#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
-#include "trad-frame.h"
#include "symtab.h"
#include "dwarf2-frame.h"
#include "osabi.h"
#include "infcall.h"
+#include "prologue-value.h"
#include "target.h"
#include "mn10300-tdep.h"
-/* Forward decl. */
-extern struct trad_frame_cache *mn10300_frame_unwind_cache (struct frame_info*,
- void **);
+
+/* The am33-2 has 64 registers. */
+#define MN10300_MAX_NUM_REGS 64
+
+/* This structure holds the results of a prologue analysis. */
+struct mn10300_prologue
+{
+ /* The offset from the frame base to the stack pointer --- always
+ zero or negative.
+
+ Calling this a "size" is a bit misleading, but given that the
+ stack grows downwards, using offsets for everything keeps one
+ from going completely sign-crazy: you never change anything's
+ sign for an ADD instruction; always change the second operand's
+ sign for a SUB instruction; and everything takes care of
+ itself. */
+ int frame_size;
+
+ /* Non-zero if this function has initialized the frame pointer from
+ the stack pointer, zero otherwise. */
+ int has_frame_ptr;
+
+ /* If has_frame_ptr is non-zero, this is the offset from the frame
+ base to where the frame pointer points. This is always zero or
+ negative. */
+ int frame_ptr_offset;
+
+ /* The address of the first instruction at which the frame has been
+ set up and the arguments are where the debug info says they are
+ --- as best as we can tell. */
+ CORE_ADDR prologue_end;
+
+ /* reg_offset[R] is the offset from the CFA at which register R is
+ saved, or 1 if register R has not been saved. (Real values are
+ always zero or negative.) */
+ int reg_offset[MN10300_MAX_NUM_REGS];
+};
+
/* Compute the alignment required by a type. */
return breakpoint;
}
-/* Set offsets of saved registers.
- This is a helper function for mn10300_analyze_prologue. */
+/* Model the semantics of pushing a register onto the stack. This
+ is a helper function for mn10300_analyze_prologue, below. */
+static void
+push_reg (pv_t *regs, struct pv_area *stack, int regnum)
+{
+ regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4);
+ pv_area_store (stack, regs[E_SP_REGNUM], 4, regs[regnum]);
+}
+
+/* Translate an "r" register number extracted from an instruction encoding
+ into a GDB register number. Adapted from a simulator function
+ of the same name; see am33.igen. */
+static int
+translate_rreg (int rreg)
+{
+ /* The higher register numbers actually correspond to the
+ basic machine's address and data registers. */
+ if (rreg > 7 && rreg < 12)
+ return E_A0_REGNUM + rreg - 8;
+ else if (rreg > 11 && rreg < 16)
+ return E_D0_REGNUM + rreg - 12;
+ else
+ return E_E0_REGNUM + rreg;
+}
+
+/* Find saved registers in a 'struct pv_area'; we pass this to pv_area_scan.
+ If VALUE is a saved register, ADDR says it was saved at a constant
+ offset from the frame base, and SIZE indicates that the whole
+ register was saved, record its offset in RESULT_UNTYPED. */
static void
-set_reg_offsets (struct frame_info *fi,
- void **this_cache,
- int movm_args,
- int fpregmask,
- int stack_extra_size,
- int frame_in_fp)
+check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
{
- struct gdbarch *gdbarch;
- struct trad_frame_cache *cache;
- int offset = 0;
- CORE_ADDR base;
+ struct mn10300_prologue *result = (struct mn10300_prologue *) result_untyped;
- if (fi == NULL || this_cache == NULL)
- return;
+ if (value.kind == pvk_register
+ && value.k == 0
+ && pv_is_register (addr, E_SP_REGNUM)
+ && size == register_size (current_gdbarch, value.reg))
+ result->reg_offset[value.reg] = addr.k;
+}
- cache = mn10300_frame_unwind_cache (fi, this_cache);
- if (cache == NULL)
- return;
- gdbarch = get_frame_arch (fi);
+/* Analyze the prologue to determine where registers are saved,
+ the end of the prologue, etc. The result of this analysis is
+ returned in RESULT. See struct mn10300_prologue above for more
+ information. */
+static void
+mn10300_analyze_prologue (struct gdbarch *gdbarch,
+ CORE_ADDR start_pc, CORE_ADDR limit_pc,
+ struct mn10300_prologue *result)
+{
+ CORE_ADDR pc, next_pc;
+ int rn;
+ pv_t regs[MN10300_MAX_NUM_REGS];
+ struct pv_area *stack;
+ struct cleanup *back_to;
+ CORE_ADDR after_last_frame_setup_insn = start_pc;
+ int am33_mode = AM33_MODE (gdbarch);
+
+ memset (result, 0, sizeof (*result));
- if (frame_in_fp)
+ for (rn = 0; rn < MN10300_MAX_NUM_REGS; rn++)
{
- base = get_frame_register_unsigned (fi, E_A3_REGNUM);
+ regs[rn] = pv_register (rn, 0);
+ result->reg_offset[rn] = 1;
}
- else
+ stack = make_pv_area (E_SP_REGNUM);
+ back_to = make_cleanup_free_pv_area (stack);
+
+ /* The typical call instruction will have saved the return address on the
+ stack. Space for the return address has already been preallocated in
+ the caller's frame. It's possible, such as when using -mrelax with gcc
+ that other registers were saved as well. If this happens, we really
+ have no chance of deciphering the frame. DWARF info can save the day
+ when this happens. */
+ pv_area_store (stack, regs[E_SP_REGNUM], 4, regs[E_PC_REGNUM]);
+
+ pc = start_pc;
+ while (pc < limit_pc)
{
- base = get_frame_register_unsigned (fi, E_SP_REGNUM)
- + stack_extra_size;
- }
+ int status;
+ gdb_byte instr[2];
- trad_frame_set_this_base (cache, base);
+ /* Instructions can be as small as one byte; however, we usually
+ need at least two bytes to do the decoding, so fetch that many
+ to begin with. */
+ status = target_read_memory (pc, instr, 2);
+ if (status != 0)
+ break;
- if (AM33_MODE (gdbarch) == 2)
- {
- /* If bit N is set in fpregmask, fsN is saved on the stack.
