// The purpose of the following FD* rules are to wrap the flop with:
// (a) a special $__ABC9_FF_ in front of the FD*'s output, indicating to abc9
// the connectivity of its basic D-Q flop
-// (b) a special _TECHMAP_REPLACE_.$abc9_clock wire to capture its clock
-// domain (used when partitioning the module so that `abc9' only
-// performs sequential synthesis (with reachability analysis) correctly on
-// one domain at a time)
+// (b) a special _TECHMAP_REPLACE_.$abc9_clock wire to indicate its clock
+// signal, used to extract the delay target
// (c) a special _TECHMAP_REPLACE_.$abc9_control that captures the control
// domain (which, combined with this cell type, encodes to `abc9' which
// flops may be merged together)
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q));
// Special signals
- wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_clock = C;
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
wire _TECHMAP_REPLACE_.$abc9_currQ = Q;
endmodule
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q));
// Special signals
- wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_clock = C;
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
wire _TECHMAP_REPLACE_.$abc9_currQ = Q;
endmodule
\$__ABC9_ASYNC abc_async (.A($abc9_currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
// Special signals
- wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_clock = C;
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
wire _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
endmodule
\$__ABC9_ASYNC abc_async (.A($abc9_currQ), .S(CLR), .Y(Q));
// Special signals
- wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_clock = C;
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
wire _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
endmodule
\$__ABC9_ASYNC abc_async (.A($abc9_currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
// Special signals
- wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_clock = C;
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
wire _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
endmodule
\$__ABC9_ASYNC abc_async (.A($abc9_currQ), .S(PRE), .Y(Q));
// Special signals
- wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_clock = C;
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
wire _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
endmodule
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q));
// Special signals
- wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_clock = C;
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
wire _TECHMAP_REPLACE_.$abc9_currQ = Q;
endmodule
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q));
// Special signals
- wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_clock = C;
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
wire _TECHMAP_REPLACE_.$abc9_currQ = Q;
endmodule