decision/justification_heuristic.h \
preprocessing/passes/int_to_bv.cpp \
preprocessing/passes/int_to_bv.h \
+ preprocessing/passes/bv_gauss.cpp \
+ preprocessing/passes/bv_gauss.h \
preprocessing/preprocessing_pass.cpp \
preprocessing/preprocessing_pass.h \
preprocessing/preprocessing_pass_context.cpp \
theory/bv/bv_subtheory_inequality.h \
theory/bv/bv_to_bool.cpp \
theory/bv/bv_to_bool.h \
- theory/bv/bvgauss.cpp \
- theory/bv/bvgauss.h \
theory/bv/bvintropow2.cpp \
theory/bv/bvintropow2.h \
theory/bv/slicer.cpp \
--- /dev/null
+/********************* */
+/*! \file bv_gauss.cpp
+ ** \verbatim
+ ** Top contributors (to current version):
+ ** Aina Niemetz
+ ** This file is part of the CVC4 project.
+ ** Copyright (c) 2009-2018 by the authors listed in the file AUTHORS
+ ** in the top-level source directory) and their institutional affiliations.
+ ** All rights reserved. See the file COPYING in the top-level source
+ ** directory for licensing information.\endverbatim
+ **
+ ** \brief Gaussian Elimination preprocessing pass.
+ **
+ ** Simplify a given equation system modulo a (prime) number via Gaussian
+ ** Elimination if possible.
+ **/
+
+#include "preprocessing/passes/bv_gauss.h"
+
+#include "expr/node.h"
+#include "theory/rewriter.h"
+#include "theory/bv/theory_bv_utils.h"
+#include "theory/bv/theory_bv_rewrite_rules_normalization.h"
+#include "util/bitvector.h"
+
+#include <unordered_map>
+#include <vector>
+
+
+using namespace CVC4;
+using namespace CVC4::theory;
+using namespace CVC4::theory::bv;
+
+namespace CVC4 {
+namespace preprocessing {
+namespace passes {
+
+namespace {
+
+/**
+ * Represents the result of Gaussian Elimination where the solution
+ * of the given equation system is
+ *
+ * INVALID ... i.e., NOT of the form c1*x1 + c2*x2 + ... % p = b,
+ * where ci, b and p are
+ * - bit-vector constants
+ * - extracts or zero extensions on bit-vector constants
+ * - of arbitrary nesting level
+ * and p is co-prime to all bit-vector constants for which
+ * a multiplicative inverse has to be computed.
+ *
+ * UNIQUE ... determined for all unknowns, e.g., x = 4
+ *
+ * PARTIAL ... e.g., x = 4 - 2z
+ *
+ * NONE ... no solution
+ *
+ * Given a matrix A representing an equation system, the resulting
+ * matrix B after applying GE represents, e.g.:
+ *
+ * B = 1 0 0 2 <- UNIQUE
+ * 0 1 0 3 <-
+ * 0 0 1 1 <-
+ *
+ * B = 1 0 2 4 <- PARTIAL
+ * 0 1 3 2 <-
+ * 0 0 1 1
+ *
+ * B = 1 0 0 1 NONE
+ * 0 1 1 2
+ * 0 0 0 2 <-
+ */
+enum class Result
+{
+ INVALID,
+ UNIQUE,
+ PARTIAL,
+ NONE
+};
+
+bool is_bv_const(Node n)
+{
+ if (n.isConst()) { return true; }
+ return Rewriter::rewrite(n).getKind() == kind::CONST_BITVECTOR;
+}
+
+Node get_bv_const(Node n)
+{
+ Assert(is_bv_const(n));
+ return Rewriter::rewrite(n);
+}
+
+Integer get_bv_const_value(Node n)
+{
+ Assert(is_bv_const(n));
+ return get_bv_const(n).getConst<BitVector>().getValue();
+}
+
+/**
+ * Determines if an overflow may occur in given 'expr'.
+ *
+ * Returns 0 if an overflow may occur, and the minimum required
+ * bit-width such that no overflow occurs, otherwise.
+ *
+ * Note that it would suffice for this function to be Boolean.
+ * However, it is handy to determine the minimum required bit-width for
+ * debugging purposes.
+ *
+ * Note: getMinBwExpr assumes that 'expr' is rewritten.
+ *
+ * If not, all operators that are removed via rewriting (e.g., ror, rol, ...)
+ * will be handled via the default case, which is not incorrect but also not
+ * necessarily the minimum.
+ */
+unsigned getMinBwExpr(Node expr)
+{
+ std::vector<Node> visit;
+ /* Maps visited nodes to the determined minimum bit-width required. */
+ std::unordered_map<Node, unsigned, NodeHashFunction> visited;
+ std::unordered_map<Node, unsigned, NodeHashFunction>::iterator it;
+
+ visit.push_back(expr);
+ while (!visit.empty())
+ {
+ Node n = visit.back();
+ visit.pop_back();
+ it = visited.find(n);
+ if (it == visited.end())
+ {
+ if (is_bv_const(n))
+ {
+ /* Rewrite const expr, overflows in consts are irrelevant. */
+ visited[n] = get_bv_const(n).getConst<BitVector>().getValue().length();
+ }
+ else
+ {
+ visited[n] = 0;
+ visit.push_back(n);
+ for (const Node &nn : n) { visit.push_back(nn); }
+ }
+ }
+ else if (it->second == 0)
+ {
+ Kind k = n.getKind();
+ Assert(k != kind::CONST_BITVECTOR);
+ Assert(!is_bv_const(n));
+ switch (k)
+ {
+ case kind::BITVECTOR_EXTRACT:
+ {
+ const unsigned size = bv::utils::getSize(n);
+ const unsigned low = bv::utils::getExtractLow(n);
+ const unsigned child_min_width = visited[n[0]];
+ visited[n] = std::min(
+ size, child_min_width >= low ? child_min_width - low : 0u);
+ Assert(visited[n] <= visited[n[0]]);
+ break;
+ }
+
+ case kind::BITVECTOR_ZERO_EXTEND:
+ {
+ visited[n] = visited[n[0]];
+ break;
+ }
+
+ case kind::BITVECTOR_MULT:
+ {
+ Integer maxval = Integer(1);
+ for (const Node& nn : n)
+ {
+ if (is_bv_const(nn))
+ {
+ maxval *= get_bv_const_value(nn);
+ }
+ else
+ {
+ maxval *= BitVector::mkOnes(visited[nn]).getValue();
+ }
+ }
+ unsigned w = maxval.length();
+ if (w > bv::utils::getSize(n)) { return 0; } /* overflow */
+ visited[n] = w;
+ break;
+ }
+
+ case kind::BITVECTOR_CONCAT:
+ {
+ unsigned i, wnz, nc;
+ for (i = 0, wnz = 0, nc = n.getNumChildren() - 1; i < nc; ++i)
+ {
+ unsigned wni = bv::utils::getSize(n[i]);
+ if (n[i] != bv::utils::mkZero(wni)) { break; }
+ /* sum of all bit-widths of leading zero concats */
+ wnz += wni;
+ }
+ /* Do not consider leading zero concats, i.e.,
+ * min bw of current concat is determined as
+ * min bw of first non-zero term
+ * plus actual bw of all subsequent terms */
+ visited[n] = bv::utils::getSize(n) + visited[n[i]]
+ - bv::utils::getSize(n[i]) - wnz;
+ break;
+ }
+
+ case kind::BITVECTOR_UREM_TOTAL:
+ case kind::BITVECTOR_LSHR:
+ case kind::BITVECTOR_ASHR:
+ {
+ visited[n] = visited[n[0]];
+ break;
+ }
+
+ case kind::BITVECTOR_OR:
+ case kind::BITVECTOR_NOR:
+ case kind::BITVECTOR_XOR:
+ case kind::BITVECTOR_XNOR:
+ case kind::BITVECTOR_AND:
+ case kind::BITVECTOR_NAND:
+ {
+ unsigned wmax = 0;
+ for (const Node &nn : n)
+ {
+ if (visited[nn] > wmax)
+ {
+ wmax = visited[nn];
+ }
+ }
+ visited[n] = wmax;
+ break;
+ }
+
+ case kind::BITVECTOR_PLUS:
+ {
+ Integer maxval = Integer(0);
+ for (const Node& nn : n)
+ {
+ if (is_bv_const(nn))
+ {
+ maxval += get_bv_const_value(nn);
+ }
+ else
+ {
+ maxval += BitVector::mkOnes(visited[nn]).getValue();
+ }
+ }
+ unsigned w = maxval.length();
+ if (w > bv::utils::getSize(n)) { return 0; } /* overflow */
+ visited[n] = w;
+ break;
+ }
+
+ default:
+ {
+ /* BITVECTOR_UDIV_TOTAL (since x / 0 = -1)
+ * BITVECTOR_NOT
+ * BITVECTOR_NEG
+ * BITVECTOR_SHL */
+ visited[n] = bv::utils::getSize(n);
+ }
+ }
+ }
+ }
+ Assert(visited.find(expr) != visited.end());
+ return visited[expr];
+}
+
+/**
+ * Apply Gaussian Elimination modulo a (prime) number.
+ * The given equation system is represented as a matrix of Integers.
+ *
+ * Note that given 'prime' does not have to be prime but can be any
+ * arbitrary number. However, if 'prime' is indeed prime, GE is guaranteed
+ * to succeed, which is not the case, otherwise.
+ *
+ * Returns INVALID if GE can not be applied, UNIQUE and PARTIAL if GE was
+ * successful, and NONE, otherwise.
+ *
+ * Vectors 'rhs' and 'lhs' represent the right hand side and left hand side
+ * of the given matrix, respectively. The resulting matrix (in row echelon
+ * form) is stored in 'rhs' and 'lhs', i.e., the given matrix is overwritten
+ * with the resulting matrix.
+ */
+Result gaussElim(
+ Integer prime,
+ std::vector<Integer>& rhs,
+ std::vector<std::vector<Integer>>& lhs)
+{
+ Assert(prime > 0);
+ Assert(lhs.size());
+ Assert(lhs.size() == rhs.size());
+ Assert(lhs.size() <= lhs[0].size());
+
+ /* special case: zero ring */
+ if (prime == 1)
+ {
+ rhs = std::vector<Integer>(rhs.size(), Integer(0));
+ lhs = std::vector<std::vector<Integer>>(
+ lhs.size(), std::vector<Integer>(lhs[0].size(), Integer(0)));
+ return Result::UNIQUE;
+ }
+
+ size_t nrows = lhs.size();
+ size_t ncols = lhs[0].size();
+
+ #ifdef CVC4_ASSERTIONS
+ for (size_t i = 1; i < nrows; ++i) Assert(lhs[i].size() == ncols);
+ #endif
+ /* (1) if element in pivot column is non-zero and != 1, divide row elements
+ * by element in pivot column modulo prime, i.e., multiply row with
+ * multiplicative inverse of element in pivot column modulo prime
+ *
+ * (2) subtract pivot row from all rows below pivot row
+ *
+ * (3) subtract (multiple of) current row from all rows above s.t. all
+ * elements in current pivot column above current row become equal to one
+ *
+ * Note: we do not normalize the given matrix to values modulo prime
+ * beforehand but on-the-fly. */
+
+ /* pivot = lhs[pcol][pcol] */
+ for (size_t pcol = 0, prow = 0; pcol < ncols && prow < nrows; ++pcol, ++prow)
+ {
+ /* lhs[j][pcol]: element in pivot column */
+ for (size_t j = prow; j < nrows; ++j)
+ {
+#ifdef CVC4_ASSERTIONS
+ for (size_t k = 0; k < pcol; ++k) { Assert(lhs[j][k] == 0); }
+#endif
+ /* normalize element in pivot column to modulo prime */
+ lhs[j][pcol] = lhs[j][pcol].euclidianDivideRemainder(prime);
+ /* exchange rows if pivot elem is 0 */
+ if (j == prow)
+ {
+ while (lhs[j][pcol] == 0)
+ {
+ for (size_t k = prow + 1; k < nrows; ++k)
+ {
+ lhs[k][pcol] = lhs[k][pcol].euclidianDivideRemainder(prime);
+ if (lhs[k][pcol] != 0)
+ {
+ std::swap(rhs[j], rhs[k]);
+ std::swap(lhs[j], lhs[k]);
+ break;
+ }
+ }
+ if (pcol >= ncols - 1) break;
+ if (lhs[j][pcol] == 0)
+ {
+ pcol += 1;
+ if (lhs[j][pcol] != 0)
+ lhs[j][pcol] = lhs[j][pcol].euclidianDivideRemainder(prime);
+ }
+ }
+ }
+
+ if (lhs[j][pcol] != 0)
+ {
+ /* (1) */
+ if (lhs[j][pcol] != 1)
+ {
+ Integer inv = lhs[j][pcol].modInverse(prime);
+ if (inv == -1)
+ {
+ return Result::INVALID; /* not coprime */
+ }
+ for (size_t k = pcol; k < ncols; ++k)
+ {
+ lhs[j][k] = lhs[j][k].modMultiply(inv, prime);
+ if (j <= prow) continue; /* pivot */
+ lhs[j][k] = lhs[j][k].modAdd(-lhs[prow][k], prime);
+ }
+ rhs[j] = rhs[j].modMultiply(inv, prime);
+ if (j > prow) { rhs[j] = rhs[j].modAdd(-rhs[prow], prime); }
+ }
+ /* (2) */
+ else if (j != prow)
+ {
+ for (size_t k = pcol; k < ncols; ++k)
+ {
+ lhs[j][k] = lhs[j][k].modAdd(-lhs[prow][k], prime);
+ }
+ rhs[j] = rhs[j].modAdd(-rhs[prow], prime);
+ }
+ }
+ }
+ /* (3) */
+ for (size_t j = 0; j < prow; ++j)
+ {
+ Integer mul = lhs[j][pcol];
+ if (mul != 0)
+ {
+ for (size_t k = pcol; k < ncols; ++k)
+ {
+ lhs[j][k] = lhs[j][k].modAdd(-lhs[prow][k] * mul, prime);
+ }
+ rhs[j] = rhs[j].modAdd(-rhs[prow] * mul, prime);
+ }
+ }
+ }
+
+ bool ispart = false;
+ for (size_t i = 0; i < nrows; ++i)
+ {
+ size_t pcol = i;
+ while (pcol < ncols && lhs[i][pcol] == 0) ++pcol;
+ if (pcol >= ncols)
+ {
+ rhs[i] = rhs[i].euclidianDivideRemainder(prime);
+ if (rhs[i] != 0)
+ {
+ /* no solution */
+ return Result::NONE;
+ }
+ continue;
+ }
+ for (size_t j = i; j < ncols; ++j)
+ {
+ if (lhs[i][j] >= prime || lhs[i][j] <= -prime)
+ {
+ lhs[i][j] = lhs[i][j].euclidianDivideRemainder(prime);
+ }
+ if (j > pcol && lhs[i][j] != 0)
+ {
+ ispart = true;
+ }
+ }
+ }
+
+ if (ispart) { return Result::PARTIAL; }
+
+ return Result::UNIQUE;
+}
+
+/**
+ * Apply Gaussian Elimination on a set of equations modulo some (prime)
+ * number given as bit-vector equations.
+ *
+ * IMPORTANT: Applying GE modulo some number (rather than modulo 2^bw)
+ * on a set of bit-vector equations is only sound if this set of equations
+ * has a solution that does not produce overflows. Consequently, we only
+ * apply GE if the given bit-width guarantees that no overflows can occur
+ * in the given set of equations.
+ *
+ * Note that the given set of equations does not have to be modulo a prime
+ * but can be modulo any arbitrary number. However, if it is indeed modulo
+ * prime, GE is guaranteed to succeed, which is not the case, otherwise.
+ *
+ * Returns INVALID if GE can not be applied, UNIQUE and PARTIAL if GE was
+ * successful, and NONE, otherwise.
+ *
+ * The resulting constraints are stored in 'res' as a mapping of unknown
+ * to result (modulo prime). These mapped results are added as constraints
+ * of the form 'unknown = mapped result' in applyInternal.
+ */
+Result gaussElimRewriteForUrem(
+ const std::vector<Node>& equations,
+ std::unordered_map<Node, Node, NodeHashFunction>& res)
+{
+ Assert(res.empty());
+
+ Node prime;
+ Integer iprime;
+ std::unordered_map<Node, std::vector<Integer>, NodeHashFunction> vars;
+ size_t neqs = equations.size();
+ std::vector<Integer> rhs;
+ std::vector<std::vector<Integer>> lhs =
+ std::vector<std::vector<Integer>>(neqs, std::vector<Integer>());
+
+ res = std::unordered_map<Node, Node, NodeHashFunction>();
+
+ for (size_t i = 0; i < neqs; ++i)
+ {
+ Node eq = equations[i];
+ Assert(eq.getKind() == kind::EQUAL);
+ Node urem, eqrhs;
+
+ if (eq[0].getKind() == kind::BITVECTOR_UREM)
+ {
+ urem = eq[0];
+ Assert(is_bv_const(eq[1]));
+ eqrhs = eq[1];
+ }
+ else
+ {
+ Assert(eq[1].getKind() == kind::BITVECTOR_UREM);
+ urem = eq[1];
+ Assert(is_bv_const(eq[0]));
+ eqrhs = eq[0];
+ }
+ if (getMinBwExpr(Rewriter::rewrite(urem[0])) == 0)
+ {
+ Trace("bv-gauss-elim")
+ << "Minimum required bit-width exceeds given bit-width, "
+ "will not apply Gaussian Elimination."
+ << std::endl;
+ return Result::INVALID;
+ }
+ rhs.push_back(get_bv_const_value(eqrhs));
+
+ Assert(is_bv_const(urem[1]));
+ Assert(i == 0 || get_bv_const_value(urem[1]) == iprime);
+ if (i == 0)
+ {
+ prime = urem[1];
+ iprime = get_bv_const_value(prime);
+ }
+
+ std::unordered_map<Node, Integer, NodeHashFunction> tmp;
+ std::vector<Node> stack;
+ stack.push_back(urem[0]);
+ while (!stack.empty())
+ {
+ Node n = stack.back();
+ stack.pop_back();
+
+ /* Subtract from rhs if const */
+ if (is_bv_const(n))
+ {
+ Integer val = get_bv_const_value(n);
+ if (val > 0) rhs.back() -= val;
+ continue;
+ }
+
+ /* Split into matrix columns */
+ Kind k = n.getKind();
+ if (k == kind::BITVECTOR_PLUS)
+ {
+ for (const Node& nn : n) { stack.push_back(nn); }
+ }
+ else if (k == kind::BITVECTOR_MULT)
+ {
+ Node n0, n1;
+ /* Flatten mult expression. */
+ n = RewriteRule<FlattenAssocCommut>::run<true>(n);
+ /* Split operands into consts and non-consts */
+ NodeBuilder<> nb_consts(NodeManager::currentNM(), k);
+ NodeBuilder<> nb_nonconsts(NodeManager::currentNM(), k);
+ for (const Node& nn : n)
+ {
+ Node nnrw = Rewriter::rewrite(nn);
+ if (is_bv_const(nnrw))
+ {
+ nb_consts << nnrw;
+ }
+ else
+ {
+ nb_nonconsts << nnrw;
+ }
+ }
+ Assert(nb_nonconsts.getNumChildren() > 0);
+ /* n0 is const */
+ unsigned nc = nb_consts.getNumChildren();
+ if (nc > 1)
+ {
+ n0 = Rewriter::rewrite(nb_consts.constructNode());
+ }
+ else if (nc == 1)
+ {
+ n0 = nb_consts[0];
+ }
+ else
+ {
+ n0 = bv::utils::mkOne(bv::utils::getSize(n));
+ }
+ /* n1 is a mult with non-const operands */
+ if (nb_nonconsts.getNumChildren() > 1)
+ {
+ n1 = Rewriter::rewrite(nb_nonconsts.constructNode());
+ }
+ else
+ {
+ n1 = nb_nonconsts[0];
+ }
+ Assert(is_bv_const(n0));
+ Assert(!is_bv_const(n1));
+ tmp[n1] += get_bv_const_value(n0);
+ }
+ else
+ {
+ tmp[n] += Integer(1);
+ }
+ }
+
+ /* Note: "var" is not necessarily a VARIABLE but can be an arbitrary expr */
+
+ for (const auto& p : tmp)
+ {
+ Node var = p.first;
+ Integer val = p.second;
+ if (i > 0 && vars.find(var) == vars.end())
+ {
+ /* Add column and fill column elements of rows above with 0. */
+ vars[var].insert(vars[var].end(), i, Integer(0));
+ }
+ vars[var].push_back(val);
+ }
+
+ for (const auto& p : vars)
+ {
+ if (tmp.find(p.first) == tmp.end())
+ {
+ vars[p.first].push_back(Integer(0));
+ }
+ }
+ }
+
+ size_t nvars = vars.size();
+ Assert(nvars);
+ size_t nrows = vars.begin()->second.size();
+#ifdef CVC4_ASSERTIONS
+ for (const auto& p : vars) { Assert(p.second.size() == nrows); }
+#endif
+
+ if (nrows < 1)
+ {
+ return Result::INVALID;
+ }
+
+ for (size_t i = 0; i < nrows; ++i)
+ {
+ for (const auto& p : vars)
+ {
+ lhs[i].push_back(p.second[i]);
+ }
+ }
+
+#ifdef CVC4_ASSERTIONS
+ for (const auto& row : lhs) { Assert(row.size() == nvars); }
+ Assert(lhs.size() == rhs.size());
+#endif
+
+ if (lhs.size() > lhs[0].size())
+ {
+ return Result::INVALID;
+ }
+
+ Trace("bv-gauss-elim") << "Applying Gaussian Elimination..." << std::endl;
+ Result ret = gaussElim(iprime, rhs, lhs);
+
+ if (ret != Result::NONE && ret != Result::INVALID)
+ {
+ std::vector<Node> vvars;
+ for (const auto& p : vars) { vvars.push_back(p.first); }
+ Assert(nvars == vvars.size());
+ Assert(nrows == lhs.size());
+ Assert(nrows == rhs.size());
+ NodeManager *nm = NodeManager::currentNM();
+ if (ret == Result::UNIQUE)
+ {
+ for (size_t i = 0; i < nvars; ++i)
+ {
+ res[vvars[i]] = nm->mkConst<BitVector>(
+ BitVector(bv::utils::getSize(vvars[i]), rhs[i]));
+ }
+ }
+ else
+ {
+ Assert(ret == Result::PARTIAL);
+
+ for (size_t pcol = 0, prow = 0; pcol < nvars && prow < nrows;
+ ++pcol, ++prow)
+ {
+ Assert(lhs[prow][pcol] == 0 || lhs[prow][pcol] == 1);
+ while (pcol < nvars && lhs[prow][pcol] == 0) pcol += 1;
+ if (pcol >= nvars)
+ {
+ Assert(rhs[prow] == 0);
+ break;
+ }
+ if (lhs[prow][pcol] == 0)
+ {
+ Assert(rhs[prow] == 0);
+ continue;
+ }
+ Assert(lhs[prow][pcol] == 1);
+ std::vector<Node> stack;
+ for (size_t i = pcol + 1; i < nvars; ++i)
+ {
+ if (lhs[prow][i] == 0) continue;
+ /* Normalize (no negative numbers, hence no subtraction)
+ * e.g., x = 4 - 2y --> x = 4 + 9y (modulo 11) */
+ Integer m = iprime - lhs[prow][i];
+ Node bv = bv::utils::mkConst(bv::utils::getSize(vvars[i]), m);
+ Node mult = nm->mkNode(kind::BITVECTOR_MULT, vvars[i], bv);
+ stack.push_back(mult);
+ }
+
+ if (stack.empty())
+ {
+ res[vvars[pcol]] = nm->mkConst<BitVector>(
+ BitVector(bv::utils::getSize(vvars[pcol]), rhs[prow]));
+ }
+ else
+ {
+ Node tmp = stack.size() == 1
+ ? stack[0]
+ : nm->mkNode(kind::BITVECTOR_PLUS, stack);
+
+ if (rhs[prow] != 0)
+ {
+ tmp = nm->mkNode(kind::BITVECTOR_PLUS,
+ bv::utils::mkConst(
+ bv::utils::getSize(vvars[pcol]), rhs[prow]),
+ tmp);
+ }
+ Assert(!is_bv_const(tmp));
+ res[vvars[pcol]] = nm->mkNode(kind::BITVECTOR_UREM, tmp, prime);
+ }
+ }
+ }
+ }
+ return ret;
+}
+
+} // namespace
+
+
+
+BVGauss::BVGauss(PreprocessingPassContext* preprocContext)
+ : PreprocessingPass(preprocContext, "bv-gauss")
+{
+}
+
+PreprocessingPassResult BVGauss::applyInternal(
+ AssertionPipeline* assertionsToPreprocess)
+{
+ std::vector<Node> assertions(assertionsToPreprocess->ref());
+ std::unordered_map<Node, std::vector<Node>, NodeHashFunction> equations;
+
+ while (!assertions.empty())
+ {
+ Node a = assertions.back();
+ assertions.pop_back();
+ CVC4::Kind k = a.getKind();
+
+ if (k == kind::AND)
+ {
+ for (const Node& aa : a)
+ {
+ assertions.push_back(aa);
+ }
+ }
+ else if (k == kind::EQUAL)
+ {
+ Node urem;
+
+ if (is_bv_const(a[1]) && a[0].getKind() == kind::BITVECTOR_UREM)
+ {
+ urem = a[0];
+ }
+ else if (is_bv_const(a[0]) && a[1].getKind() == kind::BITVECTOR_UREM)
+ {
+ urem = a[1];
+ }
+ else
+ {
+ continue;
+ }
+
+ if (urem[0].getKind() == kind::BITVECTOR_PLUS && is_bv_const(urem[1]))
+ {
+ equations[urem[1]].push_back(a);
+ }
+ }
+ }
+
+ std::unordered_map<Node, Node, NodeHashFunction> subst;
+ std::vector<Node>& atpp = assertionsToPreprocess->ref();
+
+ for (const auto& eq : equations)
+ {
+ if (eq.second.size() <= 1) { continue; }
+
+ std::unordered_map<Node, Node, NodeHashFunction> res;
+ Result ret = gaussElimRewriteForUrem(eq.second, res);
+ Trace("bv-gauss-elim") << "result: "
+ << (ret == Result::INVALID
+ ? "INVALID"
+ : (ret == Result::UNIQUE
+ ? "UNIQUE"
+ : (ret == Result::PARTIAL
+ ? "PARTIAL"
+ : "NONE")))
+ << std::endl;
+ if (ret != Result::INVALID)
+ {
+ NodeManager *nm = NodeManager::currentNM();
+ if (ret == Result::NONE)
+ {
+ atpp.clear();
+ atpp.push_back(nm->mkConst<bool>(false));
+ }
+ else
+ {
+ for (const Node& e : eq.second)
+ {
+ subst[e] = nm->mkConst<bool>(true);
+ }
+ /* add resulting constraints */
+ for (const auto& p : res)
+ {
+ Node a = nm->mkNode(kind::EQUAL, p.first, p.second);
+ Trace("bv-gauss-elim") << "added assertion: " << a << std::endl;
+ atpp.push_back(a);
+ }
+ }
+ }
+ }
+
+ if (!subst.empty())
+ {
+ /* delete (= substitute with true) obsolete assertions */
+ for (auto& a : atpp)
+ {
+ a = a.substitute(subst.begin(), subst.end());
+ }
+ }
+ return PreprocessingPassResult::NO_CONFLICT;
+}
+
+} // namespace passes
+} // namespace preprocessing
+} // namespace CVC4
--- /dev/null
+/********************* */
+/*! \file bv_gauss.h
+ ** \verbatim
+ ** Top contributors (to current version):
+ ** Aina Niemetz
+ ** This file is part of the CVC4 project.
+ ** Copyright (c) 2009-2017 by the authors listed in the file AUTHORS
+ ** in the top-level source directory) and their institutional affiliations.
+ ** All rights reserved. See the file COPYING in the top-level source
+ ** directory for licensing information.\endverbatim
+ **
+ ** \brief Gaussian Elimination preprocessing pass.
+ **
+ ** Simplify a given equation system modulo a (prime) number via Gaussian
+ ** Elimination if possible.
+ **/
+
+#include "cvc4_private.h"
+
+#ifndef __CVC4__PREPROCESSING__PASSES__BV_GAUSS_ELIM_H
+#define __CVC4__PREPROCESSING__PASSES__BV_GAUSS_ELIM_H
+
+#include "preprocessing/preprocessing_pass.h"
+#include "preprocessing/preprocessing_pass_context.h"
+
+namespace CVC4 {
+namespace preprocessing {
+namespace passes {
+
+class BVGauss : public PreprocessingPass
+{
+ public:
+ BVGauss(PreprocessingPassContext* preprocContext);
+
+ protected:
+ /**
+ * Apply Gaussian Elimination on (possibly multiple) set(s) of equations
+ * modulo some (prime) number given as bit-vector equations.
+ *
+ * Note that these sets of equations do not have to be modulo some prime
+ * but can be modulo any arbitrary number. However, GE is guaranteed to
+ * succeed modulo a prime number, which is not necessarily the case if a
+ * given set of equations is modulo a non-prime number.
+ */
+ PreprocessingPassResult applyInternal(
+ AssertionPipeline* assertionsToPreprocess) override;
+};
+
+} // namespace passes
+} // namespace preprocessing
+} // namespace CVC4
+
+#endif
#include "options/theory_options.h"
#include "options/uf_options.h"
#include "preprocessing/passes/int_to_bv.h"
+#include "preprocessing/passes/bv_gauss.h"
#include "preprocessing/preprocessing_pass.h"
#include "preprocessing/preprocessing_pass_context.h"
#include "preprocessing/preprocessing_pass_registry.h"
#include "theory/arith/arith_msum.h"
#include "theory/arith/pseudoboolean_proc.h"
#include "theory/booleans/circuit_propagator.h"
-#include "theory/bv/bvgauss.h"
#include "theory/bv/bvintropow2.h"
#include "theory/bv/theory_bv_rewriter.h"
#include "theory/logic_info.h"
// TODO: register passes here (this will likely change when we add support for
// actually assembling preprocessing pipelines).
std::unique_ptr<IntToBV> intToBV(new IntToBV(d_preprocessingPassContext.get()));
+ std::unique_ptr<BVGauss> bvGauss(new BVGauss(d_preprocessingPassContext.get()));
d_preprocessingPassRegistry.registerPass("int-to-bv", std::move(intToBV));
+ d_preprocessingPassRegistry.registerPass("bv-gauss", std::move(bvGauss));
}
Node SmtEnginePrivate::expandDefinitions(TNode n, unordered_map<Node, Node, NodeHashFunction>& cache, bool expandOnly)
return;
}
- if(options::bvGaussElim())
+ if (options::bvGaussElim())
{
TimerStat::CodeTimer gaussElimTimer(d_smt.d_stats->d_gaussElimTime);
- theory::bv::BVGaussElim::gaussElimRewrite(d_assertions.ref());
+ d_preprocessingPassRegistry.getPass("bv-gauss")->apply(&d_assertions);
}
if (d_assertionsProcessed && options::incrementalSolving()) {
*/
}
- if (options::solveIntAsBV() > 0) {
+ if (options::solveIntAsBV() > 0)
+ {
d_preprocessingPassRegistry.getPass("int-to-bv")->apply(&d_assertions);
}
+++ /dev/null
-/********************* */
-/*! \file bvgauss.cpp
- ** \verbatim
- ** Top contributors (to current version):
- ** Aina Niemetz
- ** This file is part of the CVC4 project.
- ** Copyright (c) 2009-2018 by the authors listed in the file AUTHORS
- ** in the top-level source directory) and their institutional affiliations.
- ** All rights reserved. See the file COPYING in the top-level source
- ** directory for licensing information.\endverbatim
- **
- ** \brief Gaussian Elimination preprocessing pass.
- **
- ** Simplify a given equation system modulo a (prime) number via Gaussian
- ** Elimination if possible.
- **/
-
-#include "theory/bv/bvgauss.h"
-
-#include <unordered_map>
-
-#include "theory/rewriter.h"
-#include "theory/bv/theory_bv_utils.h"
-#include "theory/bv/theory_bv_rewrite_rules_normalization.h"
-
-using namespace CVC4;
-
-namespace CVC4 {
-namespace theory {
-namespace bv {
-
-static bool is_bv_const(Node n)
-{
- if (n.isConst()) { return true; }
- return Rewriter::rewrite(n).getKind() == kind::CONST_BITVECTOR;
-}
-
-static Node get_bv_const(Node n)
-{
- Assert(is_bv_const(n));
- return Rewriter::rewrite(n);
-}
-
-static Integer get_bv_const_value(Node n)
-{
- Assert(is_bv_const(n));
- return get_bv_const(n).getConst<BitVector>().getValue();
-}
-
-/* Note: getMinBwExpr assumes that 'expr' is rewritten.
- *
- * If not, all operators that are removed via rewriting (e.g., ror, rol, ...)