- The floating point registers are saved in ascending order.
- For example: fs16 <- Frame Pointer
- fs17 Frame Pointer + 4 */
- if (fpregmask != 0)
+ /* movm [regs], sp */
+ if (instr[0] == 0xcf)
{
- int i;
- for (i = 0; i < 32; i++)
+ gdb_byte save_mask;
+
+ save_mask = instr[1];
+
+ if ((save_mask & movm_exreg0_bit) && am33_mode)
+ {
+ push_reg (regs, stack, E_E2_REGNUM);
+ push_reg (regs, stack, E_E3_REGNUM);
+ }
+ if ((save_mask & movm_exreg1_bit) && am33_mode)
{
- if (fpregmask & (1 << i))
- {
- trad_frame_set_reg_addr (cache, E_FS0_REGNUM + i,
- base + offset);
- offset += 4;
- }
+ push_reg (regs, stack, E_E4_REGNUM);
+ push_reg (regs, stack, E_E5_REGNUM);
+ push_reg (regs, stack, E_E6_REGNUM);
+ push_reg (regs, stack, E_E7_REGNUM);
}
+ if ((save_mask & movm_exother_bit) && am33_mode)
+ {
+ push_reg (regs, stack, E_E0_REGNUM);
+ push_reg (regs, stack, E_E1_REGNUM);
+ push_reg (regs, stack, E_MDRQ_REGNUM);
+ push_reg (regs, stack, E_MCRH_REGNUM);
+ push_reg (regs, stack, E_MCRL_REGNUM);
+ push_reg (regs, stack, E_MCVF_REGNUM);
+ }
+ if (save_mask & movm_d2_bit)
+ push_reg (regs, stack, E_D2_REGNUM);
+ if (save_mask & movm_d3_bit)
+ push_reg (regs, stack, E_D3_REGNUM);
+ if (save_mask & movm_a2_bit)
+ push_reg (regs, stack, E_A2_REGNUM);
+ if (save_mask & movm_a3_bit)
+ push_reg (regs, stack, E_A3_REGNUM);
+ if (save_mask & movm_other_bit)
+ {
+ push_reg (regs, stack, E_D0_REGNUM);
+ push_reg (regs, stack, E_D1_REGNUM);
+ push_reg (regs, stack, E_A0_REGNUM);
+ push_reg (regs, stack, E_A1_REGNUM);
+ push_reg (regs, stack, E_MDR_REGNUM);
+ push_reg (regs, stack, E_LIR_REGNUM);
+ push_reg (regs, stack, E_LAR_REGNUM);
+ /* The `other' bit leaves a blank area of four bytes at
+ the beginning of its block of saved registers, making
+ it 32 bytes long in total. */
+ regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4);
+ }
+
+ pc += 2;
+ after_last_frame_setup_insn = pc;
}
- }
+ /* mov sp, aN */
+ else if ((instr[0] & 0xfc) == 0x3c)
+ {
+ int aN = instr[0] & 0x03;
+ regs[E_A0_REGNUM + aN] = regs[E_SP_REGNUM];
- if (movm_args & movm_other_bit)
- {
- /* The `other' bit leaves a blank area of four bytes at the
- beginning of its block of saved registers, making it 32 bytes
- long in total. */
- trad_frame_set_reg_addr (cache, E_LAR_REGNUM, base + offset + 4);
- trad_frame_set_reg_addr (cache, E_LIR_REGNUM, base + offset + 8);
- trad_frame_set_reg_addr (cache, E_MDR_REGNUM, base + offset + 12);
- trad_frame_set_reg_addr (cache, E_A0_REGNUM + 1, base + offset + 16);
- trad_frame_set_reg_addr (cache, E_A0_REGNUM, base + offset + 20);
- trad_frame_set_reg_addr (cache, E_D0_REGNUM + 1, base + offset + 24);
- trad_frame_set_reg_addr (cache, E_D0_REGNUM, base + offset + 28);
- offset += 32;
- }
+ pc += 1;
+ if (aN == 3)
+ after_last_frame_setup_insn = pc;
+ }
+ /* mov aM, aN */
+ else if ((instr[0] & 0xf0) == 0x90
+ && (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2))
+ {
+ int aN = instr[0] & 0x03;
+ int aM = (instr[0] & 0x0c) >> 2;
- if (movm_args & movm_a3_bit)
- {
- trad_frame_set_reg_addr (cache, E_A3_REGNUM, base + offset);
- offset += 4;
- }
- if (movm_args & movm_a2_bit)
- {
