{
public static void main(String[] args)
{
- Solver slv = new Solver();
+ try (Solver slv = new Solver())
+ {
+ // Prove that for integers x and y:
+ // x > 0 AND y > 0 => 2x + y >= 3
- // Prove that for integers x and y:
- // x > 0 AND y > 0 => 2x + y >= 3
+ Sort integer = slv.getIntegerSort();
- Sort integer = slv.getIntegerSort();
+ Term x = slv.mkConst(integer, "x");
+ Term y = slv.mkConst(integer, "y");
+ Term zero = slv.mkInteger(0);
- Term x = slv.mkConst(integer, "x");
- Term y = slv.mkConst(integer, "y");
- Term zero = slv.mkInteger(0);
+ Term x_positive = slv.mkTerm(Kind.GT, x, zero);
+ Term y_positive = slv.mkTerm(Kind.GT, y, zero);
- Term x_positive = slv.mkTerm(Kind.GT, x, zero);
- Term y_positive = slv.mkTerm(Kind.GT, y, zero);
+ Term two = slv.mkInteger(2);
+ Term twox = slv.mkTerm(Kind.MULT, two, x);
+ Term twox_plus_y = slv.mkTerm(Kind.PLUS, twox, y);
- Term two = slv.mkInteger(2);
- Term twox = slv.mkTerm(Kind.MULT, two, x);
- Term twox_plus_y = slv.mkTerm(Kind.PLUS, twox, y);
+ Term three = slv.mkInteger(3);
+ Term twox_plus_y_geq_3 = slv.mkTerm(Kind.GEQ, twox_plus_y, three);
- Term three = slv.mkInteger(3);
- Term twox_plus_y_geq_3 = slv.mkTerm(Kind.GEQ, twox_plus_y, three);
+ Term formula = slv.mkTerm(Kind.AND, x_positive, y_positive).impTerm(twox_plus_y_geq_3);
- Term formula = slv.mkTerm(Kind.AND, x_positive, y_positive).impTerm(twox_plus_y_geq_3);
-
- System.out.println("Checking entailment of formula " + formula + " with cvc5.");
- System.out.println("cvc5 should report ENTAILED.");
- System.out.println("Result from cvc5 is: " + slv.checkEntailed(formula));
+ System.out.println("Checking entailment of formula " + formula + " with cvc5.");
+ System.out.println("cvc5 should report ENTAILED.");
+ System.out.println("Result from cvc5 is: " + slv.checkEntailed(formula));
+ }
}
}