- * will be handled via the default case, which is not incorrect but also not
- * necessarily the minimum. */
-unsigned BVGaussElim::getMinBwExpr(Node expr)
-{
- std::vector<Node> visit;
- /* Maps visited nodes to the determined minimum bit-width required. */
- std::unordered_map<Node, unsigned, NodeHashFunction> visited;
- std::unordered_map<Node, unsigned, NodeHashFunction>::iterator it;
-
- visit.push_back(expr);
- while (!visit.empty())
- {
- Node n = visit.back();
- visit.pop_back();
- it = visited.find(n);
- if (it == visited.end())
- {
- if (is_bv_const(n))
- {
- /* Rewrite const expr, overflows in consts are irrelevant. */
- visited[n] = get_bv_const(n).getConst<BitVector>().getValue().length();
- }
- else
- {
- visited[n] = 0;
- visit.push_back(n);
- for (const Node &nn : n) { visit.push_back(nn); }
- }
- }
- else if (it->second == 0)
- {
- Kind k = n.getKind();
- Assert(k != kind::CONST_BITVECTOR);
- Assert(!is_bv_const(n));
- switch (k)
- {
- case kind::BITVECTOR_EXTRACT:
- {
- const unsigned size = utils::getSize(n);
- const unsigned low = utils::getExtractLow(n);
- const unsigned child_min_width = visited[n[0]];
- visited[n] = std::min(
- size, child_min_width >= low ? child_min_width - low : 0u);
- Assert(visited[n] <= visited[n[0]]);
- break;
- }
-
- case kind::BITVECTOR_ZERO_EXTEND:
- {
- visited[n] = visited[n[0]];
- break;
- }
-
- case kind::BITVECTOR_MULT:
- {
- Integer maxval = Integer(1);
- for (const Node& nn : n)
- {
- if (is_bv_const(nn))
- {
- maxval *= get_bv_const_value(nn);
- }
- else
- {
- maxval *= BitVector::mkOnes(visited[nn]).getValue();
- }
- }
- unsigned w = maxval.length();
- if (w > utils::getSize(n)) { return 0; } /* overflow */
- visited[n] = w;
- break;
- }
-
- case kind::BITVECTOR_CONCAT:
- {
- unsigned i, wnz, nc;
- for (i = 0, wnz = 0, nc = n.getNumChildren() - 1; i < nc; ++i)
- {
- unsigned wni = utils::getSize(n[i]);
- if (n[i] != utils::mkZero(wni)) { break; }
- /* sum of all bit-widths of leading zero concats */
- wnz += wni;
- }
- /* Do not consider leading zero concats, i.e.,
- * min bw of current concat is determined as
- * min bw of first non-zero term
- * plus actual bw of all subsequent terms */
- visited[n] = utils::getSize(n)
- + visited[n[i]] - utils::getSize(n[i])
- - wnz;
- break;
- }
-
- case kind::BITVECTOR_UREM_TOTAL:
- case kind::BITVECTOR_LSHR:
- case kind::BITVECTOR_ASHR:
- {
- visited[n] = visited[n[0]];
- break;
- }
-
- case kind::BITVECTOR_OR:
- case kind::BITVECTOR_NOR:
- case kind::BITVECTOR_XOR:
- case kind::BITVECTOR_XNOR:
- case kind::BITVECTOR_AND:
- case kind::BITVECTOR_NAND:
- {
- unsigned wmax = 0;
- for (const Node &nn : n)
- {
- if (visited[nn] > wmax)
- {
- wmax = visited[nn];
- }
- }
- visited[n] = wmax;
- break;
- }
-
- case kind::BITVECTOR_PLUS:
- {
- Integer maxval = Integer(0);
- for (const Node& nn : n)
- {
- if (is_bv_const(nn))
- {
- maxval += get_bv_const_value(nn);
- }
- else
- {
- maxval += BitVector::mkOnes(visited[nn]).getValue();
- }
- }
- unsigned w = maxval.length();
- if (w > utils::getSize(n)) { return 0; } /* overflow */
- visited[n] = w;
- break;
- }
-
- default:
- {
- /* BITVECTOR_UDIV_TOTAL (since x / 0 = -1)
- * BITVECTOR_NOT
- * BITVECTOR_NEG
- * BITVECTOR_SHL */
- visited[n] = utils::getSize(n);
- }
- }
- }
- }
- Assert(visited.find(expr) != visited.end());
- return visited[expr];
-}
-
-BVGaussElim::Result BVGaussElim::gaussElim(
- Integer prime,
- std::vector<Integer>& rhs,
- std::vector<std::vector<Integer>>& lhs)
-{
- Assert(prime > 0);
- Assert(lhs.size());
- Assert(lhs.size() == rhs.size());
- Assert(lhs.size() <= lhs[0].size());
-
- /* special case: zero ring */
- if (prime == 1)
- {
- rhs = std::vector<Integer>(rhs.size(), Integer(0));
- lhs = std::vector<std::vector<Integer>>(
- lhs.size(), std::vector<Integer>(lhs[0].size(), Integer(0)));
- return BVGaussElim::Result::UNIQUE;
- }
-
- size_t nrows = lhs.size();
- size_t ncols = lhs[0].size();
-
- #ifdef CVC4_ASSERTIONS
- for (size_t i = 1; i < nrows; ++i) Assert(lhs[i].size() == ncols);
- #endif
- /* (1) if element in pivot column is non-zero and != 1, divide row elements
- * by element in pivot column modulo prime, i.e., multiply row with
- * multiplicative inverse of element in pivot column modulo prime
- *
- * (2) subtract pivot row from all rows below pivot row
- *
- * (3) subtract (multiple of) current row from all rows above s.t. all
- * elements in current pivot column above current row become equal to one
- *
- * Note: we do not normalize the given matrix to values modulo prime
- * beforehand but on-the-fly. */
-
- /* pivot = lhs[pcol][pcol] */
- for (size_t pcol = 0, prow = 0; pcol < ncols && prow < nrows; ++pcol, ++prow)
- {
- /* lhs[j][pcol]: element in pivot column */
- for (size_t j = prow; j < nrows; ++j)
- {
-#ifdef CVC4_ASSERTIONS
- for (size_t k = 0; k < pcol; ++k) { Assert(lhs[j][k] == 0); }
-#endif
- /* normalize element in pivot column to modulo prime */
- lhs[j][pcol] = lhs[j][pcol].euclidianDivideRemainder(prime);
- /* exchange rows if pivot elem is 0 */
- if (j == prow)
- {
- while (lhs[j][pcol] == 0)
- {
- for (size_t k = prow + 1; k < nrows; ++k)
- {
- lhs[k][pcol] = lhs[k][pcol].euclidianDivideRemainder(prime);
- if (lhs[k][pcol] != 0)
- {
- std::swap(rhs[j], rhs[k]);
- std::swap(lhs[j], lhs[k]);
- break;
- }
- }
- if (pcol >= ncols - 1) break;
- if (lhs[j][pcol] == 0)
- {
- pcol += 1;
- if (lhs[j][pcol] != 0)
- lhs[j][pcol] = lhs[j][pcol].euclidianDivideRemainder(prime);
- }
- }
- }
-
- if (lhs[j][pcol] != 0)
- {
- /* (1) */
- if (lhs[j][pcol] != 1)
- {
- Integer inv = lhs[j][pcol].modInverse(prime);
- if (inv == -1)
- {
- return BVGaussElim::Result::INVALID; /* not coprime */
- }
- for (size_t k = pcol; k < ncols; ++k)
- {
- lhs[j][k] = lhs[j][k].modMultiply(inv, prime);
- if (j <= prow) continue; /* pivot */
- lhs[j][k] = lhs[j][k].modAdd(-lhs[prow][k], prime);
- }
- rhs[j] = rhs[j].modMultiply(inv, prime);
- if (j > prow) { rhs[j] = rhs[j].modAdd(-rhs[prow], prime); }
- }
- /* (2) */
- else if (j != prow)
- {
- for (size_t k = pcol; k < ncols; ++k)
- {
- lhs[j][k] = lhs[j][k].modAdd(-lhs[prow][k], prime);
- }
- rhs[j] = rhs[j].modAdd(-rhs[prow], prime);
- }
- }
- }
- /* (3) */
- for (size_t j = 0; j < prow; ++j)
- {
- Integer mul = lhs[j][pcol];
- if (mul != 0)
- {
- for (size_t k = pcol; k < ncols; ++k)
- {
- lhs[j][k] = lhs[j][k].modAdd(-lhs[prow][k] * mul, prime);
- }
- rhs[j] = rhs[j].modAdd(-rhs[prow] * mul, prime);
- }
- }
- }
-
- bool ispart = false;
- for (size_t i = 0; i < nrows; ++i)
- {
- size_t pcol = i;
- while (pcol < ncols && lhs[i][pcol] == 0) ++pcol;
- if (pcol >= ncols)
- {
- rhs[i] = rhs[i].euclidianDivideRemainder(prime);
- if (rhs[i] != 0)
- {
- /* no solution */
- return BVGaussElim::Result::NONE;
- }
- continue;
- }
- for (size_t j = i; j < ncols; ++j)
- {
- if (lhs[i][j] >= prime || lhs[i][j] <= -prime)
- {
- lhs[i][j] = lhs[i][j].euclidianDivideRemainder(prime);
- }
- if (j > pcol && lhs[i][j] != 0)
- {
- ispart = true;
- }
- }
- }
-
- if (ispart) { return BVGaussElim::Result::PARTIAL; }
-
- return BVGaussElim::Result::UNIQUE;
-}
-
-BVGaussElim::Result BVGaussElim::gaussElimRewriteForUrem(
- const std::vector<Node>& equations,
- std::unordered_map<Node, Node, NodeHashFunction>& res)
-{
- Assert(res.empty());
-
- Node prime;
- Integer iprime;
- std::unordered_map<Node, std::vector<Integer>, NodeHashFunction> vars;
- size_t neqs = equations.size();
- std::vector<Integer> rhs;
- std::vector<std::vector<Integer>> lhs =
- std::vector<std::vector<Integer>>(neqs, std::vector<Integer>());
-
- res = std::unordered_map<Node, Node, NodeHashFunction>();
-
- for (size_t i = 0; i < neqs; ++i)
- {
- Node eq = equations[i];
- Assert(eq.getKind() == kind::EQUAL);
- Node urem, eqrhs;
-
- if (eq[0].getKind() == kind::BITVECTOR_UREM)
- {
- urem = eq[0];
- Assert(is_bv_const(eq[1]));
- eqrhs = eq[1];
- }
- else
- {
- Assert(eq[1].getKind() == kind::BITVECTOR_UREM);
- urem = eq[1];
- Assert(is_bv_const(eq[0]));
- eqrhs = eq[0];
- }
- if (getMinBwExpr(Rewriter::rewrite(urem[0])) == 0)
- {
- Trace("bv-gauss-elim")
- << "Minimum required bit-width exceeds given bit-width, "
- "will not apply Gaussian Elimination."
- << std::endl;
- return BVGaussElim::Result::INVALID;
- }
- rhs.push_back(get_bv_const_value(eqrhs));
-
- Assert(is_bv_const(urem[1]));
- Assert(i == 0 || get_bv_const_value(urem[1]) == iprime);
- if (i == 0)
- {
- prime = urem[1];
- iprime = get_bv_const_value(prime);
- }
-
- std::unordered_map<Node, Integer, NodeHashFunction> tmp;
- std::vector<Node> stack;
- stack.push_back(urem[0]);
- while (!stack.empty())
- {
- Node n = stack.back();
- stack.pop_back();
-
- /* Subtract from rhs if const */
- if (is_bv_const(n))
- {
- Integer val = get_bv_const_value(n);
- if (val > 0) rhs.back() -= val;
- continue;
- }
-
- /* Split into matrix columns */
- Kind k = n.getKind();
- if (k == kind::BITVECTOR_PLUS)
- {
- for (const Node& nn : n) { stack.push_back(nn); }
- }
- else if (k == kind::BITVECTOR_MULT)
- {
- Node n0, n1;
- /* Flatten mult expression. */
- n = RewriteRule<FlattenAssocCommut>::run<true>(n);
- /* Split operands into consts and non-consts */
- NodeBuilder<> nb_consts(NodeManager::currentNM(), k);
- NodeBuilder<> nb_nonconsts(NodeManager::currentNM(), k);
- for (const Node& nn : n)
- {
- Node nnrw = Rewriter::rewrite(nn);
- if (is_bv_const(nnrw))
- {
- nb_consts << nnrw;
- }
- else
- {
- nb_nonconsts << nnrw;
- }
- }
- Assert(nb_nonconsts.getNumChildren() > 0);
- /* n0 is const */
- unsigned nc = nb_consts.getNumChildren();
- if (nc > 1)
- {
- n0 = Rewriter::rewrite(nb_consts.constructNode());
- }
- else if (nc == 1)
- {
- n0 = nb_consts[0];
- }
- else
- {
- n0 = utils::mkOne(utils::getSize(n));
- }
- /* n1 is a mult with non-const operands */
- if (nb_nonconsts.getNumChildren() > 1)
- {
- n1 = Rewriter::rewrite(nb_nonconsts.constructNode());
- }
- else
- {
- n1 = nb_nonconsts[0];
- }
- Assert(is_bv_const(n0));
- Assert(!is_bv_const(n1));
- tmp[n1] += get_bv_const_value(n0);
- }
- else
- {
- tmp[n] += Integer(1);
- }
- }
-
- /* Note: "var" is not necessarily a VARIABLE but can be an arbitrary expr */
-
- for (const auto& p : tmp)
- {
- Node var = p.first;
- Integer val = p.second;
- if (i > 0 && vars.find(var) == vars.end())
- {
- /* Add column and fill column elements of rows above with 0. */
- vars[var].insert(vars[var].end(), i, Integer(0));
- }
- vars[var].push_back(val);
- }
-
- for (const auto& p : vars)
- {
- if (tmp.find(p.first) == tmp.end())
- {
- vars[p.first].push_back(Integer(0));
- }
- }
- }
-
- size_t nvars = vars.size();
- Assert(nvars);
- size_t nrows = vars.begin()->second.size();
-#ifdef CVC4_ASSERTIONS
- for (const auto& p : vars) { Assert(p.second.size() == nrows); }
-#endif
-
- if (nrows < 1)
- {
- return BVGaussElim::Result::INVALID;
- }
-
- for (size_t i = 0; i < nrows; ++i)
- {
- for (const auto& p : vars)
- {
- lhs[i].push_back(p.second[i]);
- }
- }
-
-#ifdef CVC4_ASSERTIONS
- for (const auto& row : lhs) { Assert(row.size() == nvars); }
- Assert(lhs.size() == rhs.size());
-#endif
-
- if (lhs.size() > lhs[0].size())
- {
- return BVGaussElim::Result::INVALID;
- }
-
- Trace("bv-gauss-elim") << "Applying Gaussian Elimination..." << std::endl;
- Result ret = gaussElim(iprime, rhs, lhs);
-
- if (ret != BVGaussElim::Result::NONE && ret != BVGaussElim::Result::INVALID)
- {
- std::vector<Node> vvars;
- for (const auto& p : vars) { vvars.push_back(p.first); }
- Assert(nvars == vvars.size());
- Assert(nrows == lhs.size());
- Assert(nrows == rhs.size());
- NodeManager *nm = NodeManager::currentNM();
- if (ret == BVGaussElim::Result::UNIQUE)
- {
- for (size_t i = 0; i < nvars; ++i)
- {
- res[vvars[i]] = nm->mkConst<BitVector>(
- BitVector(utils::getSize(vvars[i]), rhs[i]));
- }
- }
- else
- {
- Assert(ret == BVGaussElim::Result::PARTIAL);
-
- for (size_t pcol = 0, prow = 0; pcol < nvars && prow < nrows;
- ++pcol, ++prow)
- {
- Assert(lhs[prow][pcol] == 0 || lhs[prow][pcol] == 1);
- while (pcol < nvars && lhs[prow][pcol] == 0) pcol += 1;
- if (pcol >= nvars)
- {
- Assert(rhs[prow] == 0);
- break;
- }
- if (lhs[prow][pcol] == 0)
- {
- Assert(rhs[prow] == 0);
- continue;
- }
- Assert(lhs[prow][pcol] == 1);
- std::vector<Node> stack;
- for (size_t i = pcol + 1; i < nvars; ++i)
- {
- if (lhs[prow][i] == 0) continue;
- /* Normalize (no negative numbers, hence no subtraction)
- * e.g., x = 4 - 2y --> x = 4 + 9y (modulo 11) */
- Integer m = iprime - lhs[prow][i];
- Node bv = utils::mkConst(utils::getSize(vvars[i]), m);
- Node mult = nm->mkNode(kind::BITVECTOR_MULT, vvars[i], bv);
- stack.push_back(mult);
- }
-
- if (stack.empty())
- {
- res[vvars[pcol]] = nm->mkConst<BitVector>(
- BitVector(utils::getSize(vvars[pcol]), rhs[prow]));
- }
- else
- {
- Node tmp = stack.size() == 1
- ? stack[0]
- : nm->mkNode(kind::BITVECTOR_PLUS, stack);
-
- if (rhs[prow] != 0)
- {
- tmp = nm->mkNode(kind::BITVECTOR_PLUS,
- utils::mkConst(
- utils::getSize(vvars[pcol]), rhs[prow]),
- tmp);
- }
- Assert(!is_bv_const(tmp));
- res[vvars[pcol]] = nm->mkNode(kind::BITVECTOR_UREM, tmp, prime);
- }
- }
- }
- }
- return ret;
-}
-
-void BVGaussElim::gaussElimRewrite(std::vector<Node> &assertionsToPreprocess)
-{
- std::vector<Node> assertions(assertionsToPreprocess);
- std::unordered_map<Node, std::vector<Node>, NodeHashFunction> equations;
-
- while (!assertions.empty())
- {
- Node a = assertions.back();
- assertions.pop_back();
- CVC4::Kind k = a.getKind();
-
- if (k == kind::AND)
- {
- for (const Node& aa : a)
- {
- assertions.push_back(aa);
- }
- }
- else if (k == kind::EQUAL)
- {
- Node urem;
-
- if (is_bv_const(a[1]) && a[0].getKind() == kind::BITVECTOR_UREM)
- {
- urem = a[0];
- }
- else if (is_bv_const(a[0]) && a[1].getKind() == kind::BITVECTOR_UREM)
- {
- urem = a[1];
- }
- else
- {
- continue;
- }
-
- if (urem[0].getKind() == kind::BITVECTOR_PLUS && is_bv_const(urem[1]))
- {
- equations[urem[1]].push_back(a);
- }
- }
- }
-
- std::unordered_map<Node, Node, NodeHashFunction> subst;
-
- for (const auto& eq : equations)
- {
- if (eq.second.size() <= 1) { continue; }
-
- std::unordered_map<Node, Node, NodeHashFunction> res;
- BVGaussElim::Result ret = gaussElimRewriteForUrem(eq.second, res);
- Trace("bv-gauss-elim") << "result: "
- << (ret == BVGaussElim::Result::INVALID
- ? "INVALID"
- : (ret == BVGaussElim::Result::UNIQUE
- ? "UNIQUE"
- : (ret == BVGaussElim::Result::PARTIAL
- ? "PARTIAL"
- : "NONE")))
- << std::endl;
- if (ret != BVGaussElim::Result::INVALID)
- {
- NodeManager *nm = NodeManager::currentNM();
- if (ret == BVGaussElim::Result::NONE)
- {
- assertionsToPreprocess.clear();
- assertionsToPreprocess.push_back(nm->mkConst<bool>(false));
- }
- else
- {
- for (const Node& e : eq.second)
- {
- subst[e] = nm->mkConst<bool>(true);
- }
- /* add resulting constraints */
- for (const auto& p : res)
- {
- Node a = nm->mkNode(kind::EQUAL, p.first, p.second);
- Trace("bv-gauss-elim") << "added assertion: " << a << std::endl;
- assertionsToPreprocess.push_back(a);
- }
- }
- }
- }
-
- if (!subst.empty())
- {
- /* delete (= substitute with true) obsolete assertions */
- for (auto& a : assertionsToPreprocess)
- {
- a = a.substitute(subst.begin(), subst.end());
- }
- }
-}
-
-} // namespace bv
-} // namespace theory
-} // namespace CVC4
+++ /dev/null
-/********************* */
-/*! \file bvgauss.h
- ** \verbatim
- ** Top contributors (to current version):
- ** Aina Niemetz
- ** This file is part of the CVC4 project.
- ** Copyright (c) 2009-2017 by the authors listed in the file AUTHORS
- ** in the top-level source directory) and their institutional affiliations.
- ** All rights reserved. See the file COPYING in the top-level source
- ** directory for licensing information.\endverbatim
- **
- ** \brief Gaussian Elimination preprocessing pass.
- **
- ** Simplify a given equation system modulo a (prime) number via Gaussian
- ** Elimination if possible.
- **/
-
-#include "cvc4_private.h"
-
-#ifndef __CVC4__THEORY__BV__BV_GAUSS_ELIM_H
-#define __CVC4__THEORY__BV__BV_GAUSS_ELIM_H
-
-#include "expr/node.h"
-#include "util/bitvector.h"
-
-#include <unordered_map>
-#include <vector>
-
-namespace CVC4 {
-namespace theory {
-namespace bv {
-
-class BVGaussElim
-{
- public:
- /**
- * Apply Gaussian Elimination on (possibly multiple) set(s) of equations
- * modulo some (prime) number given as bit-vector equations.
- *
- * Note that these sets of equations do not have to be modulo some prime
- * but can be modulo any arbitrary number. However, GE is guaranteed to
- * succeed modulo a prime number, which is not necessarily the case if a
- * given set of equations is modulo a non-prime number.
- */
- static void gaussElimRewrite(std::vector<Node>& assertionsToPreprocess);
-
- private:
- /**
- * Represents the result of Gaussian Elimination where the solution
- * of the given equation system is
- *
- * INVALID ... i.e., NOT of the form c1*x1 + c2*x2 + ... % p = b,
- * where ci, b and p are
- * - bit-vector constants
- * - extracts or zero extensions on bit-vector constants
- * - of arbitrary nesting level
- * and p is co-prime to all bit-vector constants for which
- * a multiplicative inverse has to be computed.
- *
- * UNIQUE ... determined for all unknowns, e.g., x = 4
- *
- * PARTIAL ... e.g., x = 4 - 2z
- *
- * NONE ... no solution
- *
- * Given a matrix A representing an equation system, the resulting
- * matrix B after applying GE represents, e.g.:
- *
- * B = 1 0 0 2 <- UNIQUE
- * 0 1 0 3 <-
- * 0 0 1 1 <-
- *
- * B = 1 0 2 4 <- PARTIAL
- * 0 1 3 2 <-
- * 0 0 1 1
- *
- * B = 1 0 0 1 NONE
- * 0 1 1 2
- * 0 0 0 2 <-
- */
- enum class Result
- {
- INVALID,
- UNIQUE,
- PARTIAL,
- NONE
- };
-
- /**
- * Determines if an overflow may occur in given 'expr'.
- *
- * Returns 0 if an overflow may occur, and the minimum required
- * bit-width such that no overflow occurs, otherwise.
- *
- * Note that it would suffice for this function to be Boolean.
- * However, it is handy to determine the minimum required bit-width for
- * debugging purposes.
- */
- static unsigned getMinBwExpr(Node expr);
-
- /**
- * Apply Gaussian Elimination on a set of equations modulo some (prime)
- * number given as bit-vector equations.
- *
- * IMPORTANT: Applying GE modulo some number (rather than modulo 2^bw)
- * on a set of bit-vector equations is only sound if this set of equations
- * has a solution that does not produce overflows. Consequently, we only
- * apply GE if the given bit-width guarantees that no overflows can occur
- * in the given set of equations.
- *
- * Note that the given set of equations does not have to be modulo a prime
- * but can be modulo any arbitrary number. However, if it is indeed modulo
- * prime, GE is guaranteed to succeed, which is not the case, otherwise.
- *
- * Returns INVALID if GE can not be applied, UNIQUE and PARTIAL if GE was
- * successful, and NONE, otherwise.
- *
- * The resulting constraints are stored in 'res' as a mapping of unknown
- * to result (modulo prime). These mapped results are added as constraints
- * of the form 'unknown = mapped result' in gaussElimRewrite.
- */
- static Result gaussElimRewriteForUrem(
- const std::vector<Node>& equations,
- std::unordered_map<Node, Node, NodeHashFunction>& res);
-
- /**
- * Apply Gaussian Elimination modulo a (prime) number.
- * The given equation system is represented as a matrix of Integers.
- *
- * Note that given 'prime' does not have to be prime but can be any
- * arbitrary number. However, if 'prime' is indeed prime, GE is guaranteed
- * to succeed, which is not the case, otherwise.
- *
- * Returns INVALID if GE can not be applied, UNIQUE and PARTIAL if GE was
- * successful, and NONE, otherwise.
- *
- * Vectors 'rhs' and 'lhs' represent the right hand side and left hand side
- * of the given matrix, respectively. The resulting matrix (in row echelon
- * form) is stored in 'rhs' and 'lhs', i.e., the given matrix is overwritten
- * with the resulting matrix.
- */
- static Result gaussElim(Integer prime,
- std::vector<Integer>& rhs,
- std::vector<std::vector<Integer>>& lhs);
-};
-
-} // namespace bv
-} // namespace theory
-} // namespace CVC4
-
-#endif
theory/logic_info_white \
theory/theory_arith_white \
theory/theory_black \
- theory/theory_bv_bvgauss_white \
theory/theory_bv_white \
theory/theory_engine_white \
theory/theory_quantifiers_bv_instantiator_white \
expr/type_node_white \
parser/parser_black \
parser/parser_builder_black \
+ preprocessing/pass_bv_gauss_white \
prop/cnf_stream_white \
context/context_black \
context/context_white \
--- /dev/null
+/********************* */
+/*! \file theory_bv_bvgauss_white.h
+ ** \verbatim
+ ** Top contributors (to current version):
+ ** Aina Niemetz
+ ** This file is part of the CVC4 project.
+ ** Copyright (c) 2009-2017 by the authors listed in the file AUTHORS
+ ** in the top-level source directory) and their institutional affiliations.
+ ** All rights reserved. See the file COPYING in the top-level source
+ ** directory for licensing information.\endverbatim
+ **
+ ** \brief Unit tests for Gaussian Elimination preprocessing pass.
+ **
+ ** Unit tests for Gaussian Elimination preprocessing pass.