- trad_frame_set_reg_addr (cache, E_A2_REGNUM, base + offset);
- offset += 4;
- }
- if (movm_args & movm_d3_bit)
- {
- trad_frame_set_reg_addr (cache, E_D3_REGNUM, base + offset);
- offset += 4;
- }
- if (movm_args & movm_d2_bit)
- {
- trad_frame_set_reg_addr (cache, E_D2_REGNUM, base + offset);
- offset += 4;
- }
- if (AM33_MODE (gdbarch))
- {
- if (movm_args & movm_exother_bit)
- {
- trad_frame_set_reg_addr (cache, E_MCVF_REGNUM, base + offset);
- trad_frame_set_reg_addr (cache, E_MCRL_REGNUM, base + offset + 4);
- trad_frame_set_reg_addr (cache, E_MCRH_REGNUM, base + offset + 8);
- trad_frame_set_reg_addr (cache, E_MDRQ_REGNUM, base + offset + 12);
- trad_frame_set_reg_addr (cache, E_E1_REGNUM, base + offset + 16);
- trad_frame_set_reg_addr (cache, E_E0_REGNUM, base + offset + 20);
- offset += 24;
- }
- if (movm_args & movm_exreg1_bit)
- {
- trad_frame_set_reg_addr (cache, E_E7_REGNUM, base + offset);
- trad_frame_set_reg_addr (cache, E_E6_REGNUM, base + offset + 4);
- trad_frame_set_reg_addr (cache, E_E5_REGNUM, base + offset + 8);
- trad_frame_set_reg_addr (cache, E_E4_REGNUM, base + offset + 12);
- offset += 16;
- }
- if (movm_args & movm_exreg0_bit)
- {
- trad_frame_set_reg_addr (cache, E_E3_REGNUM, base + offset);
- trad_frame_set_reg_addr (cache, E_E2_REGNUM, base + offset + 4);
- offset += 8;
- }
- }
- /* The last (or first) thing on the stack will be the PC. */
- trad_frame_set_reg_addr (cache, E_PC_REGNUM, base + offset);
- /* Save the SP in the 'traditional' way.
- This will be the same location where the PC is saved. */
- trad_frame_set_reg_value (cache, E_SP_REGNUM, base + offset);
-}
+ regs[E_A0_REGNUM + aN] = regs[E_A0_REGNUM + aM];
-/* The main purpose of this file is dealing with prologues to extract
- information about stack frames and saved registers.
+ pc += 1;
+ }
+ /* mov dM, dN */
+ else if ((instr[0] & 0xf0) == 0x80
+ && (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2))
+ {
+ int dN = instr[0] & 0x03;
+ int dM = (instr[0] & 0x0c) >> 2;
- In gcc/config/mn13000/mn10300.c, the expand_prologue prologue
- function is pretty readable, and has a nice explanation of how the
- prologue is generated. The prologues generated by that code will
- have the following form (NOTE: the current code doesn't handle all
- this!):
+ regs[E_D0_REGNUM + dN] = regs[E_D0_REGNUM + dM];
- + If this is an old-style varargs function, then its arguments
- need to be flushed back to the stack:
-
- mov d0,(4,sp)
- mov d1,(4,sp)
+ pc += 1;
+ }
+ /* mov aM, dN */
+ else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xd0)
+ {
+ int dN = instr[1] & 0x03;
+ int aM = (instr[1] & 0x0c) >> 2;
- + If we use any of the callee-saved registers, save them now.
-
- movm [some callee-saved registers],(sp)
+ regs[E_D0_REGNUM + dN] = regs[E_A0_REGNUM + aM];
- + If we have any floating-point registers to save:
+ pc += 2;
+ }
+ /* mov dM, aN */
+ else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xe0)
+ {
+ int aN = instr[1] & 0x03;
+ int dM = (instr[1] & 0x0c) >> 2;
- - Decrement the stack pointer to reserve space for the registers.
- If the function doesn't need a frame pointer, we may combