff.val_arst[0], ff.sig_arst, ff.sig_q);
+ else
+ module->addMuxGate(NEW_ID, ff.val_arst[0], ff.sig_ad, ff.sig_arst, ff.sig_q);
+ } else {
+ if (ff.pol_arst)
+ module->addMux(NEW_ID, ff.sig_ad, ff.val_arst, ff.sig_arst, ff.sig_q);
+ else
+ module->addMux(NEW_ID, ff.val_arst, ff.sig_ad, ff.sig_arst, ff.sig_q);
+ }
+ } else {
+ module->connect(ff.sig_q, ff.sig_ad);
+ }
+ did_something = true;
+ continue;
+ } else if (ff.sig_ad.is_fully_const() && !ff.has_arst && !ff.has_sr) {
+ log("Changing const-value async load to async reset on %s (%s) from module %s.\n",
+ log_id(cell), log_id(cell->type), log_id(module));
+ ff.has_arst = true;
+ ff.has_aload = false;
+ ff.sig_arst = ff.sig_aload;
+ ff.pol_arst = ff.pol_aload;
+ ff.val_arst = ff.sig_ad.as_const();
+ changed = true;
+ }
+ }
+
if (ff.has_arst) {
if (ff.sig_arst == (ff.pol_arst ? State::S0 : State::S1)) {
// Always-inactive reset — remove.
log_id(cell), log_id(cell->type), log_id(module));
ff.has_srst = false;
if (!ff.ce_over_srst)
- ff.has_en = false;
- ff.sig_d = ff.val_d = ff.val_srst;
- ff.d_is_const = true;
+ ff.has_ce = false;
+ ff.sig_d = ff.val_srst;
changed = true;
}
}
- if (ff.has_en) {
- if (ff.sig_en == (ff.pol_en ? State::S0 : State::S1) || (!opt.keepdc && ff.sig_en == State::Sx)) {
+ if (ff.has_ce) {
+ if (ff.sig_ce == (ff.pol_ce ? State::S0 : State::S1) || (!opt.keepdc && ff.sig_ce == State::Sx)) {
// Always-inactive enable — remove.
- if (ff.has_clk && ff.has_srst && !ff.ce_over_srst) {
+ if (ff.has_srst && !ff.ce_over_srst) {
log("Handling never-active EN on %s (%s) from module %s (connecting SRST instead).\n",
log_id(cell), log_id(cell->type), log_id(module));
// FF with sync reset — connect the sync reset to D instead.
- ff.pol_en = ff.pol_srst;
- ff.sig_en = ff.sig_srst;
+ ff.pol_ce = ff.pol_srst;
+ ff.sig_ce = ff.sig_srst;
ff.has_srst = false;
- ff.sig_d = ff.val_d = ff.val_srst;
- ff.d_is_const = true;
+ ff.sig_d = ff.val_srst;
changed = true;
} else {
log("Handling never-active EN on %s (%s) from module %s (removing D path).\n",
log_id(cell), log_id(cell->type), log_id(module));
- // The D input path is effectively useless, so remove it (this will be a const-input D latch, SR latch, or a const driver).
- ff.has_d = ff.has_en = ff.has_clk = false;
+ // The D input path is effectively useless, so remove it (this will be a D latch, SR latch, or a const driver).
+ ff.has_ce = ff.has_clk = ff.has_srst = false;
changed = true;
}
- } else if (ff.sig_en == (ff.pol_en ? State::S1 : State::S0)) {
- // Always-active enable.
- if (ff.has_clk) {
- // For FF, just remove the useless enable.
- log("Removing always-active EN on %s (%s) from module %s.\n",
- log_id(cell), log_id(cell->type), log_id(module));
- ff.has_en = false;
- changed = true;
- } else {
- // For latches, make a comb circuit, nuke the latch.