+ **/
+
+#include "expr/node.h"
+#include "expr/node_manager.h"
+#include "preprocessing/preprocessing_pass.h"
+#include "preprocessing/passes/bv_gauss.cpp"
+#include "smt/smt_engine.h"
+#include "smt/smt_engine_scope.h"
+#include "theory/rewriter.h"
+#include "theory/bv/theory_bv_utils.h"
+#include "util/bitvector.h"
+
+#include <cxxtest/TestSuite.h>
+#include <iostream>
+#include <vector>
+
+using namespace CVC4;
+using namespace CVC4::preprocessing;
+using namespace CVC4::theory;
+using namespace CVC4::smt;
+
+static void print_matrix_dbg(std::vector<Integer> &rhs,
+ std::vector<std::vector<Integer>> &lhs)
+{
+ for (size_t m = 0, nrows = lhs.size(), ncols = lhs[0].size(); m < nrows; ++m)
+ {
+ for (size_t n = 0; n < ncols; ++n)
+ {
+ std::cout << " " << lhs[m][n];
+ }
+ std::cout << " " << rhs[m];
+ std::cout << std::endl;
+ }
+}
+
+static void testGaussElimX(Integer prime,
+ std::vector<Integer> rhs,
+ std::vector<std::vector<Integer>> lhs,
+ passes::Result expected,
+ std::vector<Integer> *rrhs = nullptr,
+ std::vector<std::vector<Integer>> *rlhs = nullptr)
+{
+ size_t nrows = lhs.size();
+ size_t ncols = lhs[0].size();
+ passes::Result ret;
+ std::vector<Integer> resrhs = std::vector<Integer>(rhs);
+ std::vector<std::vector<Integer>> reslhs =
+ std::vector<std::vector<Integer>>(lhs);
+
+ std::cout << "Input: " << std::endl;
+ print_matrix_dbg(rhs, lhs);
+
+ ret = passes::gaussElim(prime, resrhs, reslhs);
+
+ std::cout << "passes::Result: "
+ << (ret == passes::Result::INVALID
+ ? "INVALID"
+ : (ret == passes::Result::UNIQUE
+ ? "UNIQUE"
+ : (ret == passes::Result::PARTIAL ? "PARTIAL"
+ : "NONE")))
+ << std::endl;
+ print_matrix_dbg(resrhs, reslhs);
+
+ TS_ASSERT_EQUALS(expected, ret);
+
+ if (expected == passes::Result::UNIQUE)
+ {
+ /* map result value to column index
+ * e.g.:
+ * 1 0 0 2 -> res = { 2, 0, 3}
+ * 0 0 1 3 */
+ std::vector<Integer> res = std::vector<Integer>(ncols, Integer(0));
+ for (size_t i = 0; i < nrows; ++i)
+ for (size_t j = 0; j < ncols; ++j)
+ {
+ if (reslhs[i][j] == 1)
+ res[j] = resrhs[i];
+ else
+ TS_ASSERT(reslhs[i][j] == 0);
+ }
+
+ for (size_t i = 0; i < nrows; ++i)
+ {
+ Integer tmp = Integer(0);
+ for (size_t j = 0; j < ncols; ++j)
+ tmp = tmp.modAdd(lhs[i][j].modMultiply(res[j], prime), prime);
+ TS_ASSERT(tmp == rhs[i].euclidianDivideRemainder(prime));
+ }
+ }
+ if (rrhs != nullptr && rlhs != nullptr)
+ {
+ for (size_t i = 0; i < nrows; ++i)
+ {
+ for (size_t j = 0; j < ncols; ++j)
+ {
+ TS_ASSERT(reslhs[i][j] == (*rlhs)[i][j]);
+ }
+ TS_ASSERT(resrhs[i] == (*rrhs)[i]);
+ }
+ }
+}
+
+template <class T>
+static void testGaussElimT(Integer prime,
+ std::vector<Integer> rhs,
+ std::vector<std::vector<Integer>> lhs)
+{
+ TS_ASSERT_THROWS(passes::gaussElim(prime, rhs, lhs), T);
+}
+
+class TheoryBVGaussWhite : public CxxTest::TestSuite
+{
+ ExprManager *d_em;
+ NodeManager *d_nm;
+ SmtEngine *d_smt;
+ SmtScope *d_scope;
+ Node d_p;
+ Node d_x;
+ Node d_y;
+ Node d_z;
+ Node d_zero;
+ Node d_one;
+ Node d_two;
+ Node d_three;
+ Node d_four;
+ Node d_five;
+ Node d_six;
+ Node d_seven;
+ Node d_eight;
+ Node d_nine;
+ Node d_ten;
+ Node d_twelve;
+ Node d_eighteen;
+ Node d_twentyfour;
+ Node d_thirty;
+ Node d_one32;
+ Node d_two32;
+ Node d_three32;
+ Node d_four32;
+ Node d_five32;
+ Node d_six32;
+ Node d_seven32;
+ Node d_eight32;
+ Node d_nine32;
+ Node d_ten32;
+ Node d_x_mul_one;
+ Node d_x_mul_two;
+ Node d_x_mul_four;
+ Node d_y_mul_one;
+ Node d_y_mul_three;
+ Node d_y_mul_four;
+ Node d_y_mul_five;
+ Node d_y_mul_seven;
+ Node d_z_mul_one;
+ Node d_z_mul_three;
+ Node d_z_mul_five;
+ Node d_z_mul_twelve;
+ Node d_z_mul_six;
+ Node d_z_mul_nine;
+
+ public:
+ TheoryBVGaussWhite() {}
+
+ void setUp()
+ {
+ d_em = new ExprManager();
+ d_nm = NodeManager::fromExprManager(d_em);
+ d_smt = new SmtEngine(d_em);
+ d_scope = new SmtScope(d_smt);
+
+ d_zero = bv::utils::mkZero(16);
+
+ d_p = bv::utils::mkConcat(
+ d_zero, d_nm->mkConst<BitVector>(BitVector(16, 11u)));
+ d_x = bv::utils::mkConcat(
+ d_zero, d_nm->mkVar("x", d_nm->mkBitVectorType(16)));
+ d_y = bv::utils::mkConcat(
+ d_zero, d_nm->mkVar("y", d_nm->mkBitVectorType(16)));
+ d_z = bv::utils::mkConcat(
+ d_zero, d_nm->mkVar("z", d_nm->mkBitVectorType(16)));
+
+ d_one = bv::utils::mkConcat(
+ d_zero, d_nm->mkConst<BitVector>(BitVector(16, 1u)));
+ d_two = bv::utils::mkConcat(
+ d_zero, d_nm->mkConst<BitVector>(BitVector(16, 2u)));
+ d_three = bv::utils::mkConcat(
+ d_zero, d_nm->mkConst<BitVector>(BitVector(16, 3u)));
+ d_four = bv::utils::mkConcat(
+ d_zero, d_nm->mkConst<BitVector>(BitVector(16, 4u)));
+ d_five = bv::utils::mkConcat(
+ d_zero, d_nm->mkConst<BitVector>(BitVector(16, 5u)));
+ d_six = bv::utils::mkConcat(
+ d_zero, d_nm->mkConst<BitVector>(BitVector(16, 6u)));
+ d_seven = bv::utils::mkConcat(
+ d_zero, d_nm->mkConst<BitVector>(BitVector(16, 7u)));
+ d_eight = bv::utils::mkConcat(
+ d_zero, d_nm->mkConst<BitVector>(BitVector(16, 8u)));
+ d_nine = bv::utils::mkConcat(
+ d_zero, d_nm->mkConst<BitVector>(BitVector(16, 9u)));
+ d_ten = bv::utils::mkConcat(
+ d_zero, d_nm->mkConst<BitVector>(BitVector(16, 10u)));
+ d_twelve = bv::utils::mkConcat(
+ d_zero, d_nm->mkConst<BitVector>(BitVector(16, 12u)));
+ d_eighteen = bv::utils::mkConcat(
+ d_zero, d_nm->mkConst<BitVector>(BitVector(16, 18u)));
+ d_twentyfour = bv::utils::mkConcat(
+ d_zero, d_nm->mkConst<BitVector>(BitVector(16, 24u)));
+ d_thirty = bv::utils::mkConcat(
+ d_zero, d_nm->mkConst<BitVector>(BitVector(16, 30u)));
+
+ d_one32 = d_nm->mkConst<BitVector>(BitVector(32, 1u));
+ d_two32 = d_nm->mkConst<BitVector>(BitVector(32, 2u));
+ d_three32 = d_nm->mkConst<BitVector>(BitVector(32, 3u));
+ d_four32 = d_nm->mkConst<BitVector>(BitVector(32, 4u));
+ d_five32 = d_nm->mkConst<BitVector>(BitVector(32, 5u));
+ d_six32 = d_nm->mkConst<BitVector>(BitVector(32, 6u));
+ d_seven32 = d_nm->mkConst<BitVector>(BitVector(32, 7u));
+ d_eight32 = d_nm->mkConst<BitVector>(BitVector(32, 8u));
+ d_nine32 = d_nm->mkConst<BitVector>(BitVector(32, 9u));
+ d_ten32 = d_nm->mkConst<BitVector>(BitVector(32, 10u));
+
+ d_x_mul_one = d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_one);
+ d_x_mul_two = d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_two);
+ d_x_mul_four = d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_four);
+ d_y_mul_three = d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_three);
+ d_y_mul_one = d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_one);
+ d_y_mul_four = d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_four);
+ d_y_mul_five = d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_five);
+ d_y_mul_seven = d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_seven);
+ d_z_mul_one = d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_one);
+ d_z_mul_three = d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_three);
+ d_z_mul_five = d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_five);
+ d_z_mul_six = d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_six);
+ d_z_mul_twelve = d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_twelve);
+ d_z_mul_nine = d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_nine);
+ }
+
+ void tearDown()
+ {
+ (void)d_scope;
+ d_p = Node::null();
+ d_x = Node::null();
+ d_y = Node::null();
+ d_z = Node::null();
+ d_zero = Node::null();
+ d_one = Node::null();
+ d_two = Node::null();
+ d_three = Node::null();
+ d_four = Node::null();
+ d_five = Node::null();
+ d_six = Node::null();
+ d_seven = Node::null();
+ d_eight = Node::null();
+ d_nine = Node::null();
+ d_ten = Node::null();
+ d_twelve = Node::null();
+ d_eighteen = Node::null();
+ d_twentyfour = Node::null();
+ d_thirty = Node::null();
+ d_one32 = Node::null();
+ d_two32 = Node::null();
+ d_three32 = Node::null();
+ d_four32 = Node::null();
+ d_five32 = Node::null();
+ d_six32 = Node::null();
+ d_seven32 = Node::null();
+ d_eight32 = Node::null();
+ d_nine32 = Node::null();
+ d_ten32 = Node::null();
+ d_x_mul_one = Node::null();
+ d_x_mul_two = Node::null();
+ d_x_mul_four = Node::null();
+ d_y_mul_one = Node::null();
+ d_y_mul_four = Node::null();
+ d_y_mul_seven = Node::null();
+ d_y_mul_five = Node::null();
+ d_y_mul_three = Node::null();
+ d_z_mul_one = Node::null();
+ d_z_mul_three = Node::null();
+ d_z_mul_five = Node::null();
+ d_z_mul_six = Node::null();
+ d_z_mul_twelve = Node::null();
+ d_z_mul_nine = Node::null();
+ delete d_scope;
+ delete d_smt;
+ delete d_em;
+ }
+
+ void testGaussElimMod()
+ {
+ std::vector<Integer> rhs;
+ std::vector<std::vector<Integer>> lhs;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }
+ * --^-- ^
+ * 1 1 1 5
+ * 2 3 5 8
+ * 4 0 5 2
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(5), Integer(8), Integer(2)};
+ lhs = {{Integer(1), Integer(1), Integer(1)},
+ {Integer(2), Integer(3), Integer(5)},
+ {Integer(4), Integer(0), Integer(5)}};
+ std::cout << "matrix 0, modulo 0" << std::endl; // throws
+ testGaussElimT<AssertionException>(Integer(0), rhs, lhs);
+ std::cout << "matrix 0, modulo 1" << std::endl;
+ testGaussElimX(Integer(1), rhs, lhs, passes::Result::UNIQUE);
+ std::cout << "matrix 0, modulo 2" << std::endl;
+ testGaussElimX(Integer(2), rhs, lhs, passes::Result::UNIQUE);
+ std::cout << "matrix 0, modulo 3" << std::endl;
+ testGaussElimX(Integer(3), rhs, lhs, passes::Result::UNIQUE);
+ std::cout << "matrix 0, modulo 4" << std::endl; // no inverse
+ testGaussElimX(Integer(4), rhs, lhs, passes::Result::INVALID);
+ std::cout << "matrix 0, modulo 5" << std::endl;
+ testGaussElimX(Integer(5), rhs, lhs, passes::Result::UNIQUE);
+ std::cout << "matrix 0, modulo 6" << std::endl; // no inverse
+ testGaussElimX(Integer(6), rhs, lhs, passes::Result::INVALID);
+ std::cout << "matrix 0, modulo 7" << std::endl;
+ testGaussElimX(Integer(7), rhs, lhs, passes::Result::UNIQUE);
+ std::cout << "matrix 0, modulo 8" << std::endl; // no inverse
+ testGaussElimX(Integer(8), rhs, lhs, passes::Result::INVALID);
+ std::cout << "matrix 0, modulo 9" << std::endl;
+ testGaussElimX(Integer(9), rhs, lhs, passes::Result::UNIQUE);
+ std::cout << "matrix 0, modulo 10" << std::endl; // no inverse
+ testGaussElimX(Integer(10), rhs, lhs, passes::Result::INVALID);
+ std::cout << "matrix 0, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::UNIQUE);
+ }
+
+ void testGaussElimUniqueDone()
+ {
+ std::vector<Integer> rhs;
+ std::vector<std::vector<Integer>> lhs;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 17
+ * --^--- ^ --^-- ^
+ * 1 0 0 4 --> 1 0 0 4
+ * 0 1 0 15 0 1 0 15
+ * 0 0 1 3 0 0 1 3
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(4), Integer(15), Integer(3)};
+ lhs = {{Integer(1), Integer(0), Integer(0)},
+ {Integer(0), Integer(1), Integer(0)},
+ {Integer(0), Integer(0), Integer(1)}};
+ std::cout << "matrix 1, modulo 17" << std::endl;
+ testGaussElimX(Integer(17), rhs, lhs, passes::Result::UNIQUE);
+ }
+
+ void testGaussElimUnique()
+ {
+ std::vector<Integer> rhs;
+ std::vector<std::vector<Integer>> lhs;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo { 11,17,59 }
+ * --^--- ^
+ * 2 4 6 18
+ * 4 5 6 24
+ * 3 1 -2 4
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(18), Integer(24), Integer(4)};
+ lhs = {{Integer(2), Integer(4), Integer(6)},
+ {Integer(4), Integer(5), Integer(6)},
+ {Integer(3), Integer(1), Integer(-2)}};
+ std::cout << "matrix 2, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::UNIQUE);
+ std::cout << "matrix 2, modulo 17" << std::endl;
+ testGaussElimX(Integer(17), rhs, lhs, passes::Result::UNIQUE);
+ std::cout << "matrix 2, modulo 59" << std::endl;
+ testGaussElimX(Integer(59), rhs, lhs, passes::Result::UNIQUE);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 11
+ * -----^----- ^ ---^--- ^
+ * 1 1 2 0 1 --> 1 0 0 0 1
+ * 2 -1 0 1 -2 0 1 0 0 2
+ * 1 -1 -1 -2 4 0 0 1 0 -1
+ * 2 -1 2 -1 0 0 0 0 1 -2
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(1), Integer(-2), Integer(4), Integer(0)};
+ lhs = {{Integer(1), Integer(1), Integer(2), Integer(0)},
+ {Integer(2), Integer(-1), Integer(0), Integer(1)},
+ {Integer(1), Integer(-1), Integer(-1), Integer(-2)},
+ {Integer(2), Integer(-1), Integer(2), Integer(-1)}};
+ std::cout << "matrix 3, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::UNIQUE);
+ }
+
+ void testGaussElimUniqueZero1()
+ {
+ std::vector<Integer> rhs;
+ std::vector<std::vector<Integer>> lhs;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 11
+ * --^-- ^ --^-- ^
+ * 0 4 5 2 --> 1 0 0 4
+ * 1 1 1 5 0 1 0 3
+ * 3 2 5 8 0 0 1 9
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(2), Integer(5), Integer(8)};
+ lhs = {{Integer(0), Integer(4), Integer(5)},
+ {Integer(1), Integer(1), Integer(1)},
+ {Integer(3), Integer(2), Integer(5)}};
+ std::cout << "matrix 4, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::UNIQUE);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 11
+ * --^-- ^ --^-- ^
+ * 1 1 1 5 --> 1 0 0 4
+ * 0 4 5 2 0 1 0 3
+ * 3 2 5 8 0 0 1 9
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(5), Integer(2), Integer(8)};
+ lhs = {{Integer(1), Integer(1), Integer(1)},
+ {Integer(0), Integer(4), Integer(5)},
+ {Integer(3), Integer(2), Integer(5)}};
+ std::cout << "matrix 5, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::UNIQUE);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 11
+ * --^-- ^ --^-- ^
+ * 1 1 1 5 --> 1 0 0 4
+ * 3 2 5 8 0 1 0 9
+ * 0 4 5 2 0 0 1 3
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(5), Integer(8), Integer(2)};
+ lhs = {{Integer(1), Integer(1), Integer(1)},
+ {Integer(3), Integer(2), Integer(5)},
+ {Integer(0), Integer(4), Integer(5)}};
+ std::cout << "matrix 6, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::UNIQUE);
+ }
+
+ void testGaussElimUniqueZero2()
+ {
+ std::vector<Integer> rhs;
+ std::vector<std::vector<Integer>> lhs;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 11
+ * --^-- ^ --^-- ^
+ * 0 0 5 2 1 0 0 10
+ * 1 1 1 5 --> 0 1 0 10
+ * 3 2 5 8 0 0 1 7
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(2), Integer(5), Integer(8)};
+ lhs = {{Integer(0), Integer(0), Integer(5)},
+ {Integer(1), Integer(1), Integer(1)},
+ {Integer(3), Integer(2), Integer(5)}};
+ std::cout << "matrix 7, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::UNIQUE);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 11
+ * --^-- ^ --^-- ^
+ * 1 1 1 5 --> 1 0 0 10
+ * 0 0 5 2 0 1 0 10
+ * 3 2 5 8 0 0 1 7
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(5), Integer(2), Integer(8)};
+ lhs = {{Integer(1), Integer(1), Integer(1)},
+ {Integer(0), Integer(0), Integer(5)},
+ {Integer(3), Integer(2), Integer(5)}};
+ std::cout << "matrix 8, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::UNIQUE);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 11
+ * --^-- ^ --^-- ^
+ * 1 1 1 5 --> 1 0 0 10
+ * 3 2 5 8 0 1 0 10
+ * 0 0 5 2 0 0 1 7
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(5), Integer(8), Integer(2)};
+ lhs = {{Integer(1), Integer(1), Integer(1)},
+ {Integer(3), Integer(2), Integer(5)},
+ {Integer(0), Integer(0), Integer(5)}};
+ std::cout << "matrix 9, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::UNIQUE);
+ }
+
+ void testGaussElimUniqueZero3()
+ {
+ std::vector<Integer> rhs;
+ std::vector<std::vector<Integer>> lhs;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 7
+ * --^-- ^ --^-- ^
+ * 2 0 6 4 1 0 0 3
+ * 0 0 0 0 --> 0 0 0 0
+ * 4 0 6 3 0 0 1 2
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(4), Integer(0), Integer(3)};
+ lhs = {{Integer(2), Integer(0), Integer(6)},
+ {Integer(0), Integer(0), Integer(0)},
+ {Integer(4), Integer(0), Integer(6)}};
+ std::cout << "matrix 10, modulo 7" << std::endl;
+ testGaussElimX(Integer(7), rhs, lhs, passes::Result::UNIQUE);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 7
+ * --^-- ^ --^-- ^
+ * 2 6 0 4 1 0 0 3
+ * 0 0 0 0 --> 0 0 0 0
+ * 4 6 0 3 0 0 1 2
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(4), Integer(0), Integer(3)};
+ lhs = {{Integer(2), Integer(6), Integer(0)},
+ {Integer(0), Integer(0), Integer(0)},
+ {Integer(4), Integer(6), Integer(0)}};
+ std::cout << "matrix 11, modulo 7" << std::endl;
+ testGaussElimX(Integer(7), rhs, lhs, passes::Result::UNIQUE);
+ }
+
+ void testGaussElimUniqueZero4()
+ {
+ std::vector<Integer> rhs, resrhs;
+ std::vector<std::vector<Integer>> lhs, reslhs;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo 11
+ * --^-- ^
+ * 0 1 1 5
+ * 0 0 0 0
+ * 0 0 5 2
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(5), Integer(0), Integer(2)};
+ lhs = {{Integer(0), Integer(1), Integer(1)},
+ {Integer(0), Integer(0), Integer(0)},
+ {Integer(0), Integer(0), Integer(5)}};
+ std::cout << "matrix 12, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::UNIQUE);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo 11
+ * --^-- ^
+ * 0 1 1 5
+ * 0 3 5 8
+ * 0 0 0 0
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(5), Integer(8), Integer(0)};
+ lhs = {{Integer(0), Integer(1), Integer(1)},
+ {Integer(0), Integer(3), Integer(5)},
+ {Integer(0), Integer(0), Integer(0)}};
+ std::cout << "matrix 13, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::UNIQUE);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo 11
+ * --^-- ^
+ * 0 0 0 0
+ * 0 3 5 8
+ * 0 0 5 2
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(0), Integer(8), Integer(2)};
+ lhs = {{Integer(0), Integer(0), Integer(0)},
+ {Integer(0), Integer(3), Integer(5)},
+ {Integer(0), Integer(0), Integer(5)}};
+ std::cout << "matrix 14, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::UNIQUE);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo 11
+ * --^-- ^
+ * 1 0 1 5
+ * 0 0 0 0
+ * 4 0 5 2
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(5), Integer(0), Integer(2)};
+ lhs = {{Integer(1), Integer(0), Integer(1)},
+ {Integer(0), Integer(0), Integer(0)},
+ {Integer(4), Integer(0), Integer(5)}};
+ std::cout << "matrix 15, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::UNIQUE);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo 11
+ * --^-- ^
+ * 1 0 1 5
+ * 2 0 5 8
+ * 0 0 0 0
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(5), Integer(8), Integer(0)};
+ lhs = {{Integer(1), Integer(0), Integer(1)},
+ {Integer(2), Integer(0), Integer(5)},
+ {Integer(0), Integer(0), Integer(0)}};
+ std::cout << "matrix 16, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::UNIQUE);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo 11
+ * --^-- ^
+ * 0 0 0 0
+ * 2 0 5 8
+ * 4 0 5 2
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(0), Integer(8), Integer(2)};
+ lhs = {{Integer(0), Integer(0), Integer(0)},
+ {Integer(2), Integer(0), Integer(5)},
+ {Integer(4), Integer(0), Integer(5)}};
+ std::cout << "matrix 17, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::UNIQUE);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo 11
+ * --^-- ^
+ * 1 1 0 5
+ * 0 0 0 0
+ * 4 0 0 2
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(5), Integer(0), Integer(2)};
+ lhs = {{Integer(1), Integer(1), Integer(0)},
+ {Integer(0), Integer(0), Integer(0)},
+ {Integer(4), Integer(0), Integer(0)}};
+ std::cout << "matrix 18, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::UNIQUE);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo 11
+ * --^-- ^
+ * 1 1 0 5
+ * 2 3 0 8
+ * 0 0 0 0
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(5), Integer(8), Integer(0)};
+ lhs = {{Integer(1), Integer(1), Integer(0)},
+ {Integer(2), Integer(3), Integer(0)},
+ {Integer(0), Integer(0), Integer(0)}};
+ std::cout << "matrix 18, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::UNIQUE);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo 11
+ * --^-- ^
+ * 0 0 0 0
+ * 2 3 0 8
+ * 4 0 0 2
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(0), Integer(8), Integer(2)};
+ lhs = {{Integer(0), Integer(0), Integer(0)},
+ {Integer(2), Integer(3), Integer(0)},
+ {Integer(4), Integer(0), Integer(0)}};
+ std::cout << "matrix 19, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::UNIQUE);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo 2
+ * ----^--- ^
+ * 2 4 6 18 0 0 0 0
+ * 4 5 6 24 = 0 1 0 0
+ * 2 7 12 30 0 1 0 0
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(18), Integer(24), Integer(30)};
+ lhs = {{Integer(2), Integer(4), Integer(6)},
+ {Integer(4), Integer(5), Integer(6)},
+ {Integer(2), Integer(7), Integer(12)}};
+ std::cout << "matrix 20, modulo 2" << std::endl;
+ resrhs = {Integer(0), Integer(0), Integer(0)};
+ reslhs = {{Integer(0), Integer(1), Integer(0)},
+ {Integer(0), Integer(0), Integer(0)},
+ {Integer(0), Integer(0), Integer(0)}};
+ testGaussElimX(
+ Integer(2), rhs, lhs, passes::Result::UNIQUE, &resrhs, &reslhs);
+ }
+
+ void testGaussElimUniquePartial()
+ {
+ std::vector<Integer> rhs;
+ std::vector<std::vector<Integer>> lhs;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 7
+ * --^-- ^ --^-- ^
+ * 2 0 6 4 1 0 0 3
+ * 4 0 6 3 0 0 1 2
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(4), Integer(3)};
+ lhs = {{Integer(2), Integer(0), Integer(6)},
+ {Integer(4), Integer(0), Integer(6)}};
+ std::cout << "matrix 21, modulo 7" << std::endl;
+ testGaussElimX(Integer(7), rhs, lhs, passes::Result::UNIQUE);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 7
+ * --^-- ^ --^-- ^
+ * 2 6 0 4 1 0 0 3
+ * 4 6 0 3 0 1 0 2
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(4), Integer(3)};
+ lhs = {{Integer(2), Integer(6), Integer(0)},
+ {Integer(4), Integer(6), Integer(0)}};
+ std::cout << "matrix 22, modulo 7" << std::endl;
+ testGaussElimX(Integer(7), rhs, lhs, passes::Result::UNIQUE);
+ }
+
+ void testGaussElimNone()
+ {
+ std::vector<Integer> rhs;
+ std::vector<std::vector<Integer>> lhs;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo 9
+ * --^--- ^
+ * 2 4 6 18 --> not coprime (no inverse)
+ * 4 5 6 24
+ * 3 1 -2 4
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(18), Integer(24), Integer(4)};
+ lhs = {{Integer(2), Integer(4), Integer(6)},
+ {Integer(4), Integer(5), Integer(6)},
+ {Integer(3), Integer(1), Integer(-2)}};
+ std::cout << "matrix 23, modulo 9" << std::endl;
+ testGaussElimX(Integer(9), rhs, lhs, passes::Result::INVALID);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo 59
+ * ----^--- ^
+ * 1 -2 -6 12 --> no solution
+ * 2 4 12 -17
+ * 1 -4 -12 22
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(12), Integer(-17), Integer(22)};
+ lhs = {{Integer(1), Integer(-2), Integer(-6)},
+ {Integer(2), Integer(4), Integer(12)},
+ {Integer(1), Integer(-4), Integer(-12)}};
+ std::cout << "matrix 24, modulo 59" << std::endl;
+ testGaussElimX(Integer(59), rhs, lhs, passes::Result::NONE);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo 9
+ * ----^--- ^
+ * 2 4 6 18 --> not coprime (no inverse)
+ * 4 5 6 24
+ * 2 7 12 30
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(18), Integer(24), Integer(30)};
+ lhs = {{Integer(2), Integer(4), Integer(6)},
+ {Integer(4), Integer(5), Integer(6)},
+ {Integer(2), Integer(7), Integer(12)}};
+ std::cout << "matrix 25, modulo 9" << std::endl;
+ testGaussElimX(Integer(9), rhs, lhs, passes::Result::INVALID);
+ }
+
+ void testGaussElimNoneZero()
+ {
+ std::vector<Integer> rhs;
+ std::vector<std::vector<Integer>> lhs;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo 11
+ * --^-- ^
+ * 0 1 1 5
+ * 0 3 5 8
+ * 0 0 5 2
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(5), Integer(8), Integer(2)};
+ lhs = {{Integer(0), Integer(1), Integer(1)},
+ {Integer(0), Integer(3), Integer(5)},
+ {Integer(0), Integer(0), Integer(5)}};
+ std::cout << "matrix 26, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::NONE);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo 11
+ * --^-- ^
+ * 1 0 1 5
+ * 2 0 5 8
+ * 4 0 5 2
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(5), Integer(8), Integer(2)};
+ lhs = {{Integer(1), Integer(0), Integer(1)},
+ {Integer(2), Integer(0), Integer(5)},
+ {Integer(4), Integer(0), Integer(5)}};
+ std::cout << "matrix 27, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::NONE);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo 11
+ * --^-- ^
+ * 1 1 0 5
+ * 2 3 0 8
+ * 4 0 0 2
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(5), Integer(8), Integer(2)};
+ lhs = {{Integer(1), Integer(1), Integer(0)},
+ {Integer(2), Integer(3), Integer(0)},
+ {Integer(4), Integer(0), Integer(0)}};
+ std::cout << "matrix 28, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::NONE);
+ }
+
+ void testGaussElimPartial1()
+ {
+ std::vector<Integer> rhs, resrhs;
+ std::vector<std::vector<Integer>> lhs, reslhs;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 11
+ * --^-- ^ --^-- ^
+ * 1 0 9 7 --> 1 0 9 7
+ * 0 1 3 9 0 1 3 9
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(7), Integer(9)};
+ lhs = {{Integer(1), Integer(0), Integer(9)},
+ {Integer(0), Integer(1), Integer(3)}};
+ std::cout << "matrix 29, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::PARTIAL);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 11
+ * --^-- ^ --^-- ^
+ * 1 3 0 7 --> 1 3 0 7
+ * 0 0 1 9 0 0 1 9
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(7), Integer(9)};
+ lhs = {{Integer(1), Integer(3), Integer(0)},
+ {Integer(0), Integer(0), Integer(1)}};
+ std::cout << "matrix 30, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::PARTIAL);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 11
+ * --^-- ^ --^-- ^
+ * 1 1 1 5 --> 1 0 9 7
+ * 2 3 5 8 0 1 3 9
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(5), Integer(8)};
+ lhs = {{Integer(1), Integer(1), Integer(1)},
+ {Integer(2), Integer(3), Integer(5)}};
+ std::cout << "matrix 31, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::PARTIAL);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo { 3, 5, 7, 11, 17, 31, 59 }
+ * ----^--- ^
+ * 2 4 6 18
+ * 4 5 6 24
+ * 2 7 12 30
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(18), Integer(24), Integer(30)};
+ lhs = {{Integer(2), Integer(4), Integer(6)},
+ {Integer(4), Integer(5), Integer(6)},
+ {Integer(2), Integer(7), Integer(12)}};
+ std::cout << "matrix 32, modulo 3" << std::endl;
+ resrhs = {Integer(0), Integer(0), Integer(0)};
+ reslhs = {{Integer(1), Integer(2), Integer(0)},
+ {Integer(0), Integer(0), Integer(0)},
+ {Integer(0), Integer(0), Integer(0)}};
+ testGaussElimX(
+ Integer(3), rhs, lhs, passes::Result::PARTIAL, &resrhs, &reslhs);
+ resrhs = {Integer(1), Integer(4), Integer(0)};
+ std::cout << "matrix 32, modulo 5" << std::endl;
+ reslhs = {{Integer(1), Integer(0), Integer(4)},
+ {Integer(0), Integer(1), Integer(2)},
+ {Integer(0), Integer(0), Integer(0)}};
+ testGaussElimX(
+ Integer(5), rhs, lhs, passes::Result::PARTIAL, &resrhs, &reslhs);
+ std::cout << "matrix 32, modulo 7" << std::endl;
+ reslhs = {{Integer(1), Integer(0), Integer(6)},
+ {Integer(0), Integer(1), Integer(2)},
+ {Integer(0), Integer(0), Integer(0)}};
+ testGaussElimX(
+ Integer(7), rhs, lhs, passes::Result::PARTIAL, &resrhs, &reslhs);
+ std::cout << "matrix 32, modulo 11" << std::endl;
+ reslhs = {{Integer(1), Integer(0), Integer(10)},
+ {Integer(0), Integer(1), Integer(2)},
+ {Integer(0), Integer(0), Integer(0)}};
+ testGaussElimX(
+ Integer(11), rhs, lhs, passes::Result::PARTIAL, &resrhs, &reslhs);
+ std::cout << "matrix 32, modulo 17" << std::endl;
+ reslhs = {{Integer(1), Integer(0), Integer(16)},
+ {Integer(0), Integer(1), Integer(2)},
+ {Integer(0), Integer(0), Integer(0)}};
+ testGaussElimX(
+ Integer(17), rhs, lhs, passes::Result::PARTIAL, &resrhs, &reslhs);
+ std::cout << "matrix 32, modulo 59" << std::endl;
+ reslhs = {{Integer(1), Integer(0), Integer(58)},
+ {Integer(0), Integer(1), Integer(2)},
+ {Integer(0), Integer(0), Integer(0)}};
+ testGaussElimX(
+ Integer(59), rhs, lhs, passes::Result::PARTIAL, &resrhs, &reslhs);
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 3
+ * ----^--- ^ --^-- ^
+ * 4 6 2 18 --> 1 0 2 0
+ * 5 6 4 24 0 0 0 0
+ * 7 12 2 30 0 0 0 0
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(18), Integer(24), Integer(30)};
+ lhs = {{Integer(4), Integer(6), Integer(2)},
+ {Integer(5), Integer(6), Integer(4)},
+ {Integer(7), Integer(12), Integer(2)}};
+ std::cout << "matrix 33, modulo 3" << std::endl;
+ resrhs = {Integer(0), Integer(0), Integer(0)};
+ reslhs = {{Integer(1), Integer(0), Integer(2)},
+ {Integer(0), Integer(0), Integer(0)},
+ {Integer(0), Integer(0), Integer(0)}};
