tree niter_type = unsigned_type_for (type);
tree s, c, d, bits, assumption, tmp, bound;
mpz_t max;
- tree e;
niter->control = *iv;
niter->bound = final;
TYPE_SIGN (niter_type));
mpz_clear (max);
- /* Compute no-overflow information for the control iv. Note we are
- handling NE_EXPR, if iv base equals to final value, the loop exits
- immediately, and the iv does not overflow. */
- if (tree_int_cst_sign_bit (iv->step))
- e = fold_build2 (GE_EXPR, boolean_type_node, iv->base, final);
- else
- e = fold_build2 (LE_EXPR, boolean_type_node, iv->base, final);
- e = simplify_using_initial_conditions (loop, e);
- if (integer_onep (e)
- && (integer_onep (s)
- || (TREE_CODE (c) == INTEGER_CST
- && TREE_CODE (s) == INTEGER_CST
- && wi::mod_trunc (c, s, TYPE_SIGN (type)) == 0)))
+ /* Compute no-overflow information for the control iv. This can be
+ proven when below two conditions hold.
+
+ 1) |FINAL - base| is an exact multiple of step.
+ 2) IV evaluates toward FINAL at beginning, i.e:
+
+ base <= FINAL ; step > 0
+ base >= FINAL ; step < 0
+
+ Note the first condition holds, the second can be then relaxed
+ to below condition.
+
+ base - step < FINAL ; step > 0
+ && base - step doesn't underflow
+ base - step > FINAL ; step < 0
+ && base - step doesn't overflow
+
+ The relaxation is important because after pass loop-ch, loop
+ with exit condition (IV != FINAL) will usually be guarded by
+ pre-condition (IV.base - IV.step != FINAL). Please refer to
+ PR34114 as an example.
+
+ Also note, for NE_EXPR, base equals to FINAL is a special case, in
+ which the loop exits immediately, and the iv does not overflow. */
+ if (!niter->control.no_overflow
+ && (integer_onep (s) || multiple_of_p (type, c, s)))
{
- niter->control.no_overflow = true;
+ tree t, cond, relaxed_cond = boolean_false_node;
+
+ if (tree_int_cst_sign_bit (iv->step))
+ {
+ cond = fold_build2 (GE_EXPR, boolean_type_node, iv->base, final);
+ if (TREE_CODE (type) == INTEGER_TYPE)
+ {
+ /* Only when base - step doesn't overflow. */
+ t = TYPE_MAX_VALUE (type);
+ t = fold_build2 (PLUS_EXPR, type, t, iv->step);
+ t = fold_build2 (GE_EXPR, boolean_type_node, t, iv->base);
+ if (integer_nonzerop (t))
+ {
+ t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
+ relaxed_cond = fold_build2 (GT_EXPR, boolean_type_node,
+ t, final);
+ }
+ }
+ }
+ else
+ {
+ cond = fold_build2 (LE_EXPR, boolean_type_node, iv->base, final);
+ if (TREE_CODE (type) == INTEGER_TYPE)
+ {
+ /* Only when base - step doesn't underflow. */
+ t = TYPE_MIN_VALUE (type);
+ t = fold_build2 (PLUS_EXPR, type, t, iv->step);
+ t = fold_build2 (LE_EXPR, boolean_type_node, t, iv->base);
+ if (integer_nonzerop (t))
+ {
+ t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
+ relaxed_cond = fold_build2 (LT_EXPR, boolean_type_node,
+ t, final);
+ }
+ }
+ }
+
+ t = simplify_using_initial_conditions (loop, cond);
+ if (!t || !integer_onep (t))
+ t = simplify_using_initial_conditions (loop, relaxed_cond);
+
+ if (t && integer_onep (t))
+ niter->control.no_overflow = true;
}
/* First the trivial cases -- when the step is 1. */
niter->niter = c;
return true;
}
+ if (niter->control.no_overflow && multiple_of_p (type, c, s))
+ {
+ niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, c, s);
+ return true;
+ }
/* Let nsd (step, size of mode) = d. If d does not divide c, the loop
is infinite. Otherwise, the number of iterations is