}
assert(children[1]->type == AST_IDENTIFIER);
newNode = children[1]->clone();
- newNode->str = stringf("%s[%d].%s", str.c_str(), children[0]->integer, children[1]->str.c_str());
+ const char *second_part = children[1]->str.c_str();
+ if (second_part[0] == '\\')
+ second_part++;
+ newNode->str = stringf("%s[%d].%s", str.c_str(), children[0]->integer, second_part);
goto apply_newNode;
}
buf->expand_genblock(varbuf->str, sstr.str(), name_map);
if (type == AST_GENFOR) {
- for (size_t i = 0; i < buf->children.size(); i++)
+ for (size_t i = 0; i < buf->children.size(); i++) {
+ buf->children[i]->simplify(false, false, false, stage, -1, false);
current_ast_mod->children.push_back(buf->children[i]);
+ }
} else {
for (size_t i = 0; i < buf->children.size(); i++)
current_block->children.insert(current_block->children.begin() + current_block_idx++, buf->children[i]);
expand_genblock(std::string(), str + ".", name_map);
}
- for (size_t i = 0; i < children.size(); i++)
+ for (size_t i = 0; i < children.size(); i++) {
+ children[i]->simplify(false, false, false, stage, -1, false);
current_ast_mod->children.push_back(children[i]);
+ }
children.clear();
did_something = true;
buf->expand_genblock(std::string(), buf->str + ".", name_map);
}
- for (size_t i = 0; i < buf->children.size(); i++)
+ for (size_t i = 0; i < buf->children.size(); i++) {
+ buf->children[i]->simplify(false, false, false, stage, -1, false);
current_ast_mod->children.push_back(buf->children[i]);
+ }
buf->children.clear();
delete buf;
--- /dev/null
+
+// test case taken from amber23 verilog code
+module a23_barrel_shift_fpga_rotate(i_in, direction, shift_amount, rot_prod);
+
+input [31:0] i_in;
+input direction;
+input [4:0] shift_amount;
+output [31:0] rot_prod;
+
+// Generic rotate. Theoretical cost: 32x5 4-to-1 LUTs.
+// Practically a bit higher due to high fanout of "direction".
+generate
+genvar i, j;
+ for (i = 0; i < 5; i = i + 1)
+ begin : netgen
+ wire [31:0] in;
+ reg [31:0] out;
+ for (j = 0; j < 32; j = j + 1)
+ begin : net
+ always @*
+ out[j] = in[j] & (~shift_amount[i] ^ direction) |
+ in[wrap(j, i)] & (shift_amount[i] ^ direction);
+ end
+ end
+
+ // Order is reverted with respect to volatile shift_amount[0]
+ assign netgen[4].in = i_in;
+ for (i = 1; i < 5; i = i + 1)
+ begin : router
+ assign netgen[i-1].in = netgen[i].out;
+ end
+endgenerate
+
+// Aliasing
+assign rot_prod = netgen[0].out;
+
+function [4:0] wrap;
+input integer pos;
+input integer level;
+integer out;
+begin
+ out = pos - (1 << level);
+ wrap = out[4:0];
+end
+endfunction
+
+endmodule
+