+ testGaussElimX(
+ Integer(3), rhs, lhs, passes::Result::PARTIAL, &resrhs, &reslhs);
+ }
+
+ void testGaussElimPartial2()
+ {
+ std::vector<Integer> rhs;
+ std::vector<std::vector<Integer>> lhs;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs --> lhs rhs modulo 11
+ * ---^--- ^ ---^--- ^
+ * x y z w x y z w
+ * 1 2 0 6 2 1 2 0 0 1
+ * 0 0 2 2 2 0 0 1 0 10
+ * 0 0 0 1 2 0 0 0 1 2
+ * ------------------------------------------------------------------- */
+ rhs = {Integer(2), Integer(2), Integer(2)};
+ lhs = {{Integer(1), Integer(2), Integer(6), Integer(0)},
+ {Integer(0), Integer(0), Integer(2), Integer(2)},
+ {Integer(0), Integer(0), Integer(1), Integer(0)}};
+ std::cout << "matrix 34, modulo 11" << std::endl;
+ testGaussElimX(Integer(11), rhs, lhs, passes::Result::PARTIAL);
+ }
+ void testGaussElimRewriteForUremUnique1()
+ {
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo 11
+ * --^-- ^
+ * 1 1 1 5
+ * 2 3 5 8
+ * 4 0 5 2
+ * ------------------------------------------------------------------- */
+
+ Node eq1 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_one, d_y_mul_one),
+ d_z_mul_one),
+ d_p),
+ d_five);
+
+ Node eq2 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_two, d_y_mul_three),
+ d_z_mul_five),
+ d_p),
+ d_eight);
+
+ Node eq3 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_four, d_z_mul_five),
+ d_p),
+ d_two);
+
+ std::vector<Node> eqs = {eq1, eq2, eq3};
+ std::unordered_map<Node, Node, NodeHashFunction> res;
+ passes::Result ret = passes::gaussElimRewriteForUrem(eqs, res);
+ TS_ASSERT(ret == passes::Result::UNIQUE);
+ TS_ASSERT(res.size() == 3);
+ TS_ASSERT(res[d_x] == d_three32);
+ TS_ASSERT(res[d_y] == d_four32);
+ TS_ASSERT(res[d_z] == d_nine32);
+ }
+
+ void testGaussElimRewriteForUremUnique2()
+ {
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo 11
+ * --^-- ^
+ * 1 1 1 5
+ * 2 3 5 8
+ * 4 0 5 2
+ * ------------------------------------------------------------------- */
+
+ Node zextop6 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(6));
+
+ Node p = d_nm->mkNode(
+ zextop6,
+ bv::utils::mkConcat(bv::utils::mkZero(6),
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ bv::utils::mkConst(20, 7),
+ bv::utils::mkConst(20, 4))));
+
+ Node x_mul_one =
+ d_nm->mkNode(kind::BITVECTOR_MULT,
+ d_nm->mkNode(kind::BITVECTOR_SUB, d_five, d_four),
+ d_x);
+ Node y_mul_one =
+ d_nm->mkNode(kind::BITVECTOR_MULT,
+ d_nm->mkNode(kind::BITVECTOR_UREM_TOTAL, d_one, d_five),
+ d_y);
+ Node z_mul_one =
+ d_nm->mkNode(kind::BITVECTOR_MULT, bv::utils::mkOne(32), d_z);
+
+ Node x_mul_two = d_nm->mkNode(
+ kind::BITVECTOR_MULT,
+ d_nm->mkNode(
+ kind::BITVECTOR_SHL, bv::utils::mkOne(32), bv::utils::mkOne(32)),
+ d_x);
+ Node y_mul_three = d_nm->mkNode(kind::BITVECTOR_MULT,
+ d_nm->mkNode(kind::BITVECTOR_LSHR,
+ bv::utils::mkOnes(32),
+ bv::utils::mkConst(32, 30)),
+ d_y);
+ Node z_mul_five = d_nm->mkNode(kind::BITVECTOR_MULT,
+ bv::utils::mkExtract(
+ d_nm->mkNode(
+ zextop6, d_nm->mkNode(kind::BITVECTOR_PLUS, d_three, d_two)),
+ 31, 0),
+ d_z);
+
+ Node x_mul_four = d_nm->mkNode(kind::BITVECTOR_MULT,
+ d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_MULT,
+ bv::utils::mkConst(32, 4),
+ bv::utils::mkConst(32, 5)),
+ bv::utils::mkConst(32, 4)),
+ bv::utils::mkConst(32, 6)),
+ d_x);
+
+ Node eq1 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ x_mul_one,
+ y_mul_one),
+ z_mul_one),
+ p),
+ d_five);
+
+ Node eq2 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, x_mul_two, y_mul_three),
+ z_mul_five),
+ p),
+ d_eight);
+
+ Node eq3 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, x_mul_four, z_mul_five),
+ d_p),
+ d_two);
+
+ std::vector<Node> eqs = {eq1, eq2, eq3};
+ std::unordered_map<Node, Node, NodeHashFunction> res;
+ passes::Result ret = passes::gaussElimRewriteForUrem(eqs, res);
+ TS_ASSERT(ret == passes::Result::UNIQUE);
+ TS_ASSERT(res.size() == 3);
+ TS_ASSERT(res[d_x] == d_three32);
+ TS_ASSERT(res[d_y] == d_four32);
+ TS_ASSERT(res[d_z] == d_nine32);
+ }
+
+ void testGaussElimRewriteForUremPartial1()
+ {
+ std::unordered_map<Node, Node, NodeHashFunction> res;
+ passes::Result ret;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 11
+ * --^-- ^ --^-- ^
+ * 1 0 9 7 --> 1 0 9 7
+ * 0 1 3 9 0 1 3 9
+ * ------------------------------------------------------------------- */
+
+ Node eq1 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_one, d_z_mul_nine),
+ d_p),
+ d_seven);
+
+ Node eq2 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_y_mul_one, d_z_mul_three),
+ d_p),
+ d_nine);
+
+ std::vector<Node> eqs = {eq1, eq2};
+ ret = passes::gaussElimRewriteForUrem(eqs, res);
+ TS_ASSERT(ret == passes::Result::PARTIAL);
+ TS_ASSERT(res.size() == 2);
+
+ Node x1 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_seven32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_two32)),
+ d_p);
+ Node y1 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_nine32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_eight32)),
+ d_p);
+
+ Node x2 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_two32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_three32)),
+ d_p);
+ Node z2 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_three32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_seven32)),
+ d_p);
+
+ Node y3 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_three32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_four32)),
+ d_p);
+ Node z3 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_two32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_six32)),
+ d_p);
+
+ /* result depends on order of variables in matrix */
+ if (res.find(d_x) == res.end())
+ {
+ /*
+ * y z x y z x
+ * 0 9 1 7 --> 1 0 7 3
+ * 1 3 0 9 0 1 5 2
+ *
+ * z y x z y x
+ * 9 0 1 7 --> 1 0 5 2
+ * 3 1 0 9 0 1 7 3
+ */
+ TS_ASSERT(res[d_y] == y3);
+ TS_ASSERT(res[d_z] == z3);
+ }
+ else if (res.find(d_y) == res.end())
+ {
+ /*
+ * x z y x z y
+ * 1 9 0 7 --> 1 0 8 2
+ * 0 3 1 9 0 1 4 3
+ *
+ * z x y z x y
+ * 9 1 0 7 --> 1 0 4 3
+ * 3 0 1 9 0 1 8 2
+ */
+ TS_ASSERT(res[d_x] == x2);
+ TS_ASSERT(res[d_z] == z2);
+ }
+ else
+ {
+ TS_ASSERT(res.find(d_z) == res.end());
+ /*
+ * x y z x y z
+ * 1 0 9 7 --> 1 0 9 7
+ * 0 1 3 9 0 1 3 9
+ *
+ * y x z y x z
+ * 0 1 9 7 --> 1 0 3 9
+ * 1 0 3 9 0 1 9 7
+ */
+ TS_ASSERT(res[d_x] == x1);
+ TS_ASSERT(res[d_y] == y1);
+ }
+ }
+
+ void testGaussElimRewriteForUremPartial1a()
+ {
+ std::unordered_map<Node, Node, NodeHashFunction> res;
+ passes::Result ret;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 11
+ * --^-- ^ --^-- ^
+ * 1 0 9 7 --> 1 0 9 7
+ * 0 1 3 9 0 1 3 9
+ * ------------------------------------------------------------------- */
+
+ Node eq1 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x, d_z_mul_nine),
+ d_p),
+ d_seven);
+
+ Node eq2 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_y, d_z_mul_three),
+ d_p),
+ d_nine);
+
+ std::vector<Node> eqs = {eq1, eq2};
+ ret = passes::gaussElimRewriteForUrem(eqs, res);
+ TS_ASSERT(ret == passes::Result::PARTIAL);
+ TS_ASSERT(res.size() == 2);
+
+ Node x1 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_seven32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_two32)),
+ d_p);
+ Node y1 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_nine32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_eight32)),
+ d_p);
+
+ Node x2 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_two32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_three32)),
+ d_p);
+ Node z2 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_three32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_seven32)),
+ d_p);
+
+ Node y3 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_three32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_four32)),
+ d_p);
+ Node z3 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_two32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_six32)),
+ d_p);
+
+ /* result depends on order of variables in matrix */
+ if (res.find(d_x) == res.end())
+ {
+ /*
+ * y z x y z x
+ * 0 9 1 7 --> 1 0 7 3
+ * 1 3 0 9 0 1 5 2
+ *
+ * z y x z y x
+ * 9 0 1 7 --> 1 0 5 2
+ * 3 1 0 9 0 1 7 3
+ */
+ TS_ASSERT(res[d_y] == y3);
+ TS_ASSERT(res[d_z] == z3);
+ }
+ else if (res.find(d_y) == res.end())
+ {
+ /*
+ * x z y x z y
+ * 1 9 0 7 --> 1 0 8 2
+ * 0 3 1 9 0 1 4 3
+ *
+ * z x y z x y
+ * 9 1 0 7 --> 1 0 4 3
+ * 3 0 1 9 0 1 8 2
+ */
+ TS_ASSERT(res[d_x] == x2);
+ TS_ASSERT(res[d_z] == z2);
+ }
+ else
+ {
+ TS_ASSERT(res.find(d_z) == res.end());
+ /*
+ * x y z x y z
+ * 1 0 9 7 --> 1 0 9 7
+ * 0 1 3 9 0 1 3 9
+ *
+ * y x z y x z
+ * 0 1 9 7 --> 1 0 3 9
+ * 1 0 3 9 0 1 9 7
+ */
+ TS_ASSERT(res[d_x] == x1);
+ TS_ASSERT(res[d_y] == y1);
+ }
+ }
+
+ void testGaussElimRewriteForUremPartial2()
+ {
+ std::unordered_map<Node, Node, NodeHashFunction> res;
+ passes::Result ret;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 11
+ * --^-- ^ --^-- ^
+ * 1 3 0 7 --> 1 3 0 7
+ * 0 0 1 9 0 0 1 9
+ * ------------------------------------------------------------------- */
+
+ Node eq1 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_one, d_y_mul_three),
+ d_p),
+ d_seven);
+
+ Node eq2 =
+ d_nm->mkNode(kind::EQUAL,
+ d_nm->mkNode(kind::BITVECTOR_UREM, d_z_mul_one, d_p),
+ d_nine);
+
+ std::vector<Node> eqs = {eq1, eq2};
+ ret = passes::gaussElimRewriteForUrem(eqs, res);
+ TS_ASSERT(ret == passes::Result::PARTIAL);
+ TS_ASSERT(res.size() == 2);
+
+ Node x1 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_seven32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_eight32)),
+ d_p);
+ Node y2 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_six32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_seven32)),
+ d_p);
+
+ /* result depends on order of variables in matrix */
+ if (res.find(d_x) == res.end())
+ {
+ /*
+ * x y z x y z
+ * 1 3 0 7 --> 1 3 0 7
+ * 0 0 1 9 0 0 1 9
+ *
+ * x z y x z y
+ * 1 0 3 7 --> 1 0 3 7
+ * 0 1 0 9 0 1 0 9
+ *
+ * z x y z x y
+ * 0 1 3 7 --> 1 0 0 9
+ * 1 0 0 9 0 1 3 7
+ */
+ TS_ASSERT(res[d_y] == y2);
+ TS_ASSERT(res[d_z] == d_nine32);
+ }
+ else if (res.find(d_y) == res.end())
+ {
+ /*
+ * z y x z y x
+ * 0 3 1 7 --> 1 0 0 9
+ * 1 0 0 9 0 1 4 6
+ *
+ * y x z y x z
+ * 3 1 0 7 --> 1 4 0 6
+ * 0 0 1 9 0 0 1 9
+ *
+ * y z x y z x
+ * 3 0 1 7 --> 1 0 4 6
+ * 0 1 0 9 0 1 0 9
+ */
+ TS_ASSERT(res[d_x] == x1);
+ TS_ASSERT(res[d_z] == d_nine32);
+ }
+ else
+ {
+ TS_ASSERT(false);
+ }
+ }
+
+ void testGaussElimRewriteForUremPartial3()
+ {
+ std::unordered_map<Node, Node, NodeHashFunction> res;
+ passes::Result ret;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 11
+ * --^-- ^ --^-- ^
+ * 1 1 1 5 --> 1 0 9 7
+ * 2 3 5 8 0 1 3 9
+ * ------------------------------------------------------------------- */
+
+ Node eq1 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_one, d_y),
+ d_z_mul_one),
+ d_p),
+ d_five);
+
+ Node eq2 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_two, d_y_mul_three),
+ d_z_mul_five),
+ d_p),
+ d_eight);
+
+ std::vector<Node> eqs = {eq1, eq2};
+ ret = passes::gaussElimRewriteForUrem(eqs, res);
+ TS_ASSERT(ret == passes::Result::PARTIAL);
+ TS_ASSERT(res.size() == 2);
+
+ Node x1 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_seven32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_two32)),
+ d_p);
+ Node y1 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_nine32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_eight32)),
+ d_p);
+ Node x2 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_two32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_three32)),
+ d_p);
+ Node z2 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_three32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_seven32)),
+ d_p);
+ Node y3 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_three32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_four32)),
+ d_p);
+ Node z3 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_two32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_six32)),
+ d_p);
+
+ /* result depends on order of variables in matrix */
+ if (res.find(d_x) == res.end())
+ {
+ /*
+ * y z x y z x
+ * 1 1 1 5 --> 1 0 7 3
+ * 3 5 2 8 0 1 5 2
+ *
+ * z y x z y x
+ * 1 1 1 5 --> 1 0 5 2
+ * 5 3 2 8 0 1 7 3
+ */
+ TS_ASSERT(res[d_y] == y3);
+ TS_ASSERT(res[d_z] == z3);
+ }
+ else if (res.find(d_y) == res.end())
+ {
+ /*
+ * x z y x z y
+ * 1 1 1 5 --> 1 0 8 2
+ * 2 5 3 8 0 1 4 3
+ *
+ * z x y z x y
+ * 1 1 1 5 --> 1 0 4 3
+ * 5 2 3 9 0 1 8 2
+ */
+ TS_ASSERT(res[d_x] == x2);
+ TS_ASSERT(res[d_z] == z2);
+ }
+ else
+ {
+ TS_ASSERT(res.find(d_z) == res.end());
+ /*
+ * x y z x y z
+ * 1 1 1 5 --> 1 0 9 7
+ * 2 3 5 8 0 1 3 9
+ *
+ * y x z y x z
+ * 1 1 1 5 --> 1 0 3 9
+ * 3 2 5 8 0 1 9 7
+ */
+ TS_ASSERT(res[d_x] == x1);
+ TS_ASSERT(res[d_y] == y1);
+ }
+ }
+
+ void testGaussElimRewriteForUremPartial4()
+ {
+ std::unordered_map<Node, Node, NodeHashFunction> res;
+ passes::Result ret;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 11
+ * ----^--- ^ ---^--- ^
+ * 2 4 6 18 --> 1 0 10 1
+ * 4 5 6 24 0 1 2 4
+ * 2 7 12 30 0 0 0 0
+ * ------------------------------------------------------------------- */
+
+ Node eq1 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_two, d_y_mul_four),
+ d_z_mul_six),
+ d_p),
+ d_eighteen);
+
+ Node eq2 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_four, d_y_mul_five),
+ d_z_mul_six),
+ d_p),
+ d_twentyfour);
+
+ Node eq3 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_two, d_y_mul_seven),
+ d_z_mul_twelve),
+ d_p),
+ d_thirty);
+
+ std::vector<Node> eqs = {eq1, eq2, eq3};
+ ret = passes::gaussElimRewriteForUrem(eqs, res);
+ TS_ASSERT(ret == passes::Result::PARTIAL);
+ TS_ASSERT(res.size() == 2);
+
+ Node x1 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_one32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_one32)),
+ d_p);
+ Node y1 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_four32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_nine32)),
+ d_p);
+ Node x2 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_three32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_five32)),
+ d_p);
+ Node z2 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_two32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_five32)),
+ d_p);
+ Node y3 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_six32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_nine32)),
+ d_p);
+ Node z3 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_ten32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_one32)),
+ d_p);
+
+ /* result depends on order of variables in matrix */
+ if (res.find(d_x) == res.end())
+ {
+ /*
+ * y z x y z x
+ * 4 6 2 18 --> 1 0 2 6
+ * 5 6 4 24 0 1 10 10
+ * 7 12 2 30 0 0 0 0
+ *
+ * z y x z y x
+ * 6 4 2 18 --> 1 0 10 10
+ * 6 5 4 24 0 1 2 6
+ * 12 12 2 30 0 0 0 0
+ *
+ */
+ TS_ASSERT(res[d_y] == y3);
+ TS_ASSERT(res[d_z] == z3);
+ }
+ else if (res.find(d_y) == res.end())
+ {
+ /*
+ * x z y x z y
+ * 2 6 4 18 --> 1 0 6 3
+ * 4 6 5 24 0 1 6 2
+ * 2 12 7 30 0 0 0 0
+ *
+ * z x y z x y
+ * 6 2 4 18 --> 1 0 6 2
+ * 6 4 5 24 0 1 6 3
+ * 12 2 12 30 0 0 0 0
+ *
+ */
+ TS_ASSERT(res[d_x] == x2);
+ TS_ASSERT(res[d_z] == z2);
+ }
+ else
+ {
+ TS_ASSERT(res.find(d_z) == res.end());
+ /*
+ * x y z x y z
+ * 2 4 6 18 --> 1 0 10 1
+ * 4 5 6 24 0 1 2 4
+ * 2 7 12 30 0 0 0 0
+ *
+ * y x z y x z
+ * 4 2 6 18 --> 1 0 2 49
+ * 5 4 6 24 0 1 10 1
+ * 7 2 12 30 0 0 0 0
+ */
+ TS_ASSERT(res[d_x] == x1);
+ TS_ASSERT(res[d_y] == y1);
+ }
+ }
+
+ void testGaussElimRewriteForUremPartial5()
+ {
+ std::unordered_map<Node, Node, NodeHashFunction> res;
+ passes::Result ret;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 3
+ * ----^--- ^ --^-- ^
+ * 2 4 6 18 --> 1 2 0 0
+ * 4 5 6 24 0 0 0 0
+ * 2 7 12 30 0 0 0 0
+ * ------------------------------------------------------------------- */
+
+ Node eq1 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_two, d_y_mul_four),
+ d_z_mul_six),
+ d_three),
+ d_eighteen);
+
+ Node eq2 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_four, d_y_mul_five),
+ d_z_mul_six),
+ d_three),
+ d_twentyfour);
+
+ Node eq3 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_two, d_y_mul_seven),
+ d_z_mul_twelve),
+ d_three),
+ d_thirty);
+
+ std::vector<Node> eqs = {eq1, eq2, eq3};
+ ret = passes::gaussElimRewriteForUrem(eqs, res);
+ TS_ASSERT(ret == passes::Result::PARTIAL);
+ TS_ASSERT(res.size() == 1);
+
+ Node x1 = d_nm->mkNode(kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_one32),
+ d_three);
+ Node y2 = d_nm->mkNode(kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_one32),
+ d_three);
+
+ /* result depends on order of variables in matrix */
+ if (res.find(d_x) == res.end())
+ {
+ /*
+ * y x z y x z
+ * 4 2 6 18 --> 1 2 0 0
+ * 5 4 6 24 0 0 0 0
+ * 7 2 12 30 0 0 0 0
+ *
+ * y z x y z x
+ * 4 6 2 18 --> 1 0 2 0
+ * 5 6 4 24 0 0 0 0
+ * 7 12 2 30 0 0 0 0
+ *
+ * z y x z y x
+ * 6 4 2 18 --> 0 1 2 0
+ * 6 5 4 24 0 0 0 0
+ * 12 12 2 30 0 0 0 0
+ *
+ */
+ TS_ASSERT(res[d_y] == y2);
+ }
+ else if (res.find(d_y) == res.end())
+ {
+ /*
+ * x y z x y z
+ * 2 4 6 18 --> 1 2 0 0
+ * 4 5 6 24 0 0 0 0
+ * 2 7 12 30 0 0 0 0
+ *
+ * x z y x z y
+ * 2 6 4 18 --> 1 0 2 0
+ * 4 6 5 24 0 0 0 0
+ * 2 12 7 30 0 0 0 0
+ *
+ * z x y z x y
+ * 6 2 4 18 --> 0 1 2 0
+ * 6 4 5 24 0 0 0 0
+ * 12 2 12 30 0 0 0 0
+ *
+ */
+ TS_ASSERT(res[d_x] == x1);
+ }
+ else
+ {
+ TS_ASSERT(false);
+ }
+ }
+
+ void testGaussElimRewriteForUremPartial6()
+ {
+ std::unordered_map<Node, Node, NodeHashFunction> res;
+ passes::Result ret;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs --> lhs rhs modulo 11
+ * ---^--- ^ ---^--- ^
+ * x y z w x y z w
+ * 1 2 0 6 2 1 2 0 6 2
+ * 0 0 2 2 2 0 0 1 1 1
+ * 0 0 0 1 2 0 0 0 1 2
+ * ------------------------------------------------------------------- */
+
+ Node y_mul_two = d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_two);
+ Node z_mul_two = d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_two);
+ Node w = bv::utils::mkConcat(
+ d_zero, d_nm->mkVar("w", d_nm->mkBitVectorType(16)));
+ Node w_mul_six = d_nm->mkNode(kind::BITVECTOR_MULT, w, d_six);
+ Node w_mul_two = d_nm->mkNode(kind::BITVECTOR_MULT, w, d_two);
+
+ Node eq1 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_one, y_mul_two),
+ w_mul_six),
+ d_p),
+ d_two);
+
+ Node eq2 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, z_mul_two, w_mul_two),
+ d_p),
+ d_two);
+
+ Node eq3 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM, w, d_p),
+ d_two);
+
+ std::vector<Node> eqs = {eq1, eq2, eq3};
+ ret = passes::gaussElimRewriteForUrem(eqs, res);
+ TS_ASSERT(ret == passes::Result::PARTIAL);
+ TS_ASSERT(res.size() == 3);
+
+ Node x1 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_one32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_nine32)),
+ d_p);
+ Node z1 = d_ten32;
+ Node w1 = d_two32;
+
+ Node y2 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_six32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_five32)),
+ d_p);
+ Node z2 = d_ten32;
+ Node w2 = d_two32;
+
+ /* result depends on order of variables in matrix */
+ if (res.find(d_x) == res.end())
+ {
+ TS_ASSERT(res[d_y] == y2);
+ TS_ASSERT(res[d_z] == z2);
+ TS_ASSERT(res[w] == w2);
+ }
+ else if (res.find(d_y) == res.end())
+ {
+ TS_ASSERT(res[d_x] == x1);
+ TS_ASSERT(res[d_z] == z1);
+ TS_ASSERT(res[w] == w1);
+ }
+ else
+ {
+ TS_ASSERT(false);
+ }
+ }
+
+ void testGaussElimRewriteForUremWithExprPartial()
+ {
+ std::unordered_map<Node, Node, NodeHashFunction> res;
+ passes::Result ret;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 11
+ * --^-- ^ --^-- ^
+ * 1 0 9 7 --> 1 0 9 7
+ * 0 1 3 9 0 1 3 9
+ * ------------------------------------------------------------------- */
+
+ Node zero = bv::utils::mkZero(8);
+ Node xx = d_nm->mkVar("xx", d_nm->mkBitVectorType(8));
+ Node yy = d_nm->mkVar("yy", d_nm->mkBitVectorType(8));
+ Node zz = d_nm->mkVar("zz", d_nm->mkBitVectorType(8));
+
+ Node x = bv::utils::mkConcat(
+ d_zero,
+ bv::utils::mkConcat(
+ zero, bv::utils::mkExtract(bv::utils::mkConcat(zero, xx), 7, 0)));
+ Node y = bv::utils::mkConcat(
+ d_zero,
+ bv::utils::mkConcat(
+ zero, bv::utils::mkExtract(bv::utils::mkConcat(zero, yy), 7, 0)));
+ Node z = bv::utils::mkConcat(
+ d_zero,
+ bv::utils::mkConcat(
+ zero, bv::utils::mkExtract(bv::utils::mkConcat(zero, zz), 7, 0)));
+
+ Node x_mul_one = d_nm->mkNode(kind::BITVECTOR_MULT, x, d_one32);
+ Node nine_mul_z = d_nm->mkNode(kind::BITVECTOR_MULT, d_nine32, z);
+ Node one_mul_y = d_nm->mkNode(kind::BITVECTOR_MULT, d_one, y);
+ Node z_mul_three = d_nm->mkNode(kind::BITVECTOR_MULT, z, d_three);
+
+ Node eq1 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, x_mul_one, nine_mul_z),
+ d_p),
+ d_seven);
+
+ Node eq2 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, one_mul_y, z_mul_three),
+ d_p),
+ d_nine);
+
+ std::vector<Node> eqs = {eq1, eq2};
+ ret = passes::gaussElimRewriteForUrem(eqs, res);
+ TS_ASSERT(ret == passes::Result::PARTIAL);
+ TS_ASSERT(res.size() == 2);
+
+ x = Rewriter::rewrite(x);
+ y = Rewriter::rewrite(y);
+ z = Rewriter::rewrite(z);
+
+ Node x1 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_seven32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, z, d_two32)),
+ d_p);
+ Node y1 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_nine32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, z, d_eight32)),
+ d_p);
+
+ Node x2 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_two32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, y, d_three32)),
+ d_p);
+ Node z2 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_three32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, y, d_seven32)),
+ d_p);
+
+ Node y3 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_three32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, x, d_four32)),
+ d_p);
+ Node z3 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_two32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, x, d_six32)),
+ d_p);
+
+ /* result depends on order of variables in matrix */
+ if (res.find(x) == res.end())
+ {
+ /*
+ * y z x y z x
+ * 0 9 1 7 --> 1 0 7 3
+ * 1 3 0 9 0 1 5 2
+ *
+ * z y x z y x
+ * 9 0 1 7 --> 1 0 5 2
+ * 3 1 0 9 0 1 7 3
+ */
+ TS_ASSERT(res[Rewriter::rewrite(y)] == y3);
+ TS_ASSERT(res[Rewriter::rewrite(z)] == z3);
+ }
+ else if (res.find(y) == res.end())
+ {
+ /*
+ * x z y x z y
+ * 1 9 0 7 --> 1 0 8 2
+ * 0 3 1 9 0 1 4 3
+ *
+ * z x y z x y
+ * 9 1 0 7 --> 1 0 4 3
+ * 3 0 1 9 0 1 8 2
+ */
+ TS_ASSERT(res[x] == x2);
+ TS_ASSERT(res[z] == z2);
+ }
+ else
+ {
+ TS_ASSERT(res.find(z) == res.end());
+ /*
+ * x y z x y z
+ * 1 0 9 7 --> 1 0 9 7
+ * 0 1 3 9 0 1 3 9
+ *
+ * y x z y x z
+ * 0 1 9 7 --> 1 0 3 9
+ * 1 0 3 9 0 1 9 7
+ */
+ TS_ASSERT(res[x] == x1);
+ TS_ASSERT(res[y] == y1);
+ }
+ }
+
+ void testGaussElimRewriteForUremNAryPartial()
+ {
+ std::unordered_map<Node, Node, NodeHashFunction> res;
+ passes::Result ret;
+
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 11
+ * --^-- ^ --^-- ^
+ * 1 0 9 7 --> 1 0 9 7
+ * 0 1 3 9 0 1 3 9
+ * ------------------------------------------------------------------- */
+
+ Node zero = bv::utils::mkZero(8);
+ Node xx = d_nm->mkVar("xx", d_nm->mkBitVectorType(8));
+ Node yy = d_nm->mkVar("yy", d_nm->mkBitVectorType(8));
+ Node zz = d_nm->mkVar("zz", d_nm->mkBitVectorType(8));
+
+ Node x = bv::utils::mkConcat(
+ d_zero,
+ bv::utils::mkConcat(
+ zero,
+ bv::utils::mkExtract(
+ d_nm->mkNode(kind::BITVECTOR_CONCAT, zero, xx), 7, 0)));
+ Node y = bv::utils::mkConcat(
+ d_zero,
+ bv::utils::mkConcat(
+ zero,
+ bv::utils::mkExtract(
+ d_nm->mkNode(kind::BITVECTOR_CONCAT, zero, yy), 7, 0)));
+ Node z = bv::utils::mkConcat(
+ d_zero,
+ bv::utils::mkConcat(
+ zero,
+ bv::utils::mkExtract(
+ d_nm->mkNode(kind::BITVECTOR_CONCAT, zero, zz), 7, 0)));
+
+ NodeBuilder<> nbx(d_nm, kind::BITVECTOR_MULT);
+ nbx << d_x << d_one << x;
+ Node x_mul_one_mul_xx = nbx.constructNode();
+ NodeBuilder<> nby(d_nm, kind::BITVECTOR_MULT);
+ nby << d_y << y << d_one;
+ Node y_mul_yy_mul_one = nby.constructNode();
+ NodeBuilder<> nbz(d_nm, kind::BITVECTOR_MULT);
+ nbz << d_three << d_z << z;
+ Node three_mul_z_mul_zz = nbz.constructNode();
+ NodeBuilder<> nbz2(d_nm, kind::BITVECTOR_MULT);
+ nbz2 << d_z << d_nine << z;
+ Node z_mul_nine_mul_zz = nbz2.constructNode();
+
+ Node x_mul_xx = d_nm->mkNode(kind::BITVECTOR_MULT, d_x, x);
+ Node y_mul_yy = d_nm->mkNode(kind::BITVECTOR_MULT, d_y, y);
+ Node z_mul_zz = d_nm->mkNode(kind::BITVECTOR_MULT, d_z, z);
+
+ Node eq1 = d_nm->mkNode(kind::EQUAL,
+ d_nm->mkNode(kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ x_mul_one_mul_xx,
+ z_mul_nine_mul_zz),
+ d_p),
+ d_seven);
+
+ Node eq2 = d_nm->mkNode(kind::EQUAL,
+ d_nm->mkNode(kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ y_mul_yy_mul_one,
+ three_mul_z_mul_zz),
+ d_p),
+ d_nine);
+
+ std::vector<Node> eqs = {eq1, eq2};
+ ret = passes::gaussElimRewriteForUrem(eqs, res);
+ TS_ASSERT(ret == passes::Result::PARTIAL);
+ TS_ASSERT(res.size() == 2);
+
+ x_mul_xx = Rewriter::rewrite(x_mul_xx);
+ y_mul_yy = Rewriter::rewrite(y_mul_yy);
+ z_mul_zz = Rewriter::rewrite(z_mul_zz);
+
+ Node x1 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_seven32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, z_mul_zz, d_two32)),
+ d_p);
+ Node y1 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_nine32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, z_mul_zz, d_eight32)),
+ d_p);
+
+ Node x2 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_two32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, y_mul_yy, d_three32)),
+ d_p);
+ Node z2 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_three32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, y_mul_yy, d_seven32)),
+ d_p);
+
+ Node y3 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_three32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, x_mul_xx, d_four32)),
+ d_p);
+ Node z3 = d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_two32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, x_mul_xx, d_six32)),
+ d_p);
+
+ /* result depends on order of variables in matrix */
+ if (res.find(x_mul_xx) == res.end())
+ {
+ /*
+ * y z x y z x
+ * 0 9 1 7 --> 1 0 7 3
+ * 1 3 0 9 0 1 5 2
+ *
+ * z y x z y x
+ * 9 0 1 7 --> 1 0 5 2
+ * 3 1 0 9 0 1 7 3
+ */
+ TS_ASSERT(res[y_mul_yy] == y3);
+ TS_ASSERT(res[z_mul_zz] == z3);
+ }
+ else if (res.find(y_mul_yy) == res.end())
+ {
+ /*
+ * x z y x z y
+ * 1 9 0 7 --> 1 0 8 2
+ * 0 3 1 9 0 1 4 3
+ *
+ * z x y z x y
+ * 9 1 0 7 --> 1 0 4 3
+ * 3 0 1 9 0 1 8 2
+ */
+ TS_ASSERT(res[x_mul_xx] == x2);
+ TS_ASSERT(res[z_mul_zz] == z2);
+ }
+ else
+ {
+ TS_ASSERT(res.find(z_mul_zz) == res.end());
+ /*
+ * x y z x y z
+ * 1 0 9 7 --> 1 0 9 7
+ * 0 1 3 9 0 1 3 9
+ *
+ * y x z y x z
+ * 0 1 9 7 --> 1 0 3 9
+ * 1 0 3 9 0 1 9 7
+ */
+ TS_ASSERT(res[x_mul_xx] == x1);
+ TS_ASSERT(res[y_mul_yy] == y1);
+ }
+ }
+
+ void testGaussElimRewriteForUremNotInvalid1()
+ {
+ std::unordered_map<Node, Node, NodeHashFunction> res;
+ passes::Result ret;
+
+ /* -------------------------------------------------------------------
+ * 3x / 2z = 4 modulo 11
+ * 2x % 5y = 2
+ * y O z = 5
+ * ------------------------------------------------------------------- */
+
+ Node n1 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_three, d_x),
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_two, d_y));
+ Node n2 = d_nm->mkNode(kind::BITVECTOR_UREM_TOTAL,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_two, d_x),
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_five, d_y));
+
+ Node n3 = bv::utils::mkConcat(
+ d_zero,
+ bv::utils::mkExtract(
+ d_nm->mkNode(kind::BITVECTOR_CONCAT, d_y, d_z), 15, 0));
+
+ Node eq1 = d_nm->mkNode(
+ kind::EQUAL, d_nm->mkNode(kind::BITVECTOR_UREM, n1, d_p), d_four);
+
+ Node eq2 = d_nm->mkNode(
+ kind::EQUAL, d_nm->mkNode(kind::BITVECTOR_UREM, n2, d_p), d_two);
+
+ Node eq3 = d_nm->mkNode(
+ kind::EQUAL, d_nm->mkNode(kind::BITVECTOR_UREM, n3, d_p), d_five);
+
+ std::vector<Node> eqs = {eq1, eq2, eq3};
+ ret = passes::gaussElimRewriteForUrem(eqs, res);
+ TS_ASSERT(ret == passes::Result::UNIQUE);
+ TS_ASSERT(res.size() == 3);
+
+ TS_ASSERT(res[n1] == d_four32);
+ TS_ASSERT(res[n2] == d_two32);