- log("Handling always-active EN on %s (%s) from module %s (changing to combinatorial circuit).\n",
- log_id(cell), log_id(cell->type), log_id(module));
- initvals.remove_init(ff.sig_q);
- module->remove(cell);
- if (ff.has_sr) {
- SigSpec tmp;
- if (ff.is_fine) {
- if (ff.pol_set)
- tmp = module->MuxGate(NEW_ID, ff.sig_d, State::S1, ff.sig_set);
- else
- tmp = module->MuxGate(NEW_ID, State::S1, ff.sig_d, ff.sig_set);
- if (ff.pol_clr)
- module->addMuxGate(NEW_ID, tmp, State::S0, ff.sig_clr, ff.sig_q);
- else
- module->addMuxGate(NEW_ID, State::S0, tmp, ff.sig_clr, ff.sig_q);
- } else {
- if (ff.pol_set)
- tmp = module->Or(NEW_ID, ff.sig_d, ff.sig_set);
- else
- tmp = module->Or(NEW_ID, ff.sig_d, module->Not(NEW_ID, ff.sig_set));
- if (ff.pol_clr)
- module->addAnd(NEW_ID, tmp, module->Not(NEW_ID, ff.sig_clr), ff.sig_q);
- else
- module->addAnd(NEW_ID, tmp, ff.sig_clr, ff.sig_q);
- }
- } else if (ff.has_arst) {
- if (ff.is_fine) {
- if (ff.pol_arst)
- module->addMuxGate(NEW_ID, ff.sig_d, ff.val_arst[0], ff.sig_arst, ff.sig_q);
- else
- module->addMuxGate(NEW_ID, ff.val_arst[0], ff.sig_d, ff.sig_arst, ff.sig_q);
- } else {
- if (ff.pol_arst)
- module->addMux(NEW_ID, ff.sig_d, ff.val_arst, ff.sig_arst, ff.sig_q);
- else
- module->addMux(NEW_ID, ff.val_arst, ff.sig_d, ff.sig_arst, ff.sig_q);
- }
- } else {
- module->connect(ff.sig_q, ff.sig_d);
- }
- did_something = true;
- continue;
- }
+ } else if (ff.sig_ce == (ff.pol_ce ? State::S1 : State::S0)) {
+ // Always-active enable. Just remove it.
+ // For FF, just remove the useless enable.
+ log("Removing always-active EN on %s (%s) from module %s.\n",
+ log_id(cell), log_id(cell->type), log_id(module));
+ ff.has_ce = false;
+ changed = true;
}
}
if (ff.has_clk) {
if (ff.sig_clk.is_fully_const()) {
- // Const clock — the D input path is effectively useless, so remove it (this will be a const-input D latch, SR latch, or a const driver).
+ // Const clock — the D input path is effectively useless, so remove it (this will be a D latch, SR latch, or a const driver).
log("Handling const CLK on %s (%s) from module %s (removing D path).\n",
log_id(cell), log_id(cell->type), log_id(module));
- ff.has_d = ff.has_en = ff.has_clk = ff.has_srst = false;
+ ff.has_ce = ff.has_clk = ff.has_srst = false;
changed = true;
}
}
- if (ff.has_d && ff.sig_d == ff.sig_q) {
+ if ((ff.has_clk || ff.has_gclk) && ff.sig_d == ff.sig_q) {
// Q wrapped back to D, can be removed.
if (ff.has_clk && ff.has_srst) {
// FF with sync reset — connect the sync reset to D instead.
log("Handling D = Q on %s (%s) from module %s (conecting SRST instead).\n",
log_id(cell), log_id(cell->type), log_id(module));
- if (ff.has_en && ff.ce_over_srst) {
- if (!ff.pol_en) {
+ if (ff.has_ce && ff.ce_over_srst) {
+ if (!ff.pol_ce) {
if (ff.is_fine)
- ff.sig_en = module->NotGate(NEW_ID, ff.sig_en);
+ ff.sig_ce = module->NotGate(NEW_ID, ff.sig_ce);
else
- ff.sig_en = module->Not(NEW_ID, ff.sig_en);
+ ff.sig_ce = module->Not(NEW_ID, ff.sig_ce);
}
if (!ff.pol_srst) {
if (ff.is_fine)
ff.sig_srst = module->Not(NEW_ID, ff.sig_srst);
}
if (ff.is_fine)
- ff.sig_en = module->AndGate(NEW_ID, ff.sig_en, ff.sig_srst);
+ ff.sig_ce = module->AndGate(NEW_ID, ff.sig_ce, ff.sig_srst);
else
- ff.sig_en = module->And(NEW_ID, ff.sig_en, ff.sig_srst);
- ff.pol_en = true;
+ ff.sig_ce = module->And(NEW_ID, ff.sig_ce, ff.sig_srst);
+ ff.pol_ce = true;
} else {
- ff.pol_en = ff.pol_srst;
- ff.sig_en = ff.sig_srst;
+ ff.pol_ce = ff.pol_srst;
+ ff.sig_ce = ff.sig_srst;
}
- ff.has_en = true;
+ ff.has_ce = true;
ff.has_srst = false;
- ff.sig_d = ff.val_d = ff.val_srst;
- ff.d_is_const = true;
+ ff.sig_d = ff.val_srst;
changed = true;
} else {
// The D input path is effectively useless, so remove it (this will be a const-input D latch, SR latch, or a const driver).