+ TS_ASSERT(res[n3] == d_five32);
+ }
+
+ void testGaussElimRewriteForUremNotInvalid2()
+ {
+ std::unordered_map<Node, Node, NodeHashFunction> res;
+ passes::Result ret;
+
+ /* -------------------------------------------------------------------
+ * x*y = 4 modulo 11
+ * x*y*z = 2
+ * 2*x*y + 2*z = 9
+ * ------------------------------------------------------------------- */
+
+ Node zero32 = bv::utils::mkZero(32);
+
+ Node x = bv::utils::mkConcat(zero32,
+ d_nm->mkVar("x", d_nm->mkBitVectorType(16)));
+ Node y = bv::utils::mkConcat(zero32,
+ d_nm->mkVar("y", d_nm->mkBitVectorType(16)));
+ Node z = bv::utils::mkConcat(zero32,
+ d_nm->mkVar("z", d_nm->mkBitVectorType(16)));
+
+ Node n1 = d_nm->mkNode(kind::BITVECTOR_MULT, x, y);
+ Node n2 = d_nm->mkNode(
+ kind::BITVECTOR_MULT, d_nm->mkNode(kind::BITVECTOR_MULT, x, y), z);
+ Node n3 = d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_MULT,
+ d_nm->mkNode(kind::BITVECTOR_MULT, x, y),
+ bv::utils::mkConcat(d_zero, d_two)),
+ d_nm->mkNode(
+ kind::BITVECTOR_MULT, bv::utils::mkConcat(d_zero, d_two), z));
+
+ Node eq1 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM, n1, bv::utils::mkConcat(d_zero, d_p)),
+ bv::utils::mkConcat(d_zero, d_four));
+
+ Node eq2 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM, n2, bv::utils::mkConcat(d_zero, d_p)),
+ bv::utils::mkConcat(d_zero, d_two));
+
+ Node eq3 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM, n3, bv::utils::mkConcat(d_zero, d_p)),
+ bv::utils::mkConcat(d_zero, d_nine));
+
+ std::vector<Node> eqs = {eq1, eq2, eq3};
+ ret = passes::gaussElimRewriteForUrem(eqs, res);
+ TS_ASSERT(ret == passes::Result::UNIQUE);
+ TS_ASSERT(res.size() == 3);
+
+ n1 = Rewriter::rewrite(n1);
+ n2 = Rewriter::rewrite(n2);
+ z = Rewriter::rewrite(z);
+
+ TS_ASSERT(res[n1] ==bv::utils::mkConst(48, 4));
+ TS_ASSERT(res[n2] ==bv::utils::mkConst(48, 2));
+
+ Integer twoxy = (res[n1].getConst<BitVector>().getValue() * Integer(2))
+ .euclidianDivideRemainder(Integer(48));
+ Integer twoz = (res[z].getConst<BitVector>().getValue() * Integer(2))
+ .euclidianDivideRemainder(Integer(48));
+ Integer r = (twoxy + twoz).euclidianDivideRemainder(Integer(11));
+ TS_ASSERT(r == Integer(9));
+ }
+
+ void testGaussElimRewriteForUremInvalid()
+ {
+ std::unordered_map<Node, Node, NodeHashFunction> res;
+ passes::Result ret;
+
+ /* -------------------------------------------------------------------
+ * x*y = 4 modulo 11
+ * x*y*z = 2
+ * 2*x*y = 9
+ * ------------------------------------------------------------------- */
+
+ Node zero32 = bv::utils::mkZero(32);
+
+ Node x = bv::utils::mkConcat(zero32,
+ d_nm->mkVar("x", d_nm->mkBitVectorType(16)));
+ Node y = bv::utils::mkConcat(zero32,
+ d_nm->mkVar("y", d_nm->mkBitVectorType(16)));
+ Node z = bv::utils::mkConcat(zero32,
+ d_nm->mkVar("z", d_nm->mkBitVectorType(16)));
+
+ Node n1 = d_nm->mkNode(kind::BITVECTOR_MULT, x, y);
+ Node n2 = d_nm->mkNode(
+ kind::BITVECTOR_MULT, d_nm->mkNode(kind::BITVECTOR_MULT, x, y), z);
+ Node n3 = d_nm->mkNode(kind::BITVECTOR_MULT,
+ d_nm->mkNode(kind::BITVECTOR_MULT, x, y),
+ bv::utils::mkConcat(d_zero, d_two));
+
+ Node eq1 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM, n1, bv::utils::mkConcat(d_zero, d_p)),
+ bv::utils::mkConcat(d_zero, d_four));
+
+ Node eq2 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM, n2, bv::utils::mkConcat(d_zero, d_p)),
+ bv::utils::mkConcat(d_zero, d_two));
+
+ Node eq3 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM, n3, bv::utils::mkConcat(d_zero, d_p)),
+ bv::utils::mkConcat(d_zero, d_nine));
+
+ std::vector<Node> eqs = {eq1, eq2, eq3};
+ ret = passes::gaussElimRewriteForUrem(eqs, res);
+ TS_ASSERT(ret == passes::Result::INVALID);
+ }
+
+ void testGaussElimRewriteUnique1()
+ {
+ /* -------------------------------------------------------------------
+ * lhs rhs modulo 11
+ * --^-- ^
+ * 1 1 1 5
+ * 2 3 5 8
+ * 4 0 5 2
+ * ------------------------------------------------------------------- */
+
+ Node eq1 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_one, d_y_mul_one),
+ d_z_mul_one),
+ d_p),
+ d_five);
+
+ Node eq2 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_two, d_y_mul_three),
+ d_z_mul_five),
+ d_p),
+ d_eight);
+
+ Node eq3 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_four, d_z_mul_five),
+ d_p),
+ d_two);
+
+ Node a = d_nm->mkNode(kind::AND, d_nm->mkNode(kind::AND, eq1, eq2), eq3);
+
+ AssertionPipeline apipe;
+ apipe.push_back(a);
+ passes::BVGauss bgauss(nullptr);
+ std::unordered_map<Node, Node, NodeHashFunction> res;
+ PreprocessingPassResult pres = bgauss.applyInternal(&apipe);
+ TS_ASSERT (pres == PreprocessingPassResult::NO_CONFLICT);
+ Node resx = d_nm->mkNode(
+ kind::EQUAL, d_x, d_nm->mkConst<BitVector>(BitVector(32, 3u)));
+ Node resy = d_nm->mkNode(
+ kind::EQUAL, d_y, d_nm->mkConst<BitVector>(BitVector(32, 4u)));
+ Node resz = d_nm->mkNode(
+ kind::EQUAL, d_z, d_nm->mkConst<BitVector>(BitVector(32, 9u)));
+ TS_ASSERT(apipe.size() == 4);
+ TS_ASSERT(std::find(apipe.begin(), apipe.end(), resx) != apipe.end());
+ TS_ASSERT(std::find(apipe.begin(), apipe.end(), resy) != apipe.end());
+ TS_ASSERT(std::find(apipe.begin(), apipe.end(), resz) != apipe.end());
+ }
+
+ void testGaussElimRewriteUnique2()
+ {
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 11
+ * --^-- ^ --^-- ^
+ * 1 1 1 5 1 0 0 3
+ * 2 3 5 8 0 1 0 4
+ * 4 0 5 2 0 0 1 9
+ *
+ * lhs rhs lhs rhs modulo 7
+ * --^-- ^ --^-- ^
+ * 2 6 0 4 1 0 0 3
+ * 4 6 0 3 0 1 0 2
+ * ------------------------------------------------------------------- */
+
+ Node eq1 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_one, d_y_mul_one),
+ d_z_mul_one),
+ d_p),
+ d_five);
+
+ Node eq2 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_two, d_y_mul_three),
+ d_z_mul_five),
+ d_p),
+ d_eight);
+
+ Node eq3 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_four, d_z_mul_five),
+ d_p),
+ d_two);
+
+ Node y_mul_six = d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_six);
+
+ Node eq4 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_two, y_mul_six),
+ d_seven),
+ d_four);
+
+ Node eq5 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_four, y_mul_six),
+ d_seven),
+ d_three);
+
+ Node a = d_nm->mkNode(kind::AND, d_nm->mkNode(kind::AND, eq1, eq2), eq3);
+
+ AssertionPipeline apipe;
+ apipe.push_back(a);
+ apipe.push_back(eq4);
+ apipe.push_back(eq5);
+ passes::BVGauss bgauss(nullptr);
+ std::unordered_map<Node, Node, NodeHashFunction> res;
+ PreprocessingPassResult pres = bgauss.applyInternal(&apipe);
+ TS_ASSERT (pres == PreprocessingPassResult::NO_CONFLICT);
+ Node resx1 = d_nm->mkNode(
+ kind::EQUAL, d_x, d_nm->mkConst<BitVector>(BitVector(32, 3u)));
+ Node resx2 = d_nm->mkNode(
+ kind::EQUAL, d_x, d_nm->mkConst<BitVector>(BitVector(32, 3u)));
+ Node resy1 = d_nm->mkNode(
+ kind::EQUAL, d_y, d_nm->mkConst<BitVector>(BitVector(32, 4u)));
+ Node resy2 = d_nm->mkNode(
+ kind::EQUAL, d_y, d_nm->mkConst<BitVector>(BitVector(32, 2u)));
+ Node resz = d_nm->mkNode(
+ kind::EQUAL, d_z, d_nm->mkConst<BitVector>(BitVector(32, 9u)));
+ TS_ASSERT(apipe.size() == 8);
+ TS_ASSERT(std::find(apipe.begin(), apipe.end(), resx1) != apipe.end());
+ TS_ASSERT(std::find(apipe.begin(), apipe.end(), resx2) != apipe.end());
+ TS_ASSERT(std::find(apipe.begin(), apipe.end(), resy1) != apipe.end());
+ TS_ASSERT(std::find(apipe.begin(), apipe.end(), resy2) != apipe.end());
+ TS_ASSERT(std::find(apipe.begin(), apipe.end(), resz) != apipe.end());
+ }
+
+ void testGaussElimRewritePartial()
+ {
+ /* -------------------------------------------------------------------
+ * lhs rhs lhs rhs modulo 11
+ * --^-- ^ --^-- ^
+ * 1 0 9 7 --> 1 0 9 7
+ * 0 1 3 9 0 1 3 9
+ * ------------------------------------------------------------------- */
+
+ Node eq1 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_one, d_z_mul_nine),
+ d_p),
+ d_seven);
+
+ Node eq2 = d_nm->mkNode(
+ kind::EQUAL,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS, d_y_mul_one, d_z_mul_three),
+ d_p),
+ d_nine);
+
+ AssertionPipeline apipe;
+ apipe.push_back(eq1);
+ apipe.push_back(eq2);
+ passes::BVGauss bgauss(nullptr);
+ std::unordered_map<Node, Node, NodeHashFunction> res;
+ PreprocessingPassResult pres = bgauss.applyInternal(&apipe);
+ TS_ASSERT (pres == PreprocessingPassResult::NO_CONFLICT);
+ TS_ASSERT(apipe.size() == 4);
+
+ Node resx1 = d_nm->mkNode(
+ kind::EQUAL,
+ d_x,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_seven32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_two32)),
+ d_p));
+ Node resy1 = d_nm->mkNode(
+ kind::EQUAL,
+ d_y,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_nine32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_eight32)),
+ d_p));
+
+ Node resx2 = d_nm->mkNode(
+ kind::EQUAL,
+ d_x,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_two32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_three32)),
+ d_p));
+ Node resz2 = d_nm->mkNode(
+ kind::EQUAL,
+ d_z,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_three32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_seven32)),
+ d_p));
+
+ Node resy3 = d_nm->mkNode(
+ kind::EQUAL,
+ d_y,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_three32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_four32)),
+ d_p));
+ Node resz3 = d_nm->mkNode(
+ kind::EQUAL,
+ d_z,
+ d_nm->mkNode(
+ kind::BITVECTOR_UREM,
+ d_nm->mkNode(kind::BITVECTOR_PLUS,
+ d_two32,
+ d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_six32)),
+ d_p));
+
+ bool fx1 = std::find(apipe.begin(), apipe.end(), resx1) != apipe.end();
+ bool fy1 = std::find(apipe.begin(), apipe.end(), resy1) != apipe.end();
+ bool fx2 = std::find(apipe.begin(), apipe.end(), resx2) != apipe.end();
+ bool fz2 = std::find(apipe.begin(), apipe.end(), resz2) != apipe.end();
+ bool fy3 = std::find(apipe.begin(), apipe.end(), resy3) != apipe.end();
+ bool fz3 = std::find(apipe.begin(), apipe.end(), resz3) != apipe.end();
+
+ /* result depends on order of variables in matrix */
+ TS_ASSERT((fx1 && fy1) || (fx2 && fz2) || (fy3 && fz3));
+ }
+
+ void testGetMinBw1()
+ {
+ TS_ASSERT(passes::getMinBwExpr(bv::utils::mkConst(32, 11)) == 4);
+
+ TS_ASSERT(passes::getMinBwExpr(d_p) == 4);
+ TS_ASSERT(passes::getMinBwExpr(d_x) == 16);
+
+ Node extp = bv::utils::mkExtract(d_p, 4, 0);
+ TS_ASSERT(passes::getMinBwExpr(extp) == 4);
+ Node extx = bv::utils::mkExtract(d_x, 4, 0);
+ TS_ASSERT(passes::getMinBwExpr(extx) == 5);
+
+ Node zextop8 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(8));
+ Node zextop16 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(16));
+ Node zextop32 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(32));
+ Node zextop40 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(40));
+
+ Node zext40p = d_nm->mkNode(zextop8, d_p);
+ TS_ASSERT(passes::getMinBwExpr(zext40p) == 4);
+ Node zext40x = d_nm->mkNode(zextop8, d_x);
+ TS_ASSERT(passes::getMinBwExpr(zext40x) == 16);
+
+ Node zext48p = d_nm->mkNode(zextop16, d_p);
+ TS_ASSERT(passes::getMinBwExpr(zext48p) == 4);
+ Node zext48x = d_nm->mkNode(zextop16, d_x);
+ TS_ASSERT(passes::getMinBwExpr(zext48x) == 16);
+
+ Node p8 = d_nm->mkConst<BitVector>(BitVector(8, 11u));
+ Node x8 = d_nm->mkVar("x8", d_nm->mkBitVectorType(8));
+
+ Node zext48p8 = d_nm->mkNode(zextop40, p8);
+ TS_ASSERT(passes::getMinBwExpr(zext48p8) == 4);
+ Node zext48x8 = d_nm->mkNode(zextop40, x8);
+ TS_ASSERT(passes::getMinBwExpr(zext48x8) == 8);
+
+ Node mult1p = d_nm->mkNode(kind::BITVECTOR_MULT, extp, extp);
+ TS_ASSERT(passes::getMinBwExpr(mult1p) == 5);
+ Node mult1x = d_nm->mkNode(kind::BITVECTOR_MULT, extx, extx);
+ TS_ASSERT(passes::getMinBwExpr(mult1x) == 0);
+
+ Node mult2p = d_nm->mkNode(kind::BITVECTOR_MULT, zext40p, zext40p);
+ TS_ASSERT(passes::getMinBwExpr(mult2p) == 7);
+ Node mult2x = d_nm->mkNode(kind::BITVECTOR_MULT, zext40x, zext40x);
+ TS_ASSERT(passes::getMinBwExpr(mult2x) == 32);
+
+ NodeBuilder<> nbmult3p(kind::BITVECTOR_MULT);
+ nbmult3p << zext48p << zext48p << zext48p;
+ Node mult3p = nbmult3p;
+ TS_ASSERT(passes::getMinBwExpr(mult3p) == 11);
+ NodeBuilder<> nbmult3x(kind::BITVECTOR_MULT);
+ nbmult3x << zext48x << zext48x << zext48x;
+ Node mult3x = nbmult3x;
+ TS_ASSERT(passes::getMinBwExpr(mult3x) == 48);
+
+ NodeBuilder<> nbmult4p(kind::BITVECTOR_MULT);
+ nbmult4p << zext48p << zext48p8 << zext48p;
+ Node mult4p = nbmult4p;
+ TS_ASSERT(passes::getMinBwExpr(mult4p) == 11);
+ NodeBuilder<> nbmult4x(kind::BITVECTOR_MULT);
+ nbmult4x << zext48x << zext48x8 << zext48x;
+ Node mult4x = nbmult4x;
+ TS_ASSERT(passes::getMinBwExpr(mult4x) == 40);
+
+ Node concat1p = bv::utils::mkConcat(d_p, zext48p);
+ TS_ASSERT(passes::getMinBwExpr(concat1p) == 52);
+ Node concat1x = bv::utils::mkConcat(d_x, zext48x);
+ TS_ASSERT(passes::getMinBwExpr(concat1x) == 64);
+
+ Node concat2p = bv::utils::mkConcat(bv::utils::mkZero(16), zext48p);
+ TS_ASSERT(passes::getMinBwExpr(concat2p) == 4);
+ Node concat2x = bv::utils::mkConcat(bv::utils::mkZero(16), zext48x);
+ TS_ASSERT(passes::getMinBwExpr(concat2x) == 16);
+
+ Node udiv1p = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, zext48p, zext48p);
+ TS_ASSERT(passes::getMinBwExpr(udiv1p) == 1);
+ Node udiv1x = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, zext48x, zext48x);
+ TS_ASSERT(passes::getMinBwExpr(udiv1x) == 48);
+
+ Node udiv2p = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, zext48p, zext48p8);
+ TS_ASSERT(passes::getMinBwExpr(udiv2p) == 1);
+ Node udiv2x = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, zext48x, zext48x8);
+ TS_ASSERT(passes::getMinBwExpr(udiv2x) == 48);
+
+ Node urem1p = d_nm->mkNode(kind::BITVECTOR_UREM_TOTAL, zext48p, zext48p);
+ TS_ASSERT(passes::getMinBwExpr(urem1p) == 1);
+ Node urem1x = d_nm->mkNode(kind::BITVECTOR_UREM_TOTAL, zext48x, zext48x);
+ TS_ASSERT(passes::getMinBwExpr(urem1x) == 1);
+
+ Node urem2p = d_nm->mkNode(kind::BITVECTOR_UREM_TOTAL, zext48p, zext48p8);
+ TS_ASSERT(passes::getMinBwExpr(urem2p) == 1);
+ Node urem2x = d_nm->mkNode(kind::BITVECTOR_UREM_TOTAL, zext48x, zext48x8);
+ TS_ASSERT(passes::getMinBwExpr(urem2x) == 16);
+
+ Node urem3p = d_nm->mkNode(kind::BITVECTOR_UREM_TOTAL, zext48p8, zext48p);
+ TS_ASSERT(passes::getMinBwExpr(urem3p) == 1);
+ Node urem3x = d_nm->mkNode(kind::BITVECTOR_UREM_TOTAL, zext48x8, zext48x);
+ TS_ASSERT(passes::getMinBwExpr(urem3x) == 8);
+
+ Node add1p = d_nm->mkNode(kind::BITVECTOR_PLUS, extp, extp);
+ TS_ASSERT(passes::getMinBwExpr(add1p) == 5);
+ Node add1x = d_nm->mkNode(kind::BITVECTOR_PLUS, extx, extx);
+ TS_ASSERT(passes::getMinBwExpr(add1x) == 0);
+
+ Node add2p = d_nm->mkNode(kind::BITVECTOR_PLUS, zext40p, zext40p);
+ TS_ASSERT(passes::getMinBwExpr(add2p) == 5);
+ Node add2x = d_nm->mkNode(kind::BITVECTOR_PLUS, zext40x, zext40x);
+ TS_ASSERT(passes::getMinBwExpr(add2x) == 17);
+
+ Node add3p = d_nm->mkNode(kind::BITVECTOR_PLUS, zext48p8, zext48p);
+ TS_ASSERT(passes::getMinBwExpr(add3p) == 5);
+ Node add3x = d_nm->mkNode(kind::BITVECTOR_PLUS, zext48x8, zext48x);
+ TS_ASSERT(passes::getMinBwExpr(add3x) == 17);
+
+ NodeBuilder<> nbadd4p(kind::BITVECTOR_PLUS);
+ nbadd4p << zext48p << zext48p << zext48p;
+ Node add4p = nbadd4p;
+ TS_ASSERT(passes::getMinBwExpr(add4p) == 6);
+ NodeBuilder<> nbadd4x(kind::BITVECTOR_PLUS);
+ nbadd4x << zext48x << zext48x << zext48x;
+ Node add4x = nbadd4x;
+ TS_ASSERT(passes::getMinBwExpr(add4x) == 18);
+
+ NodeBuilder<> nbadd5p(kind::BITVECTOR_PLUS);
+ nbadd5p << zext48p << zext48p8 << zext48p;
+ Node add5p = nbadd5p;
+ TS_ASSERT(passes::getMinBwExpr(add5p) == 6);
+ NodeBuilder<> nbadd5x(kind::BITVECTOR_PLUS);
+ nbadd5x << zext48x << zext48x8 << zext48x;
+ Node add5x = nbadd5x;
+ TS_ASSERT(passes::getMinBwExpr(add5x) == 18);
+
+ NodeBuilder<> nbadd6p(kind::BITVECTOR_PLUS);
+ nbadd6p << zext48p << zext48p << zext48p << zext48p;
+ Node add6p = nbadd6p;
+ TS_ASSERT(passes::getMinBwExpr(add6p) == 6);
+ NodeBuilder<> nbadd6x(kind::BITVECTOR_PLUS);
+ nbadd6x << zext48x << zext48x << zext48x << zext48x;
+ Node add6x = nbadd6x;
+ TS_ASSERT(passes::getMinBwExpr(add6x) == 18);
+
+ Node not1p = d_nm->mkNode(kind::BITVECTOR_NOT, zext40p);
+ TS_ASSERT(passes::getMinBwExpr(not1p) == 40);
+ Node not1x = d_nm->mkNode(kind::BITVECTOR_NOT, zext40x);
+ TS_ASSERT(passes::getMinBwExpr(not1x) == 40);
+ }
+
+ void testGetMinBw2()
+ {
+ /* ((_ zero_extend 5)
+ * ((_ extract 7 0) ((_ zero_extend 15) d_p))) */
+ Node zextop5 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(5));
+ Node zextop15 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(15));
+ Node zext1 = d_nm->mkNode(zextop15, d_p);
+ Node ext = bv::utils::mkExtract(zext1, 7, 0);
+ Node zext2 = d_nm->mkNode(zextop5, ext);
+ TS_ASSERT(passes::getMinBwExpr(zext2) == 4);
+ }
+
+ void testGetMinBw3a()
+ {
+ /* ((_ zero_extend 5)
+ * (bvudiv ((_ extract 4 0) ((_ zero_extend 5) (bvudiv x z)))
+ * ((_ extract 4 0) z))) */
+ Node x = d_nm->mkVar("x", d_nm->mkBitVectorType(16));
+ Node y = d_nm->mkVar("y", d_nm->mkBitVectorType(16));
+ Node z = d_nm->mkVar("z", d_nm->mkBitVectorType(16));
+ Node zextop5 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(5));
+ Node udiv1 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, x, y);
+ Node zext1 = d_nm->mkNode(zextop5, udiv1);
+ Node ext1 = bv::utils::mkExtract(zext1, 4, 0);
+ Node ext2 = bv::utils::mkExtract(z, 4, 0);
+ Node udiv2 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, ext1, ext2);
+ Node zext2 = bv::utils::mkConcat(bv::utils::mkZero(5), udiv2);
+ TS_ASSERT(passes::getMinBwExpr(zext2) == 5);
+ }
+
+ void testGetMinBw3b()
+ {
+ /* ((_ zero_extend 5)
+ * (bvudiv ((_ extract 4 0) ((_ zero_extend 5) (bvudiv x z)))
+ * ((_ extract 4 0) z))) */
+ Node zextop5 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(5));
+ Node udiv1 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, d_x, d_y);
+ Node zext1 = d_nm->mkNode(zextop5, udiv1);
+ Node ext1 = bv::utils::mkExtract(zext1, 4, 0);
+ Node ext2 = bv::utils::mkExtract(d_z, 4, 0);
+ Node udiv2 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, ext1, ext2);
+ Node zext2 = bv::utils::mkConcat(bv::utils::mkZero(5), udiv2);
+ TS_ASSERT(passes::getMinBwExpr(zext2) == 5);
+ }
+
+ void testGetMinBw4a()
+ {
+ /* (bvadd
+ * ((_ zero_extend 5)
+ * (bvudiv ((_ extract 4 0) ((_ zero_extend 5) (bvudiv x y)))
+ * ((_ extract 4 0) z)))
+ * ((_ zero_extend 7)
+ * (bvudiv ((_ extract 2 0) ((_ zero_extend 5) (bvudiv x y)))
+ * ((_ extract 2 0) z))) */
+ Node x = d_nm->mkVar("x", d_nm->mkBitVectorType(16));
+ Node y = d_nm->mkVar("y", d_nm->mkBitVectorType(16));
+ Node z = d_nm->mkVar("z", d_nm->mkBitVectorType(16));
+ Node zextop5 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(5));
+ Node zextop7 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(7));
+
+ Node udiv1 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, x, y);
+ Node zext1 = d_nm->mkNode(zextop5, udiv1);
+
+ Node ext1_1 = bv::utils::mkExtract(zext1, 4, 0);
+ Node ext2_1 = bv::utils::mkExtract(z, 4, 0);
+ Node udiv2_1 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, ext1_1, ext2_1);
+ Node zext2_1 = bv::utils::mkConcat(bv::utils::mkZero(5), udiv2_1);
+
+ Node ext1_2 = bv::utils::mkExtract(zext1, 2, 0);
+ Node ext2_2 = bv::utils::mkExtract(z, 2, 0);
+ Node udiv2_2 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, ext1_2, ext2_2);
+ Node zext2_2 = d_nm->mkNode(zextop7, udiv2_2);
+
+ Node plus = d_nm->mkNode(kind::BITVECTOR_PLUS, zext2_1, zext2_2);
+
+ TS_ASSERT(passes::getMinBwExpr(plus) == 6);
+ }
+
+ void testGetMinBw4b()
+ {
+ /* (bvadd
+ * ((_ zero_extend 5)
+ * (bvudiv ((_ extract 4 0) ((_ zero_extend 5) (bvudiv x y)))
+ * ((_ extract 4 0) z)))
+ * ((_ zero_extend 7)
+ * (bvudiv ((_ extract 2 0) ((_ zero_extend 5) (bvudiv x y)))
+ * ((_ extract 2 0) z))) */
+ Node zextop5 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(5));
+ Node zextop7 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(7));
+
+ Node udiv1 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, d_x, d_y);
+ Node zext1 = d_nm->mkNode(zextop5, udiv1);
+
+ Node ext1_1 = bv::utils::mkExtract(zext1, 4, 0);
+ Node ext2_1 = bv::utils::mkExtract(d_z, 4, 0);
+ Node udiv2_1 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, ext1_1, ext2_1);
+ Node zext2_1 = bv::utils::mkConcat(bv::utils::mkZero(5), udiv2_1);
+
+ Node ext1_2 = bv::utils::mkExtract(zext1, 2, 0);
+ Node ext2_2 = bv::utils::mkExtract(d_z, 2, 0);
+ Node udiv2_2 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, ext1_2, ext2_2);
+ Node zext2_2 = d_nm->mkNode(zextop7, udiv2_2);
+
+ Node plus = d_nm->mkNode(kind::BITVECTOR_PLUS, zext2_1, zext2_2);
+
+ TS_ASSERT(passes::getMinBwExpr(plus) == 6);
+ }
+
+ void testGetMinBw5a()
+ {
+ /* (bvadd
+ * (bvadd
+ * (bvadd
+ * (bvadd
+ * (bvadd
+ * (bvadd
+ * (bvadd (bvmul (_ bv86 13)
+ * ((_ zero_extend 5)
+ * ((_ extract 7 0) ((_ zero_extend 15) x))))
+ * (bvmul (_ bv41 13)
+ * ((_ zero_extend 5)
+ * ((_ extract 7 0) ((_ zero_extend 15) y)))))
+ * (bvmul (_ bv37 13)
+ * ((_ zero_extend 5)
+ * ((_ extract 7 0) ((_ zero_extend 15) z)))))
+ * (bvmul (_ bv170 13)
+ * ((_ zero_extend 5)
+ * ((_ extract 7 0) ((_ zero_extend 15) u)))))
+ * (bvmul (_ bv112 13)
+ * ((_ zero_extend 5)
+ * ((_ extract 7 0) ((_ zero_extend 15) v)))))
+ * (bvmul (_ bv195 13) ((_ zero_extend 5) ((_ extract 15 8) s))))
+ * (bvmul (_ bv124 13) ((_ zero_extend 5) ((_ extract 7 0) s))))
+ * (bvmul (_ bv83 13)
+ * ((_ zero_extend 5) ((_ extract 7 0) ((_ zero_extend 15) w)))))
+ */
+ Node x =bv::utils::mkVar(1);
+ Node y =bv::utils::mkVar(1);
+ Node z =bv::utils::mkVar(1);
+ Node u =bv::utils::mkVar(1);
+ Node v =bv::utils::mkVar(1);
+ Node w =bv::utils::mkVar(1);
+ Node s =bv::utils::mkVar(16);
+
+ Node zextop5 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(5));
+ Node zextop15 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(15));
+
+ Node zext15x = d_nm->mkNode(zextop15, x);
+ Node zext15y = d_nm->mkNode(zextop15, y);
+ Node zext15z = d_nm->mkNode(zextop15, z);
+ Node zext15u = d_nm->mkNode(zextop15, u);
+ Node zext15v = d_nm->mkNode(zextop15, v);
+ Node zext15w = d_nm->mkNode(zextop15, w);
+
+ Node ext7x = bv::utils::mkExtract(zext15x, 7, 0);
+ Node ext7y = bv::utils::mkExtract(zext15y, 7, 0);
+ Node ext7z = bv::utils::mkExtract(zext15z, 7, 0);
+ Node ext7u = bv::utils::mkExtract(zext15u, 7, 0);
+ Node ext7v = bv::utils::mkExtract(zext15v, 7, 0);
+ Node ext7w = bv::utils::mkExtract(zext15w, 7, 0);
+ Node ext7s = bv::utils::mkExtract(s, 7, 0);
+ Node ext15s = bv::utils::mkExtract(s, 15, 8);
+
+ Node xx = bv::utils::mkConcat(bv::utils::mkZero(5), ext7x);
+ Node yy = bv::utils::mkConcat(bv::utils::mkZero(5), ext7y);
+ Node zz = bv::utils::mkConcat(bv::utils::mkZero(5), ext7z);
+ Node uu = bv::utils::mkConcat(bv::utils::mkZero(5), ext7u);
+ Node vv = bv::utils::mkConcat(bv::utils::mkZero(5), ext7v);
+ Node ww = bv::utils::mkConcat(bv::utils::mkZero(5), ext7w);
+ Node s7 = bv::utils::mkConcat(bv::utils::mkZero(5), ext7s);
+ Node s15 = bv::utils::mkConcat(bv::utils::mkZero(5), ext15s);
+
+ Node plus1 = d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_MULT, bv::utils::mkConst(13, 86), xx),
+ d_nm->mkNode(kind::BITVECTOR_MULT, bv::utils::mkConst(13, 41), yy));
+ Node plus2 = d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ plus1,
+ d_nm->mkNode(kind::BITVECTOR_MULT, bv::utils::mkConst(13, 37), zz));
+ Node plus3 = d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ plus2,
+ d_nm->mkNode(kind::BITVECTOR_MULT, bv::utils::mkConst(13, 170), uu));
+ Node plus4 = d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ plus3,
+ d_nm->mkNode(kind::BITVECTOR_MULT, bv::utils::mkConst(13, 112), uu));
+ Node plus5 = d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ plus4,
+ d_nm->mkNode(kind::BITVECTOR_MULT, bv::utils::mkConst(13, 195), s15));
+ Node plus6 = d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ plus5,
+ d_nm->mkNode(kind::BITVECTOR_MULT, bv::utils::mkConst(13, 124), s7));
+ Node plus7 = d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ plus6,
+ d_nm->mkNode(kind::BITVECTOR_MULT, bv::utils::mkConst(13, 83), ww));
+
+ TS_ASSERT(passes::getMinBwExpr(plus7) == 0);
+ }
+
+ void testGetMinBw5b()
+ {
+ /* (bvadd
+ * (bvadd
+ * (bvadd
+ * (bvadd
+ * (bvadd
+ * (bvadd
+ * (bvadd (bvmul (_ bv86 20)
+ * ((_ zero_extend 12)
+ * ((_ extract 7 0) ((_ zero_extend 15) x))))
+ * (bvmul (_ bv41 20)
+ * ((_ zero_extend 12)
+ * ((_ extract 7 0) ((_ zero_extend 15) y)))))
+ * (bvmul (_ bv37 20)
+ * ((_ zero_extend 12)
+ * ((_ extract 7 0) ((_ zero_extend 15) z)))))
+ * (bvmul (_ bv170 20)
+ * ((_ zero_extend 12)
+ * ((_ extract 7 0) ((_ zero_extend 15) u)))))
+ * (bvmul (_ bv112 20)
+ * ((_ zero_extend 12)
+ * ((_ extract 7 0) ((_ zero_extend 15) v)))))
+ * (bvmul (_ bv195 20) ((_ zero_extend 12) ((_ extract 15 8) s))))
+ * (bvmul (_ bv124 20) ((_ zero_extend 12) ((_ extract 7 0) s))))
+ * (bvmul (_ bv83 20)
+ * ((_ zero_extend 12) ((_ extract 7 0) ((_ zero_extend 15) w)))))
+ */
+ Node x =bv::utils::mkVar(1);
+ Node y =bv::utils::mkVar(1);
+ Node z =bv::utils::mkVar(1);
+ Node u =bv::utils::mkVar(1);
+ Node v =bv::utils::mkVar(1);
+ Node w =bv::utils::mkVar(1);
+ Node s =bv::utils::mkVar(16);
+
+ Node zextop15 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(15));
+
+ Node zext15x = d_nm->mkNode(zextop15, x);
+ Node zext15y = d_nm->mkNode(zextop15, y);
+ Node zext15z = d_nm->mkNode(zextop15, z);
+ Node zext15u = d_nm->mkNode(zextop15, u);
+ Node zext15v = d_nm->mkNode(zextop15, v);
+ Node zext15w = d_nm->mkNode(zextop15, w);
+
+ Node ext7x = bv::utils::mkExtract(zext15x, 7, 0);
+ Node ext7y = bv::utils::mkExtract(zext15y, 7, 0);
+ Node ext7z = bv::utils::mkExtract(zext15z, 7, 0);
+ Node ext7u = bv::utils::mkExtract(zext15u, 7, 0);
+ Node ext7v = bv::utils::mkExtract(zext15v, 7, 0);
+ Node ext7w = bv::utils::mkExtract(zext15w, 7, 0);
+ Node ext7s = bv::utils::mkExtract(s, 7, 0);
+ Node ext15s = bv::utils::mkExtract(s, 15, 8);
+
+ Node xx = bv::utils::mkConcat(bv::utils::mkZero(12), ext7x);
+ Node yy = bv::utils::mkConcat(bv::utils::mkZero(12), ext7y);
+ Node zz = bv::utils::mkConcat(bv::utils::mkZero(12), ext7z);
+ Node uu = bv::utils::mkConcat(bv::utils::mkZero(12), ext7u);
+ Node vv = bv::utils::mkConcat(bv::utils::mkZero(12), ext7v);
+ Node ww = bv::utils::mkConcat(bv::utils::mkZero(12), ext7w);
+ Node s7 = bv::utils::mkConcat(bv::utils::mkZero(12), ext7s);
+ Node s15 = bv::utils::mkConcat(bv::utils::mkZero(12), ext15s);
+
+ Node plus1 = d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ d_nm->mkNode(kind::BITVECTOR_MULT, bv::utils::mkConst(20, 86), xx),
+ d_nm->mkNode(kind::BITVECTOR_MULT, bv::utils::mkConst(20, 41), yy));
+ Node plus2 = d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ plus1,
+ d_nm->mkNode(kind::BITVECTOR_MULT, bv::utils::mkConst(20, 37), zz));
+ Node plus3 = d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ plus2,
+ d_nm->mkNode(kind::BITVECTOR_MULT, bv::utils::mkConst(20, 170), uu));
+ Node plus4 = d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ plus3,
+ d_nm->mkNode(kind::BITVECTOR_MULT, bv::utils::mkConst(20, 112), uu));
+ Node plus5 = d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ plus4,
+ d_nm->mkNode(kind::BITVECTOR_MULT, bv::utils::mkConst(20, 195), s15));
+ Node plus6 = d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ plus5,
+ d_nm->mkNode(kind::BITVECTOR_MULT, bv::utils::mkConst(20, 124), s7));
+ Node plus7 = d_nm->mkNode(
+ kind::BITVECTOR_PLUS,
+ plus6,
+ d_nm->mkNode(kind::BITVECTOR_MULT, bv::utils::mkConst(20, 83), ww));
+
+ TS_ASSERT(passes::getMinBwExpr(plus7) == 19);
+ TS_ASSERT(passes::getMinBwExpr(Rewriter::rewrite(plus7)) == 17);
+ }
+
+};
+++ /dev/null
-/********************* */
-/*! \file theory_bv_bvgauss_white.h
- ** \verbatim
- ** Top contributors (to current version):
- ** Aina Niemetz
- ** This file is part of the CVC4 project.
- ** Copyright (c) 2009-2017 by the authors listed in the file AUTHORS
- ** in the top-level source directory) and their institutional affiliations.
- ** All rights reserved. See the file COPYING in the top-level source
- ** directory for licensing information.\endverbatim
- **
- ** \brief Unit tests for Gaussian Elimination preprocessing pass.
- **
- ** Unit tests for Gaussian Elimination preprocessing pass.