log("Handling D = Q on %s (%s) from module %s (removing D path).\n",
log_id(cell), log_id(cell->type), log_id(module));
- ff.has_d = ff.has_en = ff.has_clk = false;
+ ff.has_clk = ff.has_ce = ff.has_clk = false;
changed = true;
}
}
+ if (ff.has_aload && !ff.has_clk && ff.sig_ad == ff.sig_q) {
+ log("Handling AD = Q on %s (%s) from module %s (removing async load path).\n",
+ log_id(cell), log_id(cell->type), log_id(module));
+ ff.has_aload = false;
+ changed = true;
+ }
+
// Now check if any bit can be replaced by a constant.
pool<int> removed_sigbits;
for (int i = 0; i < ff.width; i++) {
}
if (val == State::Sm)
continue;
- if (ff.has_d) {
+ if (ff.has_clk || ff.has_gclk) {
if (!ff.sig_d[i].wire) {
val = combine_const(val, ff.sig_d[i].data);
if (val == State::Sm)
continue;
}
}
+ if (ff.has_aload) {
+ if (!ff.sig_ad[i].wire) {
+ val = combine_const(val, ff.sig_ad[i].data);
+ if (val == State::Sm)
+ continue;
+ } else {
+ if (!opt.sat)
+ continue;
+ // For each register bit, try to prove that it cannot change from the initial value. If so, remove it
+ if (!modwalker.has_drivers(ff.sig_ad.extract(i)))
+ continue;
+ if (val != State::S0 && val != State::S1)
+ continue;
+
+ int init_sat_pi = qcsat.importSigBit(val);
+ int q_sat_pi = qcsat.importSigBit(ff.sig_q[i]);
+ int d_sat_pi = qcsat.importSigBit(ff.sig_ad[i]);
+
+ qcsat.prepare();
+
+ // Try to find out whether the register bit can change under some circumstances
+ bool counter_example_found = qcsat.ez->solve(qcsat.ez->IFF(q_sat_pi, init_sat_pi), qcsat.ez->NOT(qcsat.ez->IFF(d_sat_pi, init_sat_pi)));
+
+ // If the register bit cannot change, we can replace it with a constant
+ if (counter_example_found)
+ continue;
+ }
+ }
log("Setting constant %d-bit at position %d on %s (%s) from module %s.\n", val ? 1 : 0,
i, log_id(cell), log_id(cell->type), log_id(module));
// The cell has been simplified as much as possible already. Now try to spice it up with enables / sync resets.
if (ff.has_clk) {
- if (!ff.has_arst && !ff.has_sr && (!ff.has_srst || !ff.has_en || ff.ce_over_srst) && !opt.nosdff) {
+ if (!ff.has_arst && !ff.has_sr && (!ff.has_srst || !ff.has_ce || ff.ce_over_srst) && !opt.nosdff) {
// Try to merge sync resets.
std::map<ctrls_t, std::vector<int>> groups;
std::vector<int> remaining_indices;
new_ff.has_srst = true;
new_ff.sig_srst = srst.first;
new_ff.pol_srst = srst.second;
- if (new_ff.has_en)
+ if (new_ff.has_ce)
new_ff.ce_over_srst = true;
Cell *new_cell = new_ff.emit(module, NEW_ID);
if (new_cell)
changed = true;
}
}
- if ((!ff.has_srst || !ff.has_en || !ff.ce_over_srst) && !opt.nodffe) {
+ if ((!ff.has_srst || !ff.has_ce || !ff.ce_over_srst) && !opt.nodffe) {
// Try to merge enables.
std::map<std::pair<patterns_t, ctrls_t>, std::vector<int>> groups;
std::vector<int> remaining_indices;
if (!opt.simple_dffe)
patterns = find_muxtree_feedback_patterns(ff.sig_d[i], ff.sig_q[i], pattern_t());
if (!patterns.empty() || !enables.empty()) {
- if (ff.has_en)
- enables.insert(ctrl_t(ff.sig_en, ff.pol_en));
+ if (ff.has_ce)
+ enables.insert(ctrl_t(ff.sig_ce, ff.pol_ce));
simplify_patterns(patterns);
groups[std::make_pair(patterns, enables)].push_back(i);
} else
FfData new_ff = ff.slice(it.second);
ctrl_t en = make_patterns_logic(it.first.first, it.first.second, ff.is_fine);
- new_ff.has_en = true;
- new_ff.sig_en = en.first;
- new_ff.pol_en = en.second;
+ new_ff.has_ce = true;
+ new_ff.sig_ce = en.first;
+ new_ff.pol_ce = en.second;
new_ff.ce_over_srst = false;
Cell *new_cell = new_ff.emit(module, NEW_ID);
if (new_cell)
log("reset value in the next cycle regardless of the data-in value at the time of\n");
log("the clock edge.\n");
log("\n");
- log("Currently only $adff, $dffsr, and $dlatch cells are supported by this pass.\n");
- log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
FfData ff(&initvals, cell);
// Skip for $_FF_ and $ff cells.
- if (ff.has_d && !ff.has_clk && !ff.has_en)
+ if (ff.has_gclk)
continue;
if (ff.has_clk)
{
- if (!ff.has_sr && !ff.has_arst)
- continue;
-
if (ff.has_sr) {
ff.unmap_ce_srst(module);
ff.sig_d = new_d;
ff.sig_q = new_q;
ff.has_sr = false;
+ } else if (ff.has_aload) {
+ ff.unmap_ce_srst(module);
+
+ log("Replacing %s.%s (%s): ALOAD=%s, AD=%s, D=%s, Q=%s\n",
+ log_id(module), log_id(cell), log_id(cell->type),
+ log_signal(ff.sig_aload), log_signal(ff.sig_ad), log_signal(ff.sig_d), log_signal(ff.sig_q));
+
+ initvals.remove_init(ff.sig_q);
+
+ Wire *new_d = module->addWire(NEW_ID, ff.width);
+ Wire *new_q = module->addWire(NEW_ID, ff.width);
+
+ if (ff.pol_aload) {
+ if (!ff.is_fine) {
+ module->addMux(NEW_ID, new_q, ff.sig_ad, ff.sig_aload, ff.sig_q);
+ module->addMux(NEW_ID, ff.sig_d, ff.sig_ad, ff.sig_aload, new_d);
+ } else {
+ module->addMuxGate(NEW_ID, new_q, ff.sig_ad, ff.sig_aload, ff.sig_q);
+ module->addMuxGate(NEW_ID, ff.sig_d, ff.sig_ad, ff.sig_aload, new_d);
+ }
+ } else {
+ if (!ff.is_fine) {
+ module->addMux(NEW_ID, ff.sig_ad, new_q, ff.sig_aload, ff.sig_q);
+ module->addMux(NEW_ID, ff.sig_ad, ff.sig_d, ff.sig_aload, new_d);
+ } else {
+ module->addMuxGate(NEW_ID, ff.sig_ad, new_q, ff.sig_aload, ff.sig_q);
+ module->addMuxGate(NEW_ID, ff.sig_ad, ff.sig_d, ff.sig_aload, new_d);
+ }
+ }
+
+ ff.sig_d = new_d;
+ ff.sig_q = new_q;
+ ff.has_aload = false;
} else if (ff.has_arst) {
ff.unmap_srst(module);
ff.sig_q = new_q;
ff.has_arst = false;
ff.has_srst = true;
+ ff.ce_over_srst = false;
ff.val_srst = ff.val_arst;
ff.sig_srst = ff.sig_arst;
ff.pol_srst = ff.pol_arst;
+ } else {
+ continue;
}
}
else
// Latch.