- **/
-
-#include "expr/node.h"
-#include "expr/node_manager.h"
-#include "smt/smt_engine.h"
-#include "smt/smt_engine_scope.h"
-#include "theory/rewriter.h"
-#include "theory/bv/bvgauss.h"
-#include "theory/bv/theory_bv_utils.h"
-#include "util/bitvector.h"
-
-#include <cxxtest/TestSuite.h>
-#include <iostream>
-#include <vector>
-
-using namespace CVC4;
-using namespace CVC4::theory;
-using namespace CVC4::theory::bv;
-using namespace CVC4::theory::bv::utils;
-using namespace CVC4::smt;
-
-static void print_matrix_dbg(std::vector<Integer> &rhs,
- std::vector<std::vector<Integer>> &lhs)
-{
- for (size_t m = 0, nrows = lhs.size(), ncols = lhs[0].size(); m < nrows; ++m)
- {
- for (size_t n = 0; n < ncols; ++n)
- {
- std::cout << " " << lhs[m][n];
- }
- std::cout << " " << rhs[m];
- std::cout << std::endl;
- }
-}
-
-static void testGaussElimX(Integer prime,
- std::vector<Integer> rhs,
- std::vector<std::vector<Integer>> lhs,
- BVGaussElim::Result expected,
- std::vector<Integer> *rrhs = nullptr,
- std::vector<std::vector<Integer>> *rlhs = nullptr)
-{
- size_t nrows = lhs.size();
- size_t ncols = lhs[0].size();
- BVGaussElim::Result ret;
- std::vector<Integer> resrhs = std::vector<Integer>(rhs);
- std::vector<std::vector<Integer>> reslhs =
- std::vector<std::vector<Integer>>(lhs);
-
- std::cout << "Input: " << std::endl;
- print_matrix_dbg(rhs, lhs);
-
- ret = BVGaussElim::gaussElim(prime, resrhs, reslhs);
-
- std::cout << "Result: "
- << (ret == BVGaussElim::Result::INVALID
- ? "INVALID"
- : (ret == BVGaussElim::Result::UNIQUE
- ? "UNIQUE"
- : (ret == BVGaussElim::Result::PARTIAL ? "PARTIAL"
- : "NONE")))
- << std::endl;
- print_matrix_dbg(resrhs, reslhs);
-
- TS_ASSERT_EQUALS(expected, ret);
-
- if (expected == BVGaussElim::Result::UNIQUE)
- {
- /* map result value to column index
- * e.g.:
- * 1 0 0 2 -> res = { 2, 0, 3}
- * 0 0 1 3 */
- std::vector<Integer> res = std::vector<Integer>(ncols, Integer(0));
- for (size_t i = 0; i < nrows; ++i)
- for (size_t j = 0; j < ncols; ++j)
- {
- if (reslhs[i][j] == 1)
- res[j] = resrhs[i];
- else
- TS_ASSERT(reslhs[i][j] == 0);
- }
-
- for (size_t i = 0; i < nrows; ++i)
- {
- Integer tmp = Integer(0);
- for (size_t j = 0; j < ncols; ++j)
- tmp = tmp.modAdd(lhs[i][j].modMultiply(res[j], prime), prime);
- TS_ASSERT(tmp == rhs[i].euclidianDivideRemainder(prime));
- }
- }
- if (rrhs != nullptr && rlhs != nullptr)
- {
- for (size_t i = 0; i < nrows; ++i)
- {
- for (size_t j = 0; j < ncols; ++j)
- {
- TS_ASSERT(reslhs[i][j] == (*rlhs)[i][j]);
- }
- TS_ASSERT(resrhs[i] == (*rrhs)[i]);
- }
- }
-}
-
-template <class T>
-static void testGaussElimT(Integer prime,
- std::vector<Integer> rhs,
- std::vector<std::vector<Integer>> lhs)
-{
- TS_ASSERT_THROWS(BVGaussElim::gaussElim(prime, rhs, lhs), T);
-}
-
-class TheoryBVGaussWhite : public CxxTest::TestSuite
-{
- ExprManager *d_em;
- NodeManager *d_nm;
- SmtEngine *d_smt;
- SmtScope *d_scope;
- Node d_p;
- Node d_x;
- Node d_y;
- Node d_z;
- Node d_zero;
- Node d_one;
- Node d_two;
- Node d_three;
- Node d_four;
- Node d_five;
- Node d_six;
- Node d_seven;
- Node d_eight;
- Node d_nine;
- Node d_ten;
- Node d_twelve;
- Node d_eighteen;
- Node d_twentyfour;
- Node d_thirty;
- Node d_one32;
- Node d_two32;
- Node d_three32;
- Node d_four32;
- Node d_five32;
- Node d_six32;
- Node d_seven32;
- Node d_eight32;
- Node d_nine32;
- Node d_ten32;
- Node d_x_mul_one;
- Node d_x_mul_two;
- Node d_x_mul_four;
- Node d_y_mul_one;
- Node d_y_mul_three;
- Node d_y_mul_four;
- Node d_y_mul_five;
- Node d_y_mul_seven;
- Node d_z_mul_one;
- Node d_z_mul_three;
- Node d_z_mul_five;
- Node d_z_mul_twelve;
- Node d_z_mul_six;
- Node d_z_mul_nine;
-
- public:
- TheoryBVGaussWhite() {}
-
- void setUp()
- {
- d_em = new ExprManager();
- d_nm = NodeManager::fromExprManager(d_em);
- d_smt = new SmtEngine(d_em);
- d_scope = new SmtScope(d_smt);
-
- d_zero = mkZero(16);
-
- d_p = mkConcat(d_zero, d_nm->mkConst<BitVector>(BitVector(16, 11u)));
- d_x = mkConcat(d_zero, d_nm->mkVar("x", d_nm->mkBitVectorType(16)));
- d_y = mkConcat(d_zero, d_nm->mkVar("y", d_nm->mkBitVectorType(16)));
- d_z = mkConcat(d_zero, d_nm->mkVar("z", d_nm->mkBitVectorType(16)));
-
- d_one = mkConcat(d_zero, d_nm->mkConst<BitVector>(BitVector(16, 1u)));
- d_two = mkConcat(d_zero, d_nm->mkConst<BitVector>(BitVector(16, 2u)));
- d_three = mkConcat(d_zero, d_nm->mkConst<BitVector>(BitVector(16, 3u)));
- d_four = mkConcat(d_zero, d_nm->mkConst<BitVector>(BitVector(16, 4u)));
- d_five = mkConcat(d_zero, d_nm->mkConst<BitVector>(BitVector(16, 5u)));
- d_six = mkConcat(d_zero, d_nm->mkConst<BitVector>(BitVector(16, 6u)));
- d_seven = mkConcat(d_zero, d_nm->mkConst<BitVector>(BitVector(16, 7u)));
- d_eight = mkConcat(d_zero, d_nm->mkConst<BitVector>(BitVector(16, 8u)));
- d_nine = mkConcat(d_zero, d_nm->mkConst<BitVector>(BitVector(16, 9u)));
- d_ten = mkConcat(d_zero, d_nm->mkConst<BitVector>(BitVector(16, 10u)));
- d_twelve = mkConcat(d_zero, d_nm->mkConst<BitVector>(BitVector(16, 12u)));
- d_eighteen = mkConcat(d_zero, d_nm->mkConst<BitVector>(BitVector(16, 18u)));
- d_twentyfour =
- mkConcat(d_zero, d_nm->mkConst<BitVector>(BitVector(16, 24u)));
- d_thirty = mkConcat(d_zero, d_nm->mkConst<BitVector>(BitVector(16, 30u)));
-
- d_one32 = d_nm->mkConst<BitVector>(BitVector(32, 1u));
- d_two32 = d_nm->mkConst<BitVector>(BitVector(32, 2u));
- d_three32 = d_nm->mkConst<BitVector>(BitVector(32, 3u));
- d_four32 = d_nm->mkConst<BitVector>(BitVector(32, 4u));
- d_five32 = d_nm->mkConst<BitVector>(BitVector(32, 5u));
- d_six32 = d_nm->mkConst<BitVector>(BitVector(32, 6u));
- d_seven32 = d_nm->mkConst<BitVector>(BitVector(32, 7u));
- d_eight32 = d_nm->mkConst<BitVector>(BitVector(32, 8u));
- d_nine32 = d_nm->mkConst<BitVector>(BitVector(32, 9u));
- d_ten32 = d_nm->mkConst<BitVector>(BitVector(32, 10u));
-
- d_x_mul_one = d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_one);
- d_x_mul_two = d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_two);
- d_x_mul_four = d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_four);
- d_y_mul_three = d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_three);
- d_y_mul_one = d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_one);
- d_y_mul_four = d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_four);
- d_y_mul_five = d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_five);
- d_y_mul_seven = d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_seven);
- d_z_mul_one = d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_one);
- d_z_mul_three = d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_three);
- d_z_mul_five = d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_five);
- d_z_mul_six = d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_six);
- d_z_mul_twelve = d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_twelve);
- d_z_mul_nine = d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_nine);
- }
-
- void tearDown()
- {
- (void)d_scope;
- d_p = Node::null();
- d_x = Node::null();
- d_y = Node::null();
- d_z = Node::null();
- d_zero = Node::null();
- d_one = Node::null();
- d_two = Node::null();
- d_three = Node::null();
- d_four = Node::null();
- d_five = Node::null();
- d_six = Node::null();
- d_seven = Node::null();
- d_eight = Node::null();
- d_nine = Node::null();
- d_ten = Node::null();
- d_twelve = Node::null();
- d_eighteen = Node::null();
- d_twentyfour = Node::null();
- d_thirty = Node::null();
- d_one32 = Node::null();
- d_two32 = Node::null();
- d_three32 = Node::null();
- d_four32 = Node::null();
- d_five32 = Node::null();
- d_six32 = Node::null();
- d_seven32 = Node::null();
- d_eight32 = Node::null();
- d_nine32 = Node::null();
- d_ten32 = Node::null();
- d_x_mul_one = Node::null();
- d_x_mul_two = Node::null();
- d_x_mul_four = Node::null();
- d_y_mul_one = Node::null();
- d_y_mul_four = Node::null();
- d_y_mul_seven = Node::null();
- d_y_mul_five = Node::null();
- d_y_mul_three = Node::null();
- d_z_mul_one = Node::null();
- d_z_mul_three = Node::null();
- d_z_mul_five = Node::null();
- d_z_mul_six = Node::null();
- d_z_mul_twelve = Node::null();
- d_z_mul_nine = Node::null();
- delete d_scope;
- delete d_smt;
- delete d_em;
- }
-
- void testGaussElimMod()
- {
- std::vector<Integer> rhs;
- std::vector<std::vector<Integer>> lhs;
-
- /* -------------------------------------------------------------------
- * lhs rhs modulo { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }
- * --^-- ^
- * 1 1 1 5
- * 2 3 5 8
- * 4 0 5 2
- * ------------------------------------------------------------------- */
- rhs = {Integer(5), Integer(8), Integer(2)};
- lhs = {{Integer(1), Integer(1), Integer(1)},
- {Integer(2), Integer(3), Integer(5)},
- {Integer(4), Integer(0), Integer(5)}};
- std::cout << "matrix 0, modulo 0" << std::endl; // throws
- testGaussElimT<AssertionException>(Integer(0), rhs, lhs);
- std::cout << "matrix 0, modulo 1" << std::endl;
- testGaussElimX(Integer(1), rhs, lhs, BVGaussElim::Result::UNIQUE);
- std::cout << "matrix 0, modulo 2" << std::endl;
- testGaussElimX(Integer(2), rhs, lhs, BVGaussElim::Result::UNIQUE);
- std::cout << "matrix 0, modulo 3" << std::endl;
- testGaussElimX(Integer(3), rhs, lhs, BVGaussElim::Result::UNIQUE);
- std::cout << "matrix 0, modulo 4" << std::endl; // no inverse
- testGaussElimX(Integer(4), rhs, lhs, BVGaussElim::Result::INVALID);
- std::cout << "matrix 0, modulo 5" << std::endl;
- testGaussElimX(Integer(5), rhs, lhs, BVGaussElim::Result::UNIQUE);
- std::cout << "matrix 0, modulo 6" << std::endl; // no inverse
- testGaussElimX(Integer(6), rhs, lhs, BVGaussElim::Result::INVALID);
- std::cout << "matrix 0, modulo 7" << std::endl;
- testGaussElimX(Integer(7), rhs, lhs, BVGaussElim::Result::UNIQUE);
- std::cout << "matrix 0, modulo 8" << std::endl; // no inverse
- testGaussElimX(Integer(8), rhs, lhs, BVGaussElim::Result::INVALID);
- std::cout << "matrix 0, modulo 9" << std::endl;
- testGaussElimX(Integer(9), rhs, lhs, BVGaussElim::Result::UNIQUE);
- std::cout << "matrix 0, modulo 10" << std::endl; // no inverse
- testGaussElimX(Integer(10), rhs, lhs, BVGaussElim::Result::INVALID);
- std::cout << "matrix 0, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::UNIQUE);
- }
-
- void testGaussElimUniqueDone()
- {
- std::vector<Integer> rhs;
- std::vector<std::vector<Integer>> lhs;
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 17
- * --^--- ^ --^-- ^
- * 1 0 0 4 --> 1 0 0 4
- * 0 1 0 15 0 1 0 15
- * 0 0 1 3 0 0 1 3
- * ------------------------------------------------------------------- */
- rhs = {Integer(4), Integer(15), Integer(3)};
- lhs = {{Integer(1), Integer(0), Integer(0)},
- {Integer(0), Integer(1), Integer(0)},
- {Integer(0), Integer(0), Integer(1)}};
- std::cout << "matrix 1, modulo 17" << std::endl;
- testGaussElimX(Integer(17), rhs, lhs, BVGaussElim::Result::UNIQUE);
- }
-
- void testGaussElimUnique()
- {
- std::vector<Integer> rhs;
- std::vector<std::vector<Integer>> lhs;
-
- /* -------------------------------------------------------------------
- * lhs rhs modulo { 11,17,59 }
- * --^--- ^
- * 2 4 6 18
- * 4 5 6 24
- * 3 1 -2 4
- * ------------------------------------------------------------------- */
- rhs = {Integer(18), Integer(24), Integer(4)};
- lhs = {{Integer(2), Integer(4), Integer(6)},
- {Integer(4), Integer(5), Integer(6)},
- {Integer(3), Integer(1), Integer(-2)}};
- std::cout << "matrix 2, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::UNIQUE);
- std::cout << "matrix 2, modulo 17" << std::endl;
- testGaussElimX(Integer(17), rhs, lhs, BVGaussElim::Result::UNIQUE);
- std::cout << "matrix 2, modulo 59" << std::endl;
- testGaussElimX(Integer(59), rhs, lhs, BVGaussElim::Result::UNIQUE);
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 11
- * -----^----- ^ ---^--- ^
- * 1 1 2 0 1 --> 1 0 0 0 1
- * 2 -1 0 1 -2 0 1 0 0 2
- * 1 -1 -1 -2 4 0 0 1 0 -1
- * 2 -1 2 -1 0 0 0 0 1 -2
- * ------------------------------------------------------------------- */
- rhs = {Integer(1), Integer(-2), Integer(4), Integer(0)};
- lhs = {{Integer(1), Integer(1), Integer(2), Integer(0)},
- {Integer(2), Integer(-1), Integer(0), Integer(1)},
- {Integer(1), Integer(-1), Integer(-1), Integer(-2)},
- {Integer(2), Integer(-1), Integer(2), Integer(-1)}};
- std::cout << "matrix 3, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::UNIQUE);
- }
-
- void testGaussElimUniqueZero1()
- {
- std::vector<Integer> rhs;
- std::vector<std::vector<Integer>> lhs;
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 11
- * --^-- ^ --^-- ^
- * 0 4 5 2 --> 1 0 0 4
- * 1 1 1 5 0 1 0 3
- * 3 2 5 8 0 0 1 9
- * ------------------------------------------------------------------- */
- rhs = {Integer(2), Integer(5), Integer(8)};
- lhs = {{Integer(0), Integer(4), Integer(5)},
- {Integer(1), Integer(1), Integer(1)},
- {Integer(3), Integer(2), Integer(5)}};
- std::cout << "matrix 4, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::UNIQUE);
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 11
- * --^-- ^ --^-- ^
- * 1 1 1 5 --> 1 0 0 4
- * 0 4 5 2 0 1 0 3
- * 3 2 5 8 0 0 1 9
- * ------------------------------------------------------------------- */
- rhs = {Integer(5), Integer(2), Integer(8)};
- lhs = {{Integer(1), Integer(1), Integer(1)},
- {Integer(0), Integer(4), Integer(5)},
- {Integer(3), Integer(2), Integer(5)}};
- std::cout << "matrix 5, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::UNIQUE);
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 11
- * --^-- ^ --^-- ^
- * 1 1 1 5 --> 1 0 0 4
- * 3 2 5 8 0 1 0 9
- * 0 4 5 2 0 0 1 3
- * ------------------------------------------------------------------- */
- rhs = {Integer(5), Integer(8), Integer(2)};
- lhs = {{Integer(1), Integer(1), Integer(1)},
- {Integer(3), Integer(2), Integer(5)},
- {Integer(0), Integer(4), Integer(5)}};
- std::cout << "matrix 6, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::UNIQUE);
- }
-
- void testGaussElimUniqueZero2()
- {
- std::vector<Integer> rhs;
- std::vector<std::vector<Integer>> lhs;
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 11
- * --^-- ^ --^-- ^
- * 0 0 5 2 1 0 0 10
- * 1 1 1 5 --> 0 1 0 10
- * 3 2 5 8 0 0 1 7
- * ------------------------------------------------------------------- */
- rhs = {Integer(2), Integer(5), Integer(8)};
- lhs = {{Integer(0), Integer(0), Integer(5)},
- {Integer(1), Integer(1), Integer(1)},
- {Integer(3), Integer(2), Integer(5)}};
- std::cout << "matrix 7, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::UNIQUE);
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 11
- * --^-- ^ --^-- ^
- * 1 1 1 5 --> 1 0 0 10
- * 0 0 5 2 0 1 0 10
- * 3 2 5 8 0 0 1 7
- * ------------------------------------------------------------------- */
- rhs = {Integer(5), Integer(2), Integer(8)};
- lhs = {{Integer(1), Integer(1), Integer(1)},
- {Integer(0), Integer(0), Integer(5)},
- {Integer(3), Integer(2), Integer(5)}};
- std::cout << "matrix 8, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::UNIQUE);
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 11
- * --^-- ^ --^-- ^
- * 1 1 1 5 --> 1 0 0 10
- * 3 2 5 8 0 1 0 10
- * 0 0 5 2 0 0 1 7
- * ------------------------------------------------------------------- */
- rhs = {Integer(5), Integer(8), Integer(2)};
- lhs = {{Integer(1), Integer(1), Integer(1)},
- {Integer(3), Integer(2), Integer(5)},
- {Integer(0), Integer(0), Integer(5)}};
- std::cout << "matrix 9, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::UNIQUE);
- }
-
- void testGaussElimUniqueZero3()
- {
- std::vector<Integer> rhs;
- std::vector<std::vector<Integer>> lhs;
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 7
- * --^-- ^ --^-- ^
- * 2 0 6 4 1 0 0 3
- * 0 0 0 0 --> 0 0 0 0
- * 4 0 6 3 0 0 1 2
- * ------------------------------------------------------------------- */
- rhs = {Integer(4), Integer(0), Integer(3)};
- lhs = {{Integer(2), Integer(0), Integer(6)},
- {Integer(0), Integer(0), Integer(0)},
- {Integer(4), Integer(0), Integer(6)}};
- std::cout << "matrix 10, modulo 7" << std::endl;
- testGaussElimX(Integer(7), rhs, lhs, BVGaussElim::Result::UNIQUE);
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 7
- * --^-- ^ --^-- ^
- * 2 6 0 4 1 0 0 3
- * 0 0 0 0 --> 0 0 0 0
- * 4 6 0 3 0 0 1 2
- * ------------------------------------------------------------------- */
- rhs = {Integer(4), Integer(0), Integer(3)};
- lhs = {{Integer(2), Integer(6), Integer(0)},
- {Integer(0), Integer(0), Integer(0)},
- {Integer(4), Integer(6), Integer(0)}};
- std::cout << "matrix 11, modulo 7" << std::endl;
- testGaussElimX(Integer(7), rhs, lhs, BVGaussElim::Result::UNIQUE);
- }
-
- void testGaussElimUniqueZero4()
- {
- std::vector<Integer> rhs, resrhs;
- std::vector<std::vector<Integer>> lhs, reslhs;
-
- /* -------------------------------------------------------------------
- * lhs rhs modulo 11
- * --^-- ^
- * 0 1 1 5
- * 0 0 0 0
- * 0 0 5 2
- * ------------------------------------------------------------------- */
- rhs = {Integer(5), Integer(0), Integer(2)};
- lhs = {{Integer(0), Integer(1), Integer(1)},
- {Integer(0), Integer(0), Integer(0)},
- {Integer(0), Integer(0), Integer(5)}};
- std::cout << "matrix 12, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::UNIQUE);
-
- /* -------------------------------------------------------------------
- * lhs rhs modulo 11
- * --^-- ^
- * 0 1 1 5
- * 0 3 5 8
- * 0 0 0 0
- * ------------------------------------------------------------------- */
- rhs = {Integer(5), Integer(8), Integer(0)};
- lhs = {{Integer(0), Integer(1), Integer(1)},
- {Integer(0), Integer(3), Integer(5)},
- {Integer(0), Integer(0), Integer(0)}};
- std::cout << "matrix 13, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::UNIQUE);
-
- /* -------------------------------------------------------------------
- * lhs rhs modulo 11
- * --^-- ^
- * 0 0 0 0
- * 0 3 5 8
- * 0 0 5 2
- * ------------------------------------------------------------------- */
- rhs = {Integer(0), Integer(8), Integer(2)};
- lhs = {{Integer(0), Integer(0), Integer(0)},
- {Integer(0), Integer(3), Integer(5)},
- {Integer(0), Integer(0), Integer(5)}};
- std::cout << "matrix 14, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::UNIQUE);
-
- /* -------------------------------------------------------------------
- * lhs rhs modulo 11
- * --^-- ^
- * 1 0 1 5
- * 0 0 0 0
- * 4 0 5 2
- * ------------------------------------------------------------------- */
- rhs = {Integer(5), Integer(0), Integer(2)};
- lhs = {{Integer(1), Integer(0), Integer(1)},
- {Integer(0), Integer(0), Integer(0)},
- {Integer(4), Integer(0), Integer(5)}};
- std::cout << "matrix 15, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::UNIQUE);
-
- /* -------------------------------------------------------------------
- * lhs rhs modulo 11
- * --^-- ^
- * 1 0 1 5
- * 2 0 5 8
- * 0 0 0 0
- * ------------------------------------------------------------------- */
- rhs = {Integer(5), Integer(8), Integer(0)};
- lhs = {{Integer(1), Integer(0), Integer(1)},
- {Integer(2), Integer(0), Integer(5)},
- {Integer(0), Integer(0), Integer(0)}};
- std::cout << "matrix 16, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::UNIQUE);
-
- /* -------------------------------------------------------------------
- * lhs rhs modulo 11
- * --^-- ^
- * 0 0 0 0
- * 2 0 5 8
- * 4 0 5 2
- * ------------------------------------------------------------------- */
- rhs = {Integer(0), Integer(8), Integer(2)};
- lhs = {{Integer(0), Integer(0), Integer(0)},
- {Integer(2), Integer(0), Integer(5)},
- {Integer(4), Integer(0), Integer(5)}};
- std::cout << "matrix 17, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::UNIQUE);
-
- /* -------------------------------------------------------------------
- * lhs rhs modulo 11
- * --^-- ^
- * 1 1 0 5
- * 0 0 0 0
- * 4 0 0 2
- * ------------------------------------------------------------------- */
- rhs = {Integer(5), Integer(0), Integer(2)};
- lhs = {{Integer(1), Integer(1), Integer(0)},
- {Integer(0), Integer(0), Integer(0)},
- {Integer(4), Integer(0), Integer(0)}};
- std::cout << "matrix 18, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::UNIQUE);
-
- /* -------------------------------------------------------------------
- * lhs rhs modulo 11
- * --^-- ^
- * 1 1 0 5
- * 2 3 0 8
- * 0 0 0 0
- * ------------------------------------------------------------------- */
- rhs = {Integer(5), Integer(8), Integer(0)};
- lhs = {{Integer(1), Integer(1), Integer(0)},
- {Integer(2), Integer(3), Integer(0)},
- {Integer(0), Integer(0), Integer(0)}};
- std::cout << "matrix 18, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::UNIQUE);
-
- /* -------------------------------------------------------------------
- * lhs rhs modulo 11
- * --^-- ^
- * 0 0 0 0
- * 2 3 0 8
- * 4 0 0 2
- * ------------------------------------------------------------------- */
- rhs = {Integer(0), Integer(8), Integer(2)};
- lhs = {{Integer(0), Integer(0), Integer(0)},
- {Integer(2), Integer(3), Integer(0)},
- {Integer(4), Integer(0), Integer(0)}};
- std::cout << "matrix 19, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::UNIQUE);
-
- /* -------------------------------------------------------------------
- * lhs rhs modulo 2
- * ----^--- ^
- * 2 4 6 18 0 0 0 0
- * 4 5 6 24 = 0 1 0 0
- * 2 7 12 30 0 1 0 0
- * ------------------------------------------------------------------- */
- rhs = {Integer(18), Integer(24), Integer(30)};
- lhs = {{Integer(2), Integer(4), Integer(6)},
- {Integer(4), Integer(5), Integer(6)},
- {Integer(2), Integer(7), Integer(12)}};
- std::cout << "matrix 20, modulo 2" << std::endl;
- resrhs = {Integer(0), Integer(0), Integer(0)};
- reslhs = {{Integer(0), Integer(1), Integer(0)},
- {Integer(0), Integer(0), Integer(0)},
- {Integer(0), Integer(0), Integer(0)}};
- testGaussElimX(
- Integer(2), rhs, lhs, BVGaussElim::Result::UNIQUE, &resrhs, &reslhs);
- }
-
- void testGaussElimUniquePartial()
- {
- std::vector<Integer> rhs;
- std::vector<std::vector<Integer>> lhs;
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 7
- * --^-- ^ --^-- ^
- * 2 0 6 4 1 0 0 3
- * 4 0 6 3 0 0 1 2
- * ------------------------------------------------------------------- */
- rhs = {Integer(4), Integer(3)};
- lhs = {{Integer(2), Integer(0), Integer(6)},
- {Integer(4), Integer(0), Integer(6)}};
- std::cout << "matrix 21, modulo 7" << std::endl;
- testGaussElimX(Integer(7), rhs, lhs, BVGaussElim::Result::UNIQUE);
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 7
- * --^-- ^ --^-- ^
- * 2 6 0 4 1 0 0 3
- * 4 6 0 3 0 1 0 2
- * ------------------------------------------------------------------- */
- rhs = {Integer(4), Integer(3)};
- lhs = {{Integer(2), Integer(6), Integer(0)},
- {Integer(4), Integer(6), Integer(0)}};
- std::cout << "matrix 22, modulo 7" << std::endl;
- testGaussElimX(Integer(7), rhs, lhs, BVGaussElim::Result::UNIQUE);
- }
-
- void testGaussElimNone()
- {
- std::vector<Integer> rhs;
- std::vector<std::vector<Integer>> lhs;
-
- /* -------------------------------------------------------------------
- * lhs rhs modulo 9
- * --^--- ^
- * 2 4 6 18 --> not coprime (no inverse)
- * 4 5 6 24
- * 3 1 -2 4
- * ------------------------------------------------------------------- */
- rhs = {Integer(18), Integer(24), Integer(4)};
- lhs = {{Integer(2), Integer(4), Integer(6)},
- {Integer(4), Integer(5), Integer(6)},
- {Integer(3), Integer(1), Integer(-2)}};
- std::cout << "matrix 23, modulo 9" << std::endl;
- testGaussElimX(Integer(9), rhs, lhs, BVGaussElim::Result::INVALID);
-
- /* -------------------------------------------------------------------
- * lhs rhs modulo 59
- * ----^--- ^
- * 1 -2 -6 12 --> no solution
- * 2 4 12 -17
- * 1 -4 -12 22
- * ------------------------------------------------------------------- */
- rhs = {Integer(12), Integer(-17), Integer(22)};
- lhs = {{Integer(1), Integer(-2), Integer(-6)},
- {Integer(2), Integer(4), Integer(12)},
- {Integer(1), Integer(-4), Integer(-12)}};
- std::cout << "matrix 24, modulo 59" << std::endl;
- testGaussElimX(Integer(59), rhs, lhs, BVGaussElim::Result::NONE);
-
- /* -------------------------------------------------------------------
- * lhs rhs modulo 9
- * ----^--- ^
- * 2 4 6 18 --> not coprime (no inverse)
- * 4 5 6 24
- * 2 7 12 30
- * ------------------------------------------------------------------- */
- rhs = {Integer(18), Integer(24), Integer(30)};
- lhs = {{Integer(2), Integer(4), Integer(6)},
- {Integer(4), Integer(5), Integer(6)},
- {Integer(2), Integer(7), Integer(12)}};
- std::cout << "matrix 25, modulo 9" << std::endl;
- testGaussElimX(Integer(9), rhs, lhs, BVGaussElim::Result::INVALID);
- }
-
- void testGaussElimNoneZero()
- {
- std::vector<Integer> rhs;
- std::vector<std::vector<Integer>> lhs;
-
- /* -------------------------------------------------------------------
- * lhs rhs modulo 11
- * --^-- ^
- * 0 1 1 5
- * 0 3 5 8
- * 0 0 5 2
- * ------------------------------------------------------------------- */
- rhs = {Integer(5), Integer(8), Integer(2)};
- lhs = {{Integer(0), Integer(1), Integer(1)},
- {Integer(0), Integer(3), Integer(5)},
- {Integer(0), Integer(0), Integer(5)}};
- std::cout << "matrix 26, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::NONE);
-
- /* -------------------------------------------------------------------
- * lhs rhs modulo 11
- * --^-- ^
- * 1 0 1 5
- * 2 0 5 8
- * 4 0 5 2
- * ------------------------------------------------------------------- */
- rhs = {Integer(5), Integer(8), Integer(2)};
- lhs = {{Integer(1), Integer(0), Integer(1)},
- {Integer(2), Integer(0), Integer(5)},
- {Integer(4), Integer(0), Integer(5)}};
- std::cout << "matrix 27, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::NONE);
-
- /* -------------------------------------------------------------------
- * lhs rhs modulo 11
- * --^-- ^
- * 1 1 0 5
- * 2 3 0 8
- * 4 0 0 2
- * ------------------------------------------------------------------- */
- rhs = {Integer(5), Integer(8), Integer(2)};
- lhs = {{Integer(1), Integer(1), Integer(0)},
- {Integer(2), Integer(3), Integer(0)},
- {Integer(4), Integer(0), Integer(0)}};
- std::cout << "matrix 28, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::NONE);
- }
-
- void testGaussElimPartial1()
- {
- std::vector<Integer> rhs, resrhs;
- std::vector<std::vector<Integer>> lhs, reslhs;
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 11
- * --^-- ^ --^-- ^
- * 1 0 9 7 --> 1 0 9 7
- * 0 1 3 9 0 1 3 9
- * ------------------------------------------------------------------- */
- rhs = {Integer(7), Integer(9)};
- lhs = {{Integer(1), Integer(0), Integer(9)},
- {Integer(0), Integer(1), Integer(3)}};
- std::cout << "matrix 29, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::PARTIAL);
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 11
- * --^-- ^ --^-- ^
- * 1 3 0 7 --> 1 3 0 7
- * 0 0 1 9 0 0 1 9
- * ------------------------------------------------------------------- */
- rhs = {Integer(7), Integer(9)};
- lhs = {{Integer(1), Integer(3), Integer(0)},
- {Integer(0), Integer(0), Integer(1)}};
- std::cout << "matrix 30, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::PARTIAL);
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 11
- * --^-- ^ --^-- ^
- * 1 1 1 5 --> 1 0 9 7
- * 2 3 5 8 0 1 3 9
- * ------------------------------------------------------------------- */
- rhs = {Integer(5), Integer(8)};
- lhs = {{Integer(1), Integer(1), Integer(1)},
- {Integer(2), Integer(3), Integer(5)}};
- std::cout << "matrix 31, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::PARTIAL);
-
- /* -------------------------------------------------------------------
- * lhs rhs modulo { 3, 5, 7, 11, 17, 31, 59 }
- * ----^--- ^
- * 2 4 6 18
- * 4 5 6 24
- * 2 7 12 30
- * ------------------------------------------------------------------- */
- rhs = {Integer(18), Integer(24), Integer(30)};
- lhs = {{Integer(2), Integer(4), Integer(6)},
- {Integer(4), Integer(5), Integer(6)},
- {Integer(2), Integer(7), Integer(12)}};
- std::cout << "matrix 32, modulo 3" << std::endl;
- resrhs = {Integer(0), Integer(0), Integer(0)};
- reslhs = {{Integer(1), Integer(2), Integer(0)},
- {Integer(0), Integer(0), Integer(0)},
- {Integer(0), Integer(0), Integer(0)}};
- testGaussElimX(
- Integer(3), rhs, lhs, BVGaussElim::Result::PARTIAL, &resrhs, &reslhs);
- resrhs = {Integer(1), Integer(4), Integer(0)};
- std::cout << "matrix 32, modulo 5" << std::endl;