log("Replacing %s.%s (%s): EN=%s, D=%s, Q=%s\n",
log_id(module), log_id(cell), log_id(cell->type),
- log_signal(ff.sig_en), log_signal(ff.sig_d), log_signal(ff.sig_q));
+ log_signal(ff.sig_aload), log_signal(ff.sig_ad), log_signal(ff.sig_q));
initvals.remove_init(ff.sig_q);
Wire *new_q = module->addWire(NEW_ID, ff.width);
Wire *new_d;
- if (ff.has_d) {
+ if (ff.has_aload) {
new_d = module->addWire(NEW_ID, ff.width);
- if (ff.pol_en) {
+ if (ff.pol_aload) {
if (!ff.is_fine)
- module->addMux(NEW_ID, new_q, ff.sig_d, ff.sig_en, new_d);
+ module->addMux(NEW_ID, new_q, ff.sig_ad, ff.sig_aload, new_d);
else
- module->addMuxGate(NEW_ID, new_q, ff.sig_d, ff.sig_en, new_d);
+ module->addMuxGate(NEW_ID, new_q, ff.sig_ad, ff.sig_aload, new_d);
} else {
if (!ff.is_fine)
- module->addMux(NEW_ID, ff.sig_d, new_q, ff.sig_en, new_d);
+ module->addMux(NEW_ID, ff.sig_ad, new_q, ff.sig_aload, new_d);
else
- module->addMuxGate(NEW_ID, ff.sig_d, new_q, ff.sig_en, new_d);
+ module->addMuxGate(NEW_ID, ff.sig_ad, new_q, ff.sig_aload, new_d);
}
} else {
new_d = new_q;
ff.sig_d = new_d;
ff.sig_q = new_q;
- ff.has_en = false;
+ ff.has_aload = false;
ff.has_arst = false;
ff.has_sr = false;
- ff.has_d = true;
+ ff.has_gclk = true;
}
IdString name = cell->name;
if (RTLIL::builtin_ff_cell_types().count(cell->type)) {
FfData ff(&initvals, cell);
- if (ff.has_d && !ff.has_clk && !ff.has_en) {
+ if (ff.has_gclk) {
// Already a $ff or $_FF_ cell.
continue;
}
qval = module->Mux(NEW_ID, past_q, past_d, clock_edge);
else
qval = module->MuxGate(NEW_ID, past_q, past_d, clock_edge);
- } else if (ff.has_d) {
-
- log("Replacing %s.%s (%s): EN=%s, D=%s, Q=%s\n",
- log_id(module), log_id(cell), log_id(cell->type),
- log_signal(ff.sig_en), log_signal(ff.sig_d), log_signal(ff.sig_q));
+ } else {
+ if (ff.has_aload) {
+ log("Replacing %s.%s (%s): EN=%s, D=%s, Q=%s\n",
+ log_id(module), log_id(cell), log_id(cell->type),
+ log_signal(ff.sig_aload), log_signal(ff.sig_ad), log_signal(ff.sig_q));
+ } else {
+ // $sr.
+ log("Replacing %s.%s (%s): SET=%s, CLR=%s, Q=%s\n",
+ log_id(module), log_id(cell), log_id(cell->type),
+ log_signal(ff.sig_set), log_signal(ff.sig_clr), log_signal(ff.sig_q));
+ }
+ qval = past_q;
+ }
- SigSpec sig_en = wrap_async_control(module, ff.sig_en, ff.pol_en);
+ if (ff.has_aload) {
+ SigSpec sig_aload = wrap_async_control(module, ff.sig_aload, ff.pol_aload);
if (!ff.is_fine)
- qval = module->Mux(NEW_ID, past_q, ff.sig_d, sig_en);
+ qval = module->Mux(NEW_ID, qval, ff.sig_ad, sig_aload);
else
- qval = module->MuxGate(NEW_ID, past_q, ff.sig_d, sig_en);
- } else {
-
- log("Replacing %s.%s (%s): SET=%s, CLR=%s, Q=%s\n",
- log_id(module), log_id(cell), log_id(cell->type),
- log_signal(ff.sig_set), log_signal(ff.sig_clr), log_signal(ff.sig_q));
-
- qval = past_q;
+ qval = module->MuxGate(NEW_ID, qval, ff.sig_ad, sig_aload);
}
if (ff.has_sr) {
continue;
if (ce_only) {
- if (!ff.has_en)
+ if (!ff.has_ce)
continue;
ff.unmap_ce(mod);
} else if (srst_only) {
continue;
ff.unmap_srst(mod);
} else {
- if (!ff.has_en && !ff.has_srst)
+ if (!ff.has_ce && !ff.has_srst)
continue;
ff.unmap_ce_srst(mod);
}