- reslhs = {{Integer(1), Integer(0), Integer(4)},
- {Integer(0), Integer(1), Integer(2)},
- {Integer(0), Integer(0), Integer(0)}};
- testGaussElimX(
- Integer(5), rhs, lhs, BVGaussElim::Result::PARTIAL, &resrhs, &reslhs);
- std::cout << "matrix 32, modulo 7" << std::endl;
- reslhs = {{Integer(1), Integer(0), Integer(6)},
- {Integer(0), Integer(1), Integer(2)},
- {Integer(0), Integer(0), Integer(0)}};
- testGaussElimX(
- Integer(7), rhs, lhs, BVGaussElim::Result::PARTIAL, &resrhs, &reslhs);
- std::cout << "matrix 32, modulo 11" << std::endl;
- reslhs = {{Integer(1), Integer(0), Integer(10)},
- {Integer(0), Integer(1), Integer(2)},
- {Integer(0), Integer(0), Integer(0)}};
- testGaussElimX(
- Integer(11), rhs, lhs, BVGaussElim::Result::PARTIAL, &resrhs, &reslhs);
- std::cout << "matrix 32, modulo 17" << std::endl;
- reslhs = {{Integer(1), Integer(0), Integer(16)},
- {Integer(0), Integer(1), Integer(2)},
- {Integer(0), Integer(0), Integer(0)}};
- testGaussElimX(
- Integer(17), rhs, lhs, BVGaussElim::Result::PARTIAL, &resrhs, &reslhs);
- std::cout << "matrix 32, modulo 59" << std::endl;
- reslhs = {{Integer(1), Integer(0), Integer(58)},
- {Integer(0), Integer(1), Integer(2)},
- {Integer(0), Integer(0), Integer(0)}};
- testGaussElimX(
- Integer(59), rhs, lhs, BVGaussElim::Result::PARTIAL, &resrhs, &reslhs);
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 3
- * ----^--- ^ --^-- ^
- * 4 6 2 18 --> 1 0 2 0
- * 5 6 4 24 0 0 0 0
- * 7 12 2 30 0 0 0 0
- * ------------------------------------------------------------------- */
- rhs = {Integer(18), Integer(24), Integer(30)};
- lhs = {{Integer(4), Integer(6), Integer(2)},
- {Integer(5), Integer(6), Integer(4)},
- {Integer(7), Integer(12), Integer(2)}};
- std::cout << "matrix 33, modulo 3" << std::endl;
- resrhs = {Integer(0), Integer(0), Integer(0)};
- reslhs = {{Integer(1), Integer(0), Integer(2)},
- {Integer(0), Integer(0), Integer(0)},
- {Integer(0), Integer(0), Integer(0)}};
- testGaussElimX(
- Integer(3), rhs, lhs, BVGaussElim::Result::PARTIAL, &resrhs, &reslhs);
- }
-
- void testGaussElimPartial2()
- {
- std::vector<Integer> rhs;
- std::vector<std::vector<Integer>> lhs;
-
- /* -------------------------------------------------------------------
- * lhs rhs --> lhs rhs modulo 11
- * ---^--- ^ ---^--- ^
- * x y z w x y z w
- * 1 2 0 6 2 1 2 0 0 1
- * 0 0 2 2 2 0 0 1 0 10
- * 0 0 0 1 2 0 0 0 1 2
- * ------------------------------------------------------------------- */
- rhs = {Integer(2), Integer(2), Integer(2)};
- lhs = {{Integer(1), Integer(2), Integer(6), Integer(0)},
- {Integer(0), Integer(0), Integer(2), Integer(2)},
- {Integer(0), Integer(0), Integer(1), Integer(0)}};
- std::cout << "matrix 34, modulo 11" << std::endl;
- testGaussElimX(Integer(11), rhs, lhs, BVGaussElim::Result::PARTIAL);
- }
- void testGaussElimRewriteForUremUnique1()
- {
- /* -------------------------------------------------------------------
- * lhs rhs modulo 11
- * --^-- ^
- * 1 1 1 5
- * 2 3 5 8
- * 4 0 5 2
- * ------------------------------------------------------------------- */
-
- Node eq1 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(
- kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_one, d_y_mul_one),
- d_z_mul_one),
- d_p),
- d_five);
-
- Node eq2 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(
- kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_two, d_y_mul_three),
- d_z_mul_five),
- d_p),
- d_eight);
-
- Node eq3 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_four, d_z_mul_five),
- d_p),
- d_two);
-
- std::vector<Node> eqs = {eq1, eq2, eq3};
- std::unordered_map<Node, Node, NodeHashFunction> res;
- BVGaussElim::Result ret = BVGaussElim::gaussElimRewriteForUrem(eqs, res);
- TS_ASSERT(ret == BVGaussElim::Result::UNIQUE);
- TS_ASSERT(res.size() == 3);
- TS_ASSERT(res[d_x] == d_three32);
- TS_ASSERT(res[d_y] == d_four32);
- TS_ASSERT(res[d_z] == d_nine32);
- }
-
- void testGaussElimRewriteForUremUnique2()
- {
- /* -------------------------------------------------------------------
- * lhs rhs modulo 11
- * --^-- ^
- * 1 1 1 5
- * 2 3 5 8
- * 4 0 5 2
- * ------------------------------------------------------------------- */
-
- Node zextop6 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(6));
-
- Node p = d_nm->mkNode(zextop6, mkConcat(mkZero(6),
- d_nm->mkNode(kind::BITVECTOR_PLUS, mkConst(20, 7), mkConst(20, 4))));
-
- Node x_mul_one = d_nm->mkNode(kind::BITVECTOR_MULT,
- d_nm->mkNode(kind::BITVECTOR_SUB, d_five, d_four), d_x);
- Node y_mul_one = d_nm->mkNode(kind::BITVECTOR_MULT,
- d_nm->mkNode(kind::BITVECTOR_UREM_TOTAL, d_one, d_five), d_y);
- Node z_mul_one = d_nm->mkNode(kind::BITVECTOR_MULT, mkOne(32), d_z);
-
- Node x_mul_two = d_nm->mkNode(kind::BITVECTOR_MULT,
- d_nm->mkNode(kind::BITVECTOR_SHL, mkOne(32), mkOne(32)), d_x);
- Node y_mul_three = d_nm->mkNode(kind::BITVECTOR_MULT,
- d_nm->mkNode(kind::BITVECTOR_LSHR, mkOnes(32), mkConst(32, 30)), d_y);
- Node z_mul_five = d_nm->mkNode(kind::BITVECTOR_MULT,
- mkExtract(
- d_nm->mkNode(
- zextop6, d_nm->mkNode(kind::BITVECTOR_PLUS, d_three, d_two)),
- 31, 0),
- d_z);
-
- Node x_mul_four = d_nm->mkNode(kind::BITVECTOR_MULT,
- d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_MULT,
- mkConst(32, 4),
- mkConst(32, 5)),
- mkConst(32, 4)),
- mkConst(32, 6)),
- d_x);
-
- Node eq1 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(
- kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- x_mul_one,
- y_mul_one),
- z_mul_one),
- p),
- d_five);
-
- Node eq2 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(
- kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_PLUS, x_mul_two, y_mul_three),
- z_mul_five),
- p),
- d_eight);
-
- Node eq3 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS, x_mul_four, z_mul_five),
- d_p),
- d_two);
-
- std::vector<Node> eqs = {eq1, eq2, eq3};
- std::unordered_map<Node, Node, NodeHashFunction> res;
- BVGaussElim::Result ret = BVGaussElim::gaussElimRewriteForUrem(eqs, res);
- TS_ASSERT(ret == BVGaussElim::Result::UNIQUE);
- TS_ASSERT(res.size() == 3);
- TS_ASSERT(res[d_x] == d_three32);
- TS_ASSERT(res[d_y] == d_four32);
- TS_ASSERT(res[d_z] == d_nine32);
- }
-
- void testGaussElimRewriteForUremPartial1()
- {
- std::unordered_map<Node, Node, NodeHashFunction> res;
- BVGaussElim::Result ret;
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 11
- * --^-- ^ --^-- ^
- * 1 0 9 7 --> 1 0 9 7
- * 0 1 3 9 0 1 3 9
- * ------------------------------------------------------------------- */
-
- Node eq1 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_one, d_z_mul_nine),
- d_p),
- d_seven);
-
- Node eq2 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_y_mul_one, d_z_mul_three),
- d_p),
- d_nine);
-
- std::vector<Node> eqs = {eq1, eq2};
- ret = BVGaussElim::gaussElimRewriteForUrem(eqs, res);
- TS_ASSERT(ret == BVGaussElim::Result::PARTIAL);
- TS_ASSERT(res.size() == 2);
-
- Node x1 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_seven32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_two32)),
- d_p);
- Node y1 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_nine32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_eight32)),
- d_p);
-
- Node x2 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_two32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_three32)),
- d_p);
- Node z2 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_three32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_seven32)),
- d_p);
-
- Node y3 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_three32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_four32)),
- d_p);
- Node z3 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_two32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_six32)),
- d_p);
-
- /* result depends on order of variables in matrix */
- if (res.find(d_x) == res.end())
- {
- /*
- * y z x y z x
- * 0 9 1 7 --> 1 0 7 3
- * 1 3 0 9 0 1 5 2
- *
- * z y x z y x
- * 9 0 1 7 --> 1 0 5 2
- * 3 1 0 9 0 1 7 3
- */
- TS_ASSERT(res[d_y] == y3);
- TS_ASSERT(res[d_z] == z3);
- }
- else if (res.find(d_y) == res.end())
- {
- /*
- * x z y x z y
- * 1 9 0 7 --> 1 0 8 2
- * 0 3 1 9 0 1 4 3
- *
- * z x y z x y
- * 9 1 0 7 --> 1 0 4 3
- * 3 0 1 9 0 1 8 2
- */
- TS_ASSERT(res[d_x] == x2);
- TS_ASSERT(res[d_z] == z2);
- }
- else
- {
- TS_ASSERT(res.find(d_z) == res.end());
- /*
- * x y z x y z
- * 1 0 9 7 --> 1 0 9 7
- * 0 1 3 9 0 1 3 9
- *
- * y x z y x z
- * 0 1 9 7 --> 1 0 3 9
- * 1 0 3 9 0 1 9 7
- */
- TS_ASSERT(res[d_x] == x1);
- TS_ASSERT(res[d_y] == y1);
- }
- }
-
- void testGaussElimRewriteForUremPartial1a()
- {
- std::unordered_map<Node, Node, NodeHashFunction> res;
- BVGaussElim::Result ret;
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 11
- * --^-- ^ --^-- ^
- * 1 0 9 7 --> 1 0 9 7
- * 0 1 3 9 0 1 3 9
- * ------------------------------------------------------------------- */
-
- Node eq1 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x, d_z_mul_nine),
- d_p),
- d_seven);
-
- Node eq2 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_y, d_z_mul_three),
- d_p),
- d_nine);
-
- std::vector<Node> eqs = {eq1, eq2};
- ret = BVGaussElim::gaussElimRewriteForUrem(eqs, res);
- TS_ASSERT(ret == BVGaussElim::Result::PARTIAL);
- TS_ASSERT(res.size() == 2);
-
- Node x1 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_seven32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_two32)),
- d_p);
- Node y1 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_nine32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_eight32)),
- d_p);
-
- Node x2 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_two32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_three32)),
- d_p);
- Node z2 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_three32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_seven32)),
- d_p);
-
- Node y3 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_three32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_four32)),
- d_p);
- Node z3 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_two32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_six32)),
- d_p);
-
- /* result depends on order of variables in matrix */
- if (res.find(d_x) == res.end())
- {
- /*
- * y z x y z x
- * 0 9 1 7 --> 1 0 7 3
- * 1 3 0 9 0 1 5 2
- *
- * z y x z y x
- * 9 0 1 7 --> 1 0 5 2
- * 3 1 0 9 0 1 7 3
- */
- TS_ASSERT(res[d_y] == y3);
- TS_ASSERT(res[d_z] == z3);
- }
- else if (res.find(d_y) == res.end())
- {
- /*
- * x z y x z y
- * 1 9 0 7 --> 1 0 8 2
- * 0 3 1 9 0 1 4 3
- *
- * z x y z x y
- * 9 1 0 7 --> 1 0 4 3
- * 3 0 1 9 0 1 8 2
- */
- TS_ASSERT(res[d_x] == x2);
- TS_ASSERT(res[d_z] == z2);
- }
- else
- {
- TS_ASSERT(res.find(d_z) == res.end());
- /*
- * x y z x y z
- * 1 0 9 7 --> 1 0 9 7
- * 0 1 3 9 0 1 3 9
- *
- * y x z y x z
- * 0 1 9 7 --> 1 0 3 9
- * 1 0 3 9 0 1 9 7
- */
- TS_ASSERT(res[d_x] == x1);
- TS_ASSERT(res[d_y] == y1);
- }
- }
-
- void testGaussElimRewriteForUremPartial2()
- {
- std::unordered_map<Node, Node, NodeHashFunction> res;
- BVGaussElim::Result ret;
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 11
- * --^-- ^ --^-- ^
- * 1 3 0 7 --> 1 3 0 7
- * 0 0 1 9 0 0 1 9
- * ------------------------------------------------------------------- */
-
- Node eq1 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_one, d_y_mul_three),
- d_p),
- d_seven);
-
- Node eq2 =
- d_nm->mkNode(kind::EQUAL,
- d_nm->mkNode(kind::BITVECTOR_UREM, d_z_mul_one, d_p),
- d_nine);
-
- std::vector<Node> eqs = {eq1, eq2};
- ret = BVGaussElim::gaussElimRewriteForUrem(eqs, res);
- TS_ASSERT(ret == BVGaussElim::Result::PARTIAL);
- TS_ASSERT(res.size() == 2);
-
- Node x1 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_seven32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_eight32)),
- d_p);
- Node y2 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_six32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_seven32)),
- d_p);
-
- /* result depends on order of variables in matrix */
- if (res.find(d_x) == res.end())
- {
- /*
- * x y z x y z
- * 1 3 0 7 --> 1 3 0 7
- * 0 0 1 9 0 0 1 9
- *
- * x z y x z y
- * 1 0 3 7 --> 1 0 3 7
- * 0 1 0 9 0 1 0 9
- *
- * z x y z x y
- * 0 1 3 7 --> 1 0 0 9
- * 1 0 0 9 0 1 3 7
- */
- TS_ASSERT(res[d_y] == y2);
- TS_ASSERT(res[d_z] == d_nine32);
- }
- else if (res.find(d_y) == res.end())
- {
- /*
- * z y x z y x
- * 0 3 1 7 --> 1 0 0 9
- * 1 0 0 9 0 1 4 6
- *
- * y x z y x z
- * 3 1 0 7 --> 1 4 0 6
- * 0 0 1 9 0 0 1 9
- *
- * y z x y z x
- * 3 0 1 7 --> 1 0 4 6
- * 0 1 0 9 0 1 0 9
- */
- TS_ASSERT(res[d_x] == x1);
- TS_ASSERT(res[d_z] == d_nine32);
- }
- else
- {
- TS_ASSERT(false);
- }
- }
-
- void testGaussElimRewriteForUremPartial3()
- {
- std::unordered_map<Node, Node, NodeHashFunction> res;
- BVGaussElim::Result ret;
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 11
- * --^-- ^ --^-- ^
- * 1 1 1 5 --> 1 0 9 7
- * 2 3 5 8 0 1 3 9
- * ------------------------------------------------------------------- */
-
- Node eq1 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_one, d_y),
- d_z_mul_one),
- d_p),
- d_five);
-
- Node eq2 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(
- kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_two, d_y_mul_three),
- d_z_mul_five),
- d_p),
- d_eight);
-
- std::vector<Node> eqs = {eq1, eq2};
- ret = BVGaussElim::gaussElimRewriteForUrem(eqs, res);
- TS_ASSERT(ret == BVGaussElim::Result::PARTIAL);
- TS_ASSERT(res.size() == 2);
-
- Node x1 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_seven32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_two32)),
- d_p);
- Node y1 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_nine32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_eight32)),
- d_p);
- Node x2 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_two32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_three32)),
- d_p);
- Node z2 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_three32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_seven32)),
- d_p);
- Node y3 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_three32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_four32)),
- d_p);
- Node z3 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_two32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_six32)),
- d_p);
-
- /* result depends on order of variables in matrix */
- if (res.find(d_x) == res.end())
- {
- /*
- * y z x y z x
- * 1 1 1 5 --> 1 0 7 3
- * 3 5 2 8 0 1 5 2
- *
- * z y x z y x
- * 1 1 1 5 --> 1 0 5 2
- * 5 3 2 8 0 1 7 3
- */
- TS_ASSERT(res[d_y] == y3);
- TS_ASSERT(res[d_z] == z3);
- }
- else if (res.find(d_y) == res.end())
- {
- /*
- * x z y x z y
- * 1 1 1 5 --> 1 0 8 2
- * 2 5 3 8 0 1 4 3
- *
- * z x y z x y
- * 1 1 1 5 --> 1 0 4 3
- * 5 2 3 9 0 1 8 2
- */
- TS_ASSERT(res[d_x] == x2);
- TS_ASSERT(res[d_z] == z2);
- }
- else
- {
- TS_ASSERT(res.find(d_z) == res.end());
- /*
- * x y z x y z
- * 1 1 1 5 --> 1 0 9 7
- * 2 3 5 8 0 1 3 9
- *
- * y x z y x z
- * 1 1 1 5 --> 1 0 3 9
- * 3 2 5 8 0 1 9 7
- */
- TS_ASSERT(res[d_x] == x1);
- TS_ASSERT(res[d_y] == y1);
- }
- }
-
- void testGaussElimRewriteForUremPartial4()
- {
- std::unordered_map<Node, Node, NodeHashFunction> res;
- BVGaussElim::Result ret;
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 11
- * ----^--- ^ ---^--- ^
- * 2 4 6 18 --> 1 0 10 1
- * 4 5 6 24 0 1 2 4
- * 2 7 12 30 0 0 0 0
- * ------------------------------------------------------------------- */
-
- Node eq1 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(
- kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_two, d_y_mul_four),
- d_z_mul_six),
- d_p),
- d_eighteen);
-
- Node eq2 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(
- kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_four, d_y_mul_five),
- d_z_mul_six),
- d_p),
- d_twentyfour);
-
- Node eq3 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(
- kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_two, d_y_mul_seven),
- d_z_mul_twelve),
- d_p),
- d_thirty);
-
- std::vector<Node> eqs = {eq1, eq2, eq3};
- ret = BVGaussElim::gaussElimRewriteForUrem(eqs, res);
- TS_ASSERT(ret == BVGaussElim::Result::PARTIAL);
- TS_ASSERT(res.size() == 2);
-
- Node x1 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_one32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_one32)),
- d_p);
- Node y1 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_four32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_nine32)),
- d_p);
- Node x2 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_three32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_five32)),
- d_p);
- Node z2 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_two32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_five32)),
- d_p);
- Node y3 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_six32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_nine32)),
- d_p);
- Node z3 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_ten32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_one32)),
- d_p);
-
- /* result depends on order of variables in matrix */
- if (res.find(d_x) == res.end())
- {
- /*
- * y z x y z x
- * 4 6 2 18 --> 1 0 2 6
- * 5 6 4 24 0 1 10 10
- * 7 12 2 30 0 0 0 0
- *
- * z y x z y x
- * 6 4 2 18 --> 1 0 10 10
- * 6 5 4 24 0 1 2 6
- * 12 12 2 30 0 0 0 0
- *
- */
- TS_ASSERT(res[d_y] == y3);
- TS_ASSERT(res[d_z] == z3);
- }
- else if (res.find(d_y) == res.end())
- {
- /*
- * x z y x z y
- * 2 6 4 18 --> 1 0 6 3
- * 4 6 5 24 0 1 6 2
- * 2 12 7 30 0 0 0 0
- *
- * z x y z x y
- * 6 2 4 18 --> 1 0 6 2
- * 6 4 5 24 0 1 6 3
- * 12 2 12 30 0 0 0 0
- *
- */
- TS_ASSERT(res[d_x] == x2);
- TS_ASSERT(res[d_z] == z2);
- }
- else
- {
- TS_ASSERT(res.find(d_z) == res.end());
- /*
- * x y z x y z
- * 2 4 6 18 --> 1 0 10 1
- * 4 5 6 24 0 1 2 4
- * 2 7 12 30 0 0 0 0
- *
- * y x z y x z
- * 4 2 6 18 --> 1 0 2 49
- * 5 4 6 24 0 1 10 1
- * 7 2 12 30 0 0 0 0
- */
- TS_ASSERT(res[d_x] == x1);
- TS_ASSERT(res[d_y] == y1);
- }
- }
-
- void testGaussElimRewriteForUremPartial5()
- {
- std::unordered_map<Node, Node, NodeHashFunction> res;
- BVGaussElim::Result ret;
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 3
- * ----^--- ^ --^-- ^
- * 2 4 6 18 --> 1 2 0 0
- * 4 5 6 24 0 0 0 0
- * 2 7 12 30 0 0 0 0
- * ------------------------------------------------------------------- */
-
- Node eq1 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(
- kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_two, d_y_mul_four),
- d_z_mul_six),
- d_three),
- d_eighteen);
-
- Node eq2 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(
- kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_four, d_y_mul_five),
- d_z_mul_six),
- d_three),
- d_twentyfour);
-
- Node eq3 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(
- kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_two, d_y_mul_seven),
- d_z_mul_twelve),
- d_three),
- d_thirty);
-
- std::vector<Node> eqs = {eq1, eq2, eq3};
- ret = BVGaussElim::gaussElimRewriteForUrem(eqs, res);
- TS_ASSERT(ret == BVGaussElim::Result::PARTIAL);
- TS_ASSERT(res.size() == 1);
-
- Node x1 = d_nm->mkNode(kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_one32),
- d_three);
- Node y2 = d_nm->mkNode(kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_one32),
- d_three);
-
- /* result depends on order of variables in matrix */
- if (res.find(d_x) == res.end())
- {
- /*
- * y x z y x z
- * 4 2 6 18 --> 1 2 0 0
- * 5 4 6 24 0 0 0 0
- * 7 2 12 30 0 0 0 0
- *
- * y z x y z x
- * 4 6 2 18 --> 1 0 2 0
- * 5 6 4 24 0 0 0 0
- * 7 12 2 30 0 0 0 0
- *
- * z y x z y x
- * 6 4 2 18 --> 0 1 2 0
- * 6 5 4 24 0 0 0 0
- * 12 12 2 30 0 0 0 0
- *
- */
- TS_ASSERT(res[d_y] == y2);
- }
- else if (res.find(d_y) == res.end())
- {
- /*
- * x y z x y z
- * 2 4 6 18 --> 1 2 0 0
- * 4 5 6 24 0 0 0 0
- * 2 7 12 30 0 0 0 0
- *
- * x z y x z y
- * 2 6 4 18 --> 1 0 2 0
- * 4 6 5 24 0 0 0 0
- * 2 12 7 30 0 0 0 0
- *
- * z x y z x y
- * 6 2 4 18 --> 0 1 2 0
- * 6 4 5 24 0 0 0 0
- * 12 2 12 30 0 0 0 0
- *
- */
- TS_ASSERT(res[d_x] == x1);
- }
- else
- {
- TS_ASSERT(false);
- }
- }
-
- void testGaussElimRewriteForUremPartial6()
- {
- std::unordered_map<Node, Node, NodeHashFunction> res;
- BVGaussElim::Result ret;
-
- /* -------------------------------------------------------------------
- * lhs rhs --> lhs rhs modulo 11
- * ---^--- ^ ---^--- ^
- * x y z w x y z w
- * 1 2 0 6 2 1 2 0 6 2
- * 0 0 2 2 2 0 0 1 1 1
- * 0 0 0 1 2 0 0 0 1 2
- * ------------------------------------------------------------------- */
-
- Node y_mul_two = d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_two);
- Node z_mul_two = d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_two);
- Node w = mkConcat(d_zero, d_nm->mkVar("w", d_nm->mkBitVectorType(16)));
- Node w_mul_six = d_nm->mkNode(kind::BITVECTOR_MULT, w, d_six);
- Node w_mul_two = d_nm->mkNode(kind::BITVECTOR_MULT, w, d_two);
-
- Node eq1 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(
- kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_one, y_mul_two),
- w_mul_six),
- d_p),
- d_two);
-
- Node eq2 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS, z_mul_two, w_mul_two),
- d_p),
- d_two);
-
- Node eq3 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM, w, d_p),
- d_two);
-
- std::vector<Node> eqs = {eq1, eq2, eq3};
- ret = BVGaussElim::gaussElimRewriteForUrem(eqs, res);
- TS_ASSERT(ret == BVGaussElim::Result::PARTIAL);
- TS_ASSERT(res.size() == 3);
-
- Node x1 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_one32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_nine32)),
- d_p);
- Node z1 = d_ten32;
- Node w1 = d_two32;
-
- Node y2 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_six32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_five32)),
- d_p);
- Node z2 = d_ten32;
- Node w2 = d_two32;
-
- /* result depends on order of variables in matrix */
- if (res.find(d_x) == res.end())
- {
- TS_ASSERT(res[d_y] == y2);
- TS_ASSERT(res[d_z] == z2);
- TS_ASSERT(res[w] == w2);
- }
- else if (res.find(d_y) == res.end())
- {
- TS_ASSERT(res[d_x] == x1);
- TS_ASSERT(res[d_z] == z1);
- TS_ASSERT(res[w] == w1);
- }
- else
- {
- TS_ASSERT(false);
- }
- }
-
- void testGaussElimRewriteForUremWithExprPartial()
- {
- std::unordered_map<Node, Node, NodeHashFunction> res;
- BVGaussElim::Result ret;
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 11
- * --^-- ^ --^-- ^
- * 1 0 9 7 --> 1 0 9 7
- * 0 1 3 9 0 1 3 9
- * ------------------------------------------------------------------- */
-
- Node zero = mkZero(8);
- Node xx = d_nm->mkVar("xx", d_nm->mkBitVectorType(8));
- Node yy = d_nm->mkVar("yy", d_nm->mkBitVectorType(8));
- Node zz = d_nm->mkVar("zz", d_nm->mkBitVectorType(8));
-
- Node x =
- mkConcat(d_zero, mkConcat(zero, mkExtract(mkConcat(zero, xx), 7, 0)));
- Node y =
- mkConcat(d_zero, mkConcat(zero, mkExtract(mkConcat(zero, yy), 7, 0)));
- Node z =
- mkConcat(d_zero, mkConcat(zero, mkExtract(mkConcat(zero, zz), 7, 0)));
- Node x_mul_one = d_nm->mkNode(kind::BITVECTOR_MULT, x, d_one32);
- Node nine_mul_z = d_nm->mkNode(kind::BITVECTOR_MULT, d_nine32, z);
- Node one_mul_y = d_nm->mkNode(kind::BITVECTOR_MULT, d_one, y);
- Node z_mul_three = d_nm->mkNode(kind::BITVECTOR_MULT, z, d_three);
-
- Node eq1 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS, x_mul_one, nine_mul_z),
- d_p),
- d_seven);
-
- Node eq2 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS, one_mul_y, z_mul_three),
- d_p),
- d_nine);
-
- std::vector<Node> eqs = {eq1, eq2};
- ret = BVGaussElim::gaussElimRewriteForUrem(eqs, res);
- TS_ASSERT(ret == BVGaussElim::Result::PARTIAL);
- TS_ASSERT(res.size() == 2);
-
- x = Rewriter::rewrite(x);
- y = Rewriter::rewrite(y);
- z = Rewriter::rewrite(z);
-
- Node x1 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_seven32,
- d_nm->mkNode(kind::BITVECTOR_MULT, z, d_two32)),
- d_p);
- Node y1 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_nine32,
- d_nm->mkNode(kind::BITVECTOR_MULT, z, d_eight32)),
- d_p);
-
- Node x2 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_two32,
- d_nm->mkNode(kind::BITVECTOR_MULT, y, d_three32)),
- d_p);
- Node z2 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_three32,
- d_nm->mkNode(kind::BITVECTOR_MULT, y, d_seven32)),
- d_p);
-
- Node y3 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_three32,
- d_nm->mkNode(kind::BITVECTOR_MULT, x, d_four32)),
- d_p);
- Node z3 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_two32,
- d_nm->mkNode(kind::BITVECTOR_MULT, x, d_six32)),
- d_p);
-
- /* result depends on order of variables in matrix */
- if (res.find(x) == res.end())
- {
- /*
- * y z x y z x
- * 0 9 1 7 --> 1 0 7 3
- * 1 3 0 9 0 1 5 2
- *
- * z y x z y x
- * 9 0 1 7 --> 1 0 5 2
- * 3 1 0 9 0 1 7 3
- */
- TS_ASSERT(res[Rewriter::rewrite(y)] == y3);
- TS_ASSERT(res[Rewriter::rewrite(z)] == z3);
- }
- else if (res.find(y) == res.end())
- {
- /*
- * x z y x z y
- * 1 9 0 7 --> 1 0 8 2
- * 0 3 1 9 0 1 4 3
- *
- * z x y z x y
- * 9 1 0 7 --> 1 0 4 3
- * 3 0 1 9 0 1 8 2
- */
- TS_ASSERT(res[x] == x2);
- TS_ASSERT(res[z] == z2);
- }
- else
- {
- TS_ASSERT(res.find(z) == res.end());
- /*
- * x y z x y z
- * 1 0 9 7 --> 1 0 9 7
- * 0 1 3 9 0 1 3 9
- *
- * y x z y x z
- * 0 1 9 7 --> 1 0 3 9
- * 1 0 3 9 0 1 9 7
- */
- TS_ASSERT(res[x] == x1);
- TS_ASSERT(res[y] == y1);
- }
- }
-
- void testGaussElimRewriteForUremNAryPartial()
- {
- std::unordered_map<Node, Node, NodeHashFunction> res;
- BVGaussElim::Result ret;
-
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 11
- * --^-- ^ --^-- ^
- * 1 0 9 7 --> 1 0 9 7
- * 0 1 3 9 0 1 3 9
- * ------------------------------------------------------------------- */
-
- Node zero = mkZero(8);
- Node xx = d_nm->mkVar("xx", d_nm->mkBitVectorType(8));
- Node yy = d_nm->mkVar("yy", d_nm->mkBitVectorType(8));
- Node zz = d_nm->mkVar("zz", d_nm->mkBitVectorType(8));
-
- Node x = mkConcat(
- d_zero,
- mkConcat(
- zero,
- mkExtract(d_nm->mkNode(kind::BITVECTOR_CONCAT, zero, xx), 7, 0)));
- Node y = mkConcat(
- d_zero,
- mkConcat(
- zero,
- mkExtract(d_nm->mkNode(kind::BITVECTOR_CONCAT, zero, yy), 7, 0)));
- Node z = mkConcat(
- d_zero,
- mkConcat(
- zero,
- mkExtract(d_nm->mkNode(kind::BITVECTOR_CONCAT, zero, zz), 7, 0)));
-
- NodeBuilder<> nbx(d_nm, kind::BITVECTOR_MULT);
- nbx << d_x << d_one << x;
- Node x_mul_one_mul_xx = nbx.constructNode();
- NodeBuilder<> nby(d_nm, kind::BITVECTOR_MULT);
- nby << d_y << y << d_one;
- Node y_mul_yy_mul_one = nby.constructNode();
- NodeBuilder<> nbz(d_nm, kind::BITVECTOR_MULT);
- nbz << d_three << d_z << z;
- Node three_mul_z_mul_zz = nbz.constructNode();
- NodeBuilder<> nbz2(d_nm, kind::BITVECTOR_MULT);
- nbz2 << d_z << d_nine << z;
- Node z_mul_nine_mul_zz = nbz2.constructNode();
-
- Node x_mul_xx = d_nm->mkNode(kind::BITVECTOR_MULT, d_x, x);
- Node y_mul_yy = d_nm->mkNode(kind::BITVECTOR_MULT, d_y, y);
- Node z_mul_zz = d_nm->mkNode(kind::BITVECTOR_MULT, d_z, z);
-
- Node eq1 = d_nm->mkNode(kind::EQUAL,
- d_nm->mkNode(kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- x_mul_one_mul_xx,
- z_mul_nine_mul_zz),
- d_p),
- d_seven);
-
- Node eq2 = d_nm->mkNode(kind::EQUAL,
- d_nm->mkNode(kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- y_mul_yy_mul_one,
- three_mul_z_mul_zz),
- d_p),
- d_nine);
-
- std::vector<Node> eqs = {eq1, eq2};
- ret = BVGaussElim::gaussElimRewriteForUrem(eqs, res);
- TS_ASSERT(ret == BVGaussElim::Result::PARTIAL);
- TS_ASSERT(res.size() == 2);
-
- x_mul_xx = Rewriter::rewrite(x_mul_xx);
- y_mul_yy = Rewriter::rewrite(y_mul_yy);
- z_mul_zz = Rewriter::rewrite(z_mul_zz);
-
- Node x1 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_seven32,
- d_nm->mkNode(kind::BITVECTOR_MULT, z_mul_zz, d_two32)),
- d_p);
- Node y1 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_nine32,
- d_nm->mkNode(kind::BITVECTOR_MULT, z_mul_zz, d_eight32)),
- d_p);
-
- Node x2 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_two32,
- d_nm->mkNode(kind::BITVECTOR_MULT, y_mul_yy, d_three32)),
- d_p);
- Node z2 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_three32,
- d_nm->mkNode(kind::BITVECTOR_MULT, y_mul_yy, d_seven32)),
- d_p);
-
- Node y3 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_three32,
- d_nm->mkNode(kind::BITVECTOR_MULT, x_mul_xx, d_four32)),
- d_p);
- Node z3 = d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_two32,
- d_nm->mkNode(kind::BITVECTOR_MULT, x_mul_xx, d_six32)),
- d_p);
-
- /* result depends on order of variables in matrix */
- if (res.find(x_mul_xx) == res.end())
- {
- /*
- * y z x y z x
- * 0 9 1 7 --> 1 0 7 3
- * 1 3 0 9 0 1 5 2
- *
- * z y x z y x
- * 9 0 1 7 --> 1 0 5 2
- * 3 1 0 9 0 1 7 3
- */
- TS_ASSERT(res[y_mul_yy] == y3);
- TS_ASSERT(res[z_mul_zz] == z3);
- }
- else if (res.find(y_mul_yy) == res.end())
- {
- /*
- * x z y x z y
- * 1 9 0 7 --> 1 0 8 2
- * 0 3 1 9 0 1 4 3
- *
- * z x y z x y
- * 9 1 0 7 --> 1 0 4 3
- * 3 0 1 9 0 1 8 2
- */
- TS_ASSERT(res[x_mul_xx] == x2);
- TS_ASSERT(res[z_mul_zz] == z2);
- }
- else
- {
- TS_ASSERT(res.find(z_mul_zz) == res.end());
- /*
- * x y z x y z
- * 1 0 9 7 --> 1 0 9 7
- * 0 1 3 9 0 1 3 9
- *
- * y x z y x z
- * 0 1 9 7 --> 1 0 3 9
- * 1 0 3 9 0 1 9 7
- */
- TS_ASSERT(res[x_mul_xx] == x1);
- TS_ASSERT(res[y_mul_yy] == y1);
- }
- }
-
- void testGaussElimRewriteForUremNotInvalid1()
- {
- std::unordered_map<Node, Node, NodeHashFunction> res;
- BVGaussElim::Result ret;
-
- /* -------------------------------------------------------------------
- * 3x / 2z = 4 modulo 11
- * 2x % 5y = 2
- * y O z = 5
- * ------------------------------------------------------------------- */
-
- Node n1 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_three, d_x),
- d_nm->mkNode(kind::BITVECTOR_MULT, d_two, d_y));
- Node n2 = d_nm->mkNode(kind::BITVECTOR_UREM_TOTAL,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_two, d_x),
- d_nm->mkNode(kind::BITVECTOR_MULT, d_five, d_y));
- Node n3 = mkConcat(
- d_zero,
- mkExtract(d_nm->mkNode(kind::BITVECTOR_CONCAT, d_y, d_z), 15, 0));
-
- Node eq1 = d_nm->mkNode(
- kind::EQUAL, d_nm->mkNode(kind::BITVECTOR_UREM, n1, d_p), d_four);
-
- Node eq2 = d_nm->mkNode(
- kind::EQUAL, d_nm->mkNode(kind::BITVECTOR_UREM, n2, d_p), d_two);
-
- Node eq3 = d_nm->mkNode(
- kind::EQUAL, d_nm->mkNode(kind::BITVECTOR_UREM, n3, d_p), d_five);
-
- std::vector<Node> eqs = {eq1, eq2, eq3};
- ret = BVGaussElim::gaussElimRewriteForUrem(eqs, res);
- TS_ASSERT(ret == BVGaussElim::Result::UNIQUE);
- TS_ASSERT(res.size() == 3);
-
- TS_ASSERT(res[n1] == d_four32);
- TS_ASSERT(res[n2] == d_two32);
- TS_ASSERT(res[n3] == d_five32);
- }
-
- void testGaussElimRewriteForUremNotInvalid2()
- {
- std::unordered_map<Node, Node, NodeHashFunction> res;
- BVGaussElim::Result ret;
-
- /* -------------------------------------------------------------------
- * x*y = 4 modulo 11
- * x*y*z = 2
- * 2*x*y + 2*z = 9
- * ------------------------------------------------------------------- */
-
- Node zero32 = mkZero(32);
-
- Node x = mkConcat(zero32, d_nm->mkVar("x", d_nm->mkBitVectorType(16)));
- Node y = mkConcat(zero32, d_nm->mkVar("y", d_nm->mkBitVectorType(16)));
- Node z = mkConcat(zero32, d_nm->mkVar("z", d_nm->mkBitVectorType(16)));
-
- Node n1 = d_nm->mkNode(kind::BITVECTOR_MULT, x, y);
- Node n2 = d_nm->mkNode(
- kind::BITVECTOR_MULT, d_nm->mkNode(kind::BITVECTOR_MULT, x, y), z);
- Node n3 = d_nm->mkNode(
- kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_MULT,
- d_nm->mkNode(kind::BITVECTOR_MULT, x, y),
- mkConcat(d_zero, d_two)),
- d_nm->mkNode(kind::BITVECTOR_MULT, mkConcat(d_zero, d_two), z));
-
- Node eq1 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(kind::BITVECTOR_UREM, n1, mkConcat(d_zero, d_p)),
- mkConcat(d_zero, d_four));
-
- Node eq2 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(kind::BITVECTOR_UREM, n2, mkConcat(d_zero, d_p)),
- mkConcat(d_zero, d_two));
-
- Node eq3 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(kind::BITVECTOR_UREM, n3, mkConcat(d_zero, d_p)),
- mkConcat(d_zero, d_nine));
-
- std::vector<Node> eqs = {eq1, eq2, eq3};
- ret = BVGaussElim::gaussElimRewriteForUrem(eqs, res);
- TS_ASSERT(ret == BVGaussElim::Result::UNIQUE);
- TS_ASSERT(res.size() == 3);
-
- n1 = Rewriter::rewrite(n1);
- n2 = Rewriter::rewrite(n2);
- z = Rewriter::rewrite(z);
-
- TS_ASSERT(res[n1] == mkConst(48, 4));
- TS_ASSERT(res[n2] == mkConst(48, 2));
-
- Integer twoxy = (res[n1].getConst<BitVector>().getValue() * Integer(2))
- .euclidianDivideRemainder(Integer(48));
- Integer twoz = (res[z].getConst<BitVector>().getValue() * Integer(2))
- .euclidianDivideRemainder(Integer(48));
- Integer r = (twoxy + twoz).euclidianDivideRemainder(Integer(11));
- TS_ASSERT(r == Integer(9));
- }
-
- void testGaussElimRewriteForUremInvalid()
- {
- std::unordered_map<Node, Node, NodeHashFunction> res;
- BVGaussElim::Result ret;
-
- /* -------------------------------------------------------------------
- * x*y = 4 modulo 11
- * x*y*z = 2
- * 2*x*y = 9
- * ------------------------------------------------------------------- */
-
- Node zero32 = mkZero(32);
-
- Node x = mkConcat(zero32, d_nm->mkVar("x", d_nm->mkBitVectorType(16)));
- Node y = mkConcat(zero32, d_nm->mkVar("y", d_nm->mkBitVectorType(16)));
- Node z = mkConcat(zero32, d_nm->mkVar("z", d_nm->mkBitVectorType(16)));
-
- Node n1 = d_nm->mkNode(kind::BITVECTOR_MULT, x, y);
- Node n2 = d_nm->mkNode(
- kind::BITVECTOR_MULT, d_nm->mkNode(kind::BITVECTOR_MULT, x, y), z);
- Node n3 = d_nm->mkNode(kind::BITVECTOR_MULT,
- d_nm->mkNode(kind::BITVECTOR_MULT, x, y),
- mkConcat(d_zero, d_two));
-
- Node eq1 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(kind::BITVECTOR_UREM, n1, mkConcat(d_zero, d_p)),
- mkConcat(d_zero, d_four));
-
- Node eq2 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(kind::BITVECTOR_UREM, n2, mkConcat(d_zero, d_p)),
- mkConcat(d_zero, d_two));
-
- Node eq3 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(kind::BITVECTOR_UREM, n3, mkConcat(d_zero, d_p)),
- mkConcat(d_zero, d_nine));
-
- std::vector<Node> eqs = {eq1, eq2, eq3};
- ret = BVGaussElim::gaussElimRewriteForUrem(eqs, res);
- TS_ASSERT(ret == BVGaussElim::Result::INVALID);
- }
-
- void testGaussElimRewriteUnique1()
- {
- /* -------------------------------------------------------------------
- * lhs rhs modulo 11
- * --^-- ^
- * 1 1 1 5
- * 2 3 5 8
- * 4 0 5 2
- * ------------------------------------------------------------------- */
-
- Node eq1 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(
- kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_one, d_y_mul_one),
- d_z_mul_one),
- d_p),
- d_five);
-
- Node eq2 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(
- kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_two, d_y_mul_three),
- d_z_mul_five),
- d_p),
- d_eight);
-
- Node eq3 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_four, d_z_mul_five),
- d_p),
- d_two);
-
- Node a = d_nm->mkNode(kind::AND, d_nm->mkNode(kind::AND, eq1, eq2), eq3);
-
- std::vector<Node> ass = {a};
- std::unordered_map<Node, Node, NodeHashFunction> res;
- BVGaussElim::gaussElimRewrite(ass);
- Node resx = d_nm->mkNode(
- kind::EQUAL, d_x, d_nm->mkConst<BitVector>(BitVector(32, 3u)));
- Node resy = d_nm->mkNode(
- kind::EQUAL, d_y, d_nm->mkConst<BitVector>(BitVector(32, 4u)));
- Node resz = d_nm->mkNode(
- kind::EQUAL, d_z, d_nm->mkConst<BitVector>(BitVector(32, 9u)));
- TS_ASSERT(ass.size() == 4);
- TS_ASSERT(std::find(ass.begin(), ass.end(), resx) != ass.end());
- TS_ASSERT(std::find(ass.begin(), ass.end(), resy) != ass.end());
- TS_ASSERT(std::find(ass.begin(), ass.end(), resz) != ass.end());
- }
-
- void testGaussElimRewriteUnique2()
- {
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 11
- * --^-- ^ --^-- ^
- * 1 1 1 5 1 0 0 3
- * 2 3 5 8 0 1 0 4
- * 4 0 5 2 0 0 1 9
- *
- * lhs rhs lhs rhs modulo 7
- * --^-- ^ --^-- ^
- * 2 6 0 4 1 0 0 3
- * 4 6 0 3 0 1 0 2
- * ------------------------------------------------------------------- */
-
- Node eq1 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(
- kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_one, d_y_mul_one),
- d_z_mul_one),
- d_p),
- d_five);
-
- Node eq2 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(
- kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_two, d_y_mul_three),
- d_z_mul_five),
- d_p),
- d_eight);
-
- Node eq3 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_four, d_z_mul_five),
- d_p),
- d_two);
-
- Node y_mul_six = d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_six);
-
- Node eq4 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_two, y_mul_six),
- d_seven),
- d_four);
-
- Node eq5 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_four, y_mul_six),
- d_seven),
- d_three);
-
- Node a = d_nm->mkNode(kind::AND, d_nm->mkNode(kind::AND, eq1, eq2), eq3);
-
- std::vector<Node> ass = {a, eq4, eq5};
- std::unordered_map<Node, Node, NodeHashFunction> res;
- BVGaussElim::gaussElimRewrite(ass);
- Node resx1 = d_nm->mkNode(
- kind::EQUAL, d_x, d_nm->mkConst<BitVector>(BitVector(32, 3u)));
- Node resx2 = d_nm->mkNode(
- kind::EQUAL, d_x, d_nm->mkConst<BitVector>(BitVector(32, 3u)));
- Node resy1 = d_nm->mkNode(
- kind::EQUAL, d_y, d_nm->mkConst<BitVector>(BitVector(32, 4u)));
- Node resy2 = d_nm->mkNode(
- kind::EQUAL, d_y, d_nm->mkConst<BitVector>(BitVector(32, 2u)));
- Node resz = d_nm->mkNode(
- kind::EQUAL, d_z, d_nm->mkConst<BitVector>(BitVector(32, 9u)));
- TS_ASSERT(ass.size() == 8);
- TS_ASSERT(std::find(ass.begin(), ass.end(), resx1) != ass.end());
- TS_ASSERT(std::find(ass.begin(), ass.end(), resx2) != ass.end());
- TS_ASSERT(std::find(ass.begin(), ass.end(), resy1) != ass.end());
- TS_ASSERT(std::find(ass.begin(), ass.end(), resy2) != ass.end());
- TS_ASSERT(std::find(ass.begin(), ass.end(), resz) != ass.end());
- }
-
- void testGaussElimRewritePartial()
- {
- /* -------------------------------------------------------------------
- * lhs rhs lhs rhs modulo 11
- * --^-- ^ --^-- ^
- * 1 0 9 7 --> 1 0 9 7
- * 0 1 3 9 0 1 3 9
- * ------------------------------------------------------------------- */
-
- Node eq1 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_x_mul_one, d_z_mul_nine),
- d_p),
- d_seven);
-
- Node eq2 = d_nm->mkNode(
- kind::EQUAL,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS, d_y_mul_one, d_z_mul_three),
- d_p),
- d_nine);
-
- std::vector<Node> ass = {eq1, eq2};
- BVGaussElim::gaussElimRewrite(ass);
- TS_ASSERT(ass.size() == 4);
-
- Node resx1 = d_nm->mkNode(
- kind::EQUAL,
- d_x,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_seven32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_two32)),
- d_p));
- Node resy1 = d_nm->mkNode(
- kind::EQUAL,
- d_y,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_nine32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_z, d_eight32)),
- d_p));
-
- Node resx2 = d_nm->mkNode(
- kind::EQUAL,
- d_x,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_two32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_three32)),
- d_p));
- Node resz2 = d_nm->mkNode(
- kind::EQUAL,
- d_z,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_three32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_y, d_seven32)),
- d_p));
-
- Node resy3 = d_nm->mkNode(
- kind::EQUAL,
- d_y,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_three32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_four32)),
- d_p));
- Node resz3 = d_nm->mkNode(
- kind::EQUAL,
- d_z,
- d_nm->mkNode(
- kind::BITVECTOR_UREM,
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_two32,
- d_nm->mkNode(kind::BITVECTOR_MULT, d_x, d_six32)),
- d_p));
-
- bool fx1 = std::find(ass.begin(), ass.end(), resx1) != ass.end();
- bool fy1 = std::find(ass.begin(), ass.end(), resy1) != ass.end();
- bool fx2 = std::find(ass.begin(), ass.end(), resx2) != ass.end();
- bool fz2 = std::find(ass.begin(), ass.end(), resz2) != ass.end();
- bool fy3 = std::find(ass.begin(), ass.end(), resy3) != ass.end();
- bool fz3 = std::find(ass.begin(), ass.end(), resz3) != ass.end();
-
- /* result depends on order of variables in matrix */
- TS_ASSERT((fx1 && fy1) || (fx2 && fz2) || (fy3 && fz3));
- }
-
- void testGetMinBw1()
- {
- TS_ASSERT(BVGaussElim::getMinBwExpr(utils::mkConst(32, 11)) == 4);
-
- TS_ASSERT(BVGaussElim::getMinBwExpr(d_p) == 4);
- TS_ASSERT(BVGaussElim::getMinBwExpr(d_x) == 16);
-
- Node extp = mkExtract(d_p, 4, 0);
- TS_ASSERT(BVGaussElim::getMinBwExpr(extp) == 4);
- Node extx = mkExtract(d_x, 4, 0);
- TS_ASSERT(BVGaussElim::getMinBwExpr(extx) == 5);
-
- Node zextop8 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(8));
- Node zextop16 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(16));
- Node zextop32 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(32));
- Node zextop40 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(40));
-
- Node zext40p = d_nm->mkNode(zextop8, d_p);
- TS_ASSERT(BVGaussElim::getMinBwExpr(zext40p) == 4);
- Node zext40x = d_nm->mkNode(zextop8, d_x);
- TS_ASSERT(BVGaussElim::getMinBwExpr(zext40x) == 16);
-
- Node zext48p = d_nm->mkNode(zextop16, d_p);
- TS_ASSERT(BVGaussElim::getMinBwExpr(zext48p) == 4);
- Node zext48x = d_nm->mkNode(zextop16, d_x);
- TS_ASSERT(BVGaussElim::getMinBwExpr(zext48x) == 16);
-
- Node p8 = d_nm->mkConst<BitVector>(BitVector(8, 11u));
- Node x8 = d_nm->mkVar("x8", d_nm->mkBitVectorType(8));
-
- Node zext48p8 = d_nm->mkNode(zextop40, p8);
- TS_ASSERT(BVGaussElim::getMinBwExpr(zext48p8) == 4);
- Node zext48x8 = d_nm->mkNode(zextop40, x8);
- TS_ASSERT(BVGaussElim::getMinBwExpr(zext48x8) == 8);
-
- Node mult1p = d_nm->mkNode(kind::BITVECTOR_MULT, extp, extp);
- TS_ASSERT(BVGaussElim::getMinBwExpr(mult1p) == 5);
- Node mult1x = d_nm->mkNode(kind::BITVECTOR_MULT, extx, extx);
- TS_ASSERT(BVGaussElim::getMinBwExpr(mult1x) == 0);
-
- Node mult2p = d_nm->mkNode(kind::BITVECTOR_MULT, zext40p, zext40p);
- TS_ASSERT(BVGaussElim::getMinBwExpr(mult2p) == 7);
- Node mult2x = d_nm->mkNode(kind::BITVECTOR_MULT, zext40x, zext40x);
- TS_ASSERT(BVGaussElim::getMinBwExpr(mult2x) == 32);
-
- NodeBuilder<> nbmult3p(kind::BITVECTOR_MULT);
- nbmult3p << zext48p << zext48p << zext48p;
- Node mult3p = nbmult3p;
- TS_ASSERT(BVGaussElim::getMinBwExpr(mult3p) == 11);
- NodeBuilder<> nbmult3x(kind::BITVECTOR_MULT);
- nbmult3x << zext48x << zext48x << zext48x;
- Node mult3x = nbmult3x;
- TS_ASSERT(BVGaussElim::getMinBwExpr(mult3x) == 48);
-
- NodeBuilder<> nbmult4p(kind::BITVECTOR_MULT);
- nbmult4p << zext48p << zext48p8 << zext48p;
- Node mult4p = nbmult4p;
- TS_ASSERT(BVGaussElim::getMinBwExpr(mult4p) == 11);
- NodeBuilder<> nbmult4x(kind::BITVECTOR_MULT);
- nbmult4x << zext48x << zext48x8 << zext48x;
- Node mult4x = nbmult4x;
- TS_ASSERT(BVGaussElim::getMinBwExpr(mult4x) == 40);
-
- Node concat1p = mkConcat(d_p, zext48p);
- TS_ASSERT(BVGaussElim::getMinBwExpr(concat1p) == 52);
- Node concat1x = mkConcat(d_x, zext48x);
- TS_ASSERT(BVGaussElim::getMinBwExpr(concat1x) == 64);
-
- Node concat2p = mkConcat(mkZero(16), zext48p);
- TS_ASSERT(BVGaussElim::getMinBwExpr(concat2p) == 4);
- Node concat2x = mkConcat(mkZero(16), zext48x);
- TS_ASSERT(BVGaussElim::getMinBwExpr(concat2x) == 16);
-
- Node udiv1p = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, zext48p, zext48p);
- TS_ASSERT(BVGaussElim::getMinBwExpr(udiv1p) == 1);
- Node udiv1x = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, zext48x, zext48x);
- TS_ASSERT(BVGaussElim::getMinBwExpr(udiv1x) == 48);
-
- Node udiv2p = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, zext48p, zext48p8);
- TS_ASSERT(BVGaussElim::getMinBwExpr(udiv2p) == 1);
- Node udiv2x = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, zext48x, zext48x8);
- TS_ASSERT(BVGaussElim::getMinBwExpr(udiv2x) == 48);
-
- Node urem1p = d_nm->mkNode(kind::BITVECTOR_UREM_TOTAL, zext48p, zext48p);
- TS_ASSERT(BVGaussElim::getMinBwExpr(urem1p) == 1);
- Node urem1x = d_nm->mkNode(kind::BITVECTOR_UREM_TOTAL, zext48x, zext48x);
- TS_ASSERT(BVGaussElim::getMinBwExpr(urem1x) == 1);
-
- Node urem2p = d_nm->mkNode(kind::BITVECTOR_UREM_TOTAL, zext48p, zext48p8);
- TS_ASSERT(BVGaussElim::getMinBwExpr(urem2p) == 1);
- Node urem2x = d_nm->mkNode(kind::BITVECTOR_UREM_TOTAL, zext48x, zext48x8);
- TS_ASSERT(BVGaussElim::getMinBwExpr(urem2x) == 16);
-
- Node urem3p = d_nm->mkNode(kind::BITVECTOR_UREM_TOTAL, zext48p8, zext48p);
- TS_ASSERT(BVGaussElim::getMinBwExpr(urem3p) == 1);
- Node urem3x = d_nm->mkNode(kind::BITVECTOR_UREM_TOTAL, zext48x8, zext48x);
- TS_ASSERT(BVGaussElim::getMinBwExpr(urem3x) == 8);
-
- Node add1p = d_nm->mkNode(kind::BITVECTOR_PLUS, extp, extp);
- TS_ASSERT(BVGaussElim::getMinBwExpr(add1p) == 5);
- Node add1x = d_nm->mkNode(kind::BITVECTOR_PLUS, extx, extx);
- TS_ASSERT(BVGaussElim::getMinBwExpr(add1x) == 0);
-
- Node add2p = d_nm->mkNode(kind::BITVECTOR_PLUS, zext40p, zext40p);
- TS_ASSERT(BVGaussElim::getMinBwExpr(add2p) == 5);
- Node add2x = d_nm->mkNode(kind::BITVECTOR_PLUS, zext40x, zext40x);
- TS_ASSERT(BVGaussElim::getMinBwExpr(add2x) == 17);
-
- Node add3p = d_nm->mkNode(kind::BITVECTOR_PLUS, zext48p8, zext48p);
- TS_ASSERT(BVGaussElim::getMinBwExpr(add3p) == 5);
- Node add3x = d_nm->mkNode(kind::BITVECTOR_PLUS, zext48x8, zext48x);
- TS_ASSERT(BVGaussElim::getMinBwExpr(add3x) == 17);
-
- NodeBuilder<> nbadd4p(kind::BITVECTOR_PLUS);
- nbadd4p << zext48p << zext48p << zext48p;
- Node add4p = nbadd4p;
- TS_ASSERT(BVGaussElim::getMinBwExpr(add4p) == 6);
- NodeBuilder<> nbadd4x(kind::BITVECTOR_PLUS);
- nbadd4x << zext48x << zext48x << zext48x;
- Node add4x = nbadd4x;
- TS_ASSERT(BVGaussElim::getMinBwExpr(add4x) == 18);
-
- NodeBuilder<> nbadd5p(kind::BITVECTOR_PLUS);
- nbadd5p << zext48p << zext48p8 << zext48p;
- Node add5p = nbadd5p;
- TS_ASSERT(BVGaussElim::getMinBwExpr(add5p) == 6);
- NodeBuilder<> nbadd5x(kind::BITVECTOR_PLUS);
- nbadd5x << zext48x << zext48x8 << zext48x;
- Node add5x = nbadd5x;
- TS_ASSERT(BVGaussElim::getMinBwExpr(add5x) == 18);
-
- NodeBuilder<> nbadd6p(kind::BITVECTOR_PLUS);
- nbadd6p << zext48p << zext48p << zext48p << zext48p;
- Node add6p = nbadd6p;
- TS_ASSERT(BVGaussElim::getMinBwExpr(add6p) == 6);
- NodeBuilder<> nbadd6x(kind::BITVECTOR_PLUS);
- nbadd6x << zext48x << zext48x << zext48x << zext48x;
- Node add6x = nbadd6x;
- TS_ASSERT(BVGaussElim::getMinBwExpr(add6x) == 18);
-
- Node not1p = d_nm->mkNode(kind::BITVECTOR_NOT, zext40p);
- TS_ASSERT(BVGaussElim::getMinBwExpr(not1p) == 40);
- Node not1x = d_nm->mkNode(kind::BITVECTOR_NOT, zext40x);
- TS_ASSERT(BVGaussElim::getMinBwExpr(not1x) == 40);
- }
-
- void testGetMinBw2()
- {
- /* ((_ zero_extend 5)
- * ((_ extract 7 0) ((_ zero_extend 15) d_p))) */
- Node zextop5 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(5));
- Node zextop15 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(15));
- Node zext1 = d_nm->mkNode(zextop15, d_p);
- Node ext = mkExtract(zext1, 7, 0);
- Node zext2 = d_nm->mkNode(zextop5, ext);
- TS_ASSERT(BVGaussElim::getMinBwExpr(zext2) == 4);
- }
-
- void testGetMinBw3a()
- {
- /* ((_ zero_extend 5)
- * (bvudiv ((_ extract 4 0) ((_ zero_extend 5) (bvudiv x z)))
- * ((_ extract 4 0) z))) */
- Node x = d_nm->mkVar("x", d_nm->mkBitVectorType(16));
- Node y = d_nm->mkVar("y", d_nm->mkBitVectorType(16));
- Node z = d_nm->mkVar("z", d_nm->mkBitVectorType(16));
- Node zextop5 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(5));
- Node udiv1 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, x, y);
- Node zext1 = d_nm->mkNode(zextop5, udiv1);
- Node ext1 = mkExtract(zext1, 4, 0);
- Node ext2 = mkExtract(z, 4, 0);
- Node udiv2 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, ext1, ext2);
- Node zext2 = mkConcat(mkZero(5), udiv2);
- TS_ASSERT(BVGaussElim::getMinBwExpr(zext2) == 5);
- }
-
- void testGetMinBw3b()
- {
- /* ((_ zero_extend 5)
- * (bvudiv ((_ extract 4 0) ((_ zero_extend 5) (bvudiv x z)))
- * ((_ extract 4 0) z))) */
- Node zextop5 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(5));
- Node udiv1 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, d_x, d_y);
- Node zext1 = d_nm->mkNode(zextop5, udiv1);
- Node ext1 = mkExtract(zext1, 4, 0);
- Node ext2 = mkExtract(d_z, 4, 0);
- Node udiv2 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, ext1, ext2);
- Node zext2 = mkConcat(mkZero(5), udiv2);
- TS_ASSERT(BVGaussElim::getMinBwExpr(zext2) == 5);
- }
-
- void testGetMinBw4a()
- {
- /* (bvadd
- * ((_ zero_extend 5)
- * (bvudiv ((_ extract 4 0) ((_ zero_extend 5) (bvudiv x y)))
- * ((_ extract 4 0) z)))
- * ((_ zero_extend 7)
- * (bvudiv ((_ extract 2 0) ((_ zero_extend 5) (bvudiv x y)))
- * ((_ extract 2 0) z))) */
- Node x = d_nm->mkVar("x", d_nm->mkBitVectorType(16));
- Node y = d_nm->mkVar("y", d_nm->mkBitVectorType(16));
- Node z = d_nm->mkVar("z", d_nm->mkBitVectorType(16));
- Node zextop5 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(5));
- Node zextop7 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(7));
-
- Node udiv1 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, x, y);
- Node zext1 = d_nm->mkNode(zextop5, udiv1);
-
- Node ext1_1 = mkExtract(zext1, 4, 0);
- Node ext2_1 = mkExtract(z, 4, 0);
- Node udiv2_1 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, ext1_1, ext2_1);
- Node zext2_1 = mkConcat(mkZero(5), udiv2_1);
-
- Node ext1_2 = mkExtract(zext1, 2, 0);
- Node ext2_2 = mkExtract(z, 2, 0);
- Node udiv2_2 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, ext1_2, ext2_2);
- Node zext2_2 = d_nm->mkNode(zextop7, udiv2_2);
-
- Node plus = d_nm->mkNode(kind::BITVECTOR_PLUS, zext2_1, zext2_2);
-
- TS_ASSERT(BVGaussElim::getMinBwExpr(plus) == 6);
- }
-
- void testGetMinBw4b()
- {
- /* (bvadd
- * ((_ zero_extend 5)
- * (bvudiv ((_ extract 4 0) ((_ zero_extend 5) (bvudiv x y)))
- * ((_ extract 4 0) z)))
- * ((_ zero_extend 7)
- * (bvudiv ((_ extract 2 0) ((_ zero_extend 5) (bvudiv x y)))
- * ((_ extract 2 0) z))) */
- Node zextop5 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(5));
- Node zextop7 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(7));
-
- Node udiv1 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, d_x, d_y);
- Node zext1 = d_nm->mkNode(zextop5, udiv1);
-
- Node ext1_1 = mkExtract(zext1, 4, 0);
- Node ext2_1 = mkExtract(d_z, 4, 0);
- Node udiv2_1 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, ext1_1, ext2_1);
- Node zext2_1 = mkConcat(mkZero(5), udiv2_1);
-
- Node ext1_2 = mkExtract(zext1, 2, 0);
- Node ext2_2 = mkExtract(d_z, 2, 0);
- Node udiv2_2 = d_nm->mkNode(kind::BITVECTOR_UDIV_TOTAL, ext1_2, ext2_2);
- Node zext2_2 = d_nm->mkNode(zextop7, udiv2_2);
-
- Node plus = d_nm->mkNode(kind::BITVECTOR_PLUS, zext2_1, zext2_2);
-
- TS_ASSERT(BVGaussElim::getMinBwExpr(plus) == 6);
- }
-
- void testGetMinBw5a()
- {
- /* (bvadd
- * (bvadd
- * (bvadd
- * (bvadd
- * (bvadd
- * (bvadd
- * (bvadd (bvmul (_ bv86 13)
- * ((_ zero_extend 5)
- * ((_ extract 7 0) ((_ zero_extend 15) x))))
- * (bvmul (_ bv41 13)
- * ((_ zero_extend 5)
- * ((_ extract 7 0) ((_ zero_extend 15) y)))))
- * (bvmul (_ bv37 13)
- * ((_ zero_extend 5)
- * ((_ extract 7 0) ((_ zero_extend 15) z)))))
- * (bvmul (_ bv170 13)
- * ((_ zero_extend 5)
- * ((_ extract 7 0) ((_ zero_extend 15) u)))))
- * (bvmul (_ bv112 13)
- * ((_ zero_extend 5)
- * ((_ extract 7 0) ((_ zero_extend 15) v)))))
- * (bvmul (_ bv195 13) ((_ zero_extend 5) ((_ extract 15 8) s))))
- * (bvmul (_ bv124 13) ((_ zero_extend 5) ((_ extract 7 0) s))))
- * (bvmul (_ bv83 13)
- * ((_ zero_extend 5) ((_ extract 7 0) ((_ zero_extend 15) w)))))
- */
- Node x = mkVar(1);
- Node y = mkVar(1);
- Node z = mkVar(1);
- Node u = mkVar(1);
- Node v = mkVar(1);
- Node w = mkVar(1);
- Node s = mkVar(16);
-
- Node zextop5 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(5));
- Node zextop15 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(15));
-
- Node zext15x = d_nm->mkNode(zextop15, x);
- Node zext15y = d_nm->mkNode(zextop15, y);
- Node zext15z = d_nm->mkNode(zextop15, z);
- Node zext15u = d_nm->mkNode(zextop15, u);
- Node zext15v = d_nm->mkNode(zextop15, v);
- Node zext15w = d_nm->mkNode(zextop15, w);
-
- Node ext7x = mkExtract(zext15x, 7, 0);
- Node ext7y = mkExtract(zext15y, 7, 0);
- Node ext7z = mkExtract(zext15z, 7, 0);
- Node ext7u = mkExtract(zext15u, 7, 0);
- Node ext7v = mkExtract(zext15v, 7, 0);
- Node ext7w = mkExtract(zext15w, 7, 0);
- Node ext7s = mkExtract(s, 7, 0);
- Node ext15s = mkExtract(s, 15, 8);
-
- Node xx = mkConcat(mkZero(5), ext7x);
- Node yy = mkConcat(mkZero(5), ext7y);
- Node zz = mkConcat(mkZero(5), ext7z);
- Node uu = mkConcat(mkZero(5), ext7u);
- Node vv = mkConcat(mkZero(5), ext7v);
- Node ww = mkConcat(mkZero(5), ext7w);
- Node s7 = mkConcat(mkZero(5), ext7s);
- Node s15 = mkConcat(mkZero(5), ext15s);
-
- Node plus1 =
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_MULT, mkConst(13, 86), xx),
- d_nm->mkNode(kind::BITVECTOR_MULT, mkConst(13, 41), yy));
- Node plus2 =
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- plus1,
- d_nm->mkNode(kind::BITVECTOR_MULT, mkConst(13, 37), zz));
- Node plus3 =
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- plus2,
- d_nm->mkNode(kind::BITVECTOR_MULT, mkConst(13, 170), uu));
- Node plus4 =
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- plus3,
- d_nm->mkNode(kind::BITVECTOR_MULT, mkConst(13, 112), uu));
- Node plus5 =
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- plus4,
- d_nm->mkNode(kind::BITVECTOR_MULT, mkConst(13, 195), s15));
- Node plus6 =
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- plus5,
- d_nm->mkNode(kind::BITVECTOR_MULT, mkConst(13, 124), s7));
- Node plus7 =
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- plus6,
- d_nm->mkNode(kind::BITVECTOR_MULT, mkConst(13, 83), ww));
-
- TS_ASSERT(BVGaussElim::getMinBwExpr(plus7) == 0);
- }
-
- void testGetMinBw5b()
- {
- /* (bvadd
- * (bvadd
- * (bvadd
- * (bvadd
- * (bvadd
- * (bvadd
- * (bvadd (bvmul (_ bv86 20)
- * ((_ zero_extend 12)
- * ((_ extract 7 0) ((_ zero_extend 15) x))))
- * (bvmul (_ bv41 20)
- * ((_ zero_extend 12)
- * ((_ extract 7 0) ((_ zero_extend 15) y)))))
- * (bvmul (_ bv37 20)
- * ((_ zero_extend 12)
- * ((_ extract 7 0) ((_ zero_extend 15) z)))))
- * (bvmul (_ bv170 20)
- * ((_ zero_extend 12)
- * ((_ extract 7 0) ((_ zero_extend 15) u)))))
- * (bvmul (_ bv112 20)
- * ((_ zero_extend 12)
- * ((_ extract 7 0) ((_ zero_extend 15) v)))))
- * (bvmul (_ bv195 20) ((_ zero_extend 12) ((_ extract 15 8) s))))
- * (bvmul (_ bv124 20) ((_ zero_extend 12) ((_ extract 7 0) s))))
- * (bvmul (_ bv83 20)
- * ((_ zero_extend 12) ((_ extract 7 0) ((_ zero_extend 15) w)))))
- */
- Node x = mkVar(1);
- Node y = mkVar(1);
- Node z = mkVar(1);
- Node u = mkVar(1);
- Node v = mkVar(1);
- Node w = mkVar(1);
- Node s = mkVar(16);
-
- Node zextop15 = d_nm->mkConst<BitVectorZeroExtend>(BitVectorZeroExtend(15));
-
- Node zext15x = d_nm->mkNode(zextop15, x);
- Node zext15y = d_nm->mkNode(zextop15, y);
- Node zext15z = d_nm->mkNode(zextop15, z);
- Node zext15u = d_nm->mkNode(zextop15, u);
- Node zext15v = d_nm->mkNode(zextop15, v);
- Node zext15w = d_nm->mkNode(zextop15, w);
-
- Node ext7x = mkExtract(zext15x, 7, 0);
- Node ext7y = mkExtract(zext15y, 7, 0);
- Node ext7z = mkExtract(zext15z, 7, 0);
- Node ext7u = mkExtract(zext15u, 7, 0);
- Node ext7v = mkExtract(zext15v, 7, 0);
- Node ext7w = mkExtract(zext15w, 7, 0);
- Node ext7s = mkExtract(s, 7, 0);
- Node ext15s = mkExtract(s, 15, 8);
-
- Node xx = mkConcat(mkZero(12), ext7x);
- Node yy = mkConcat(mkZero(12), ext7y);
- Node zz = mkConcat(mkZero(12), ext7z);
- Node uu = mkConcat(mkZero(12), ext7u);
- Node vv = mkConcat(mkZero(12), ext7v);
- Node ww = mkConcat(mkZero(12), ext7w);
- Node s7 = mkConcat(mkZero(12), ext7s);
- Node s15 = mkConcat(mkZero(12), ext15s);
-
- Node plus1 =
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- d_nm->mkNode(kind::BITVECTOR_MULT, mkConst(20, 86), xx),
- d_nm->mkNode(kind::BITVECTOR_MULT, mkConst(20, 41), yy));
- Node plus2 =
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- plus1,
- d_nm->mkNode(kind::BITVECTOR_MULT, mkConst(20, 37), zz));
- Node plus3 =
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- plus2,
- d_nm->mkNode(kind::BITVECTOR_MULT, mkConst(20, 170), uu));
- Node plus4 =
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- plus3,
- d_nm->mkNode(kind::BITVECTOR_MULT, mkConst(20, 112), uu));
- Node plus5 =
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- plus4,
- d_nm->mkNode(kind::BITVECTOR_MULT, mkConst(20, 195), s15));
- Node plus6 =
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- plus5,
- d_nm->mkNode(kind::BITVECTOR_MULT, mkConst(20, 124), s7));
- Node plus7 =
- d_nm->mkNode(kind::BITVECTOR_PLUS,
- plus6,
- d_nm->mkNode(kind::BITVECTOR_MULT, mkConst(20, 83), ww));
-
- TS_ASSERT(BVGaussElim::getMinBwExpr(plus7) == 19);
- TS_ASSERT(BVGaussElim::getMinBwExpr(Rewriter::rewrite(plus7)) == 17);
- }
-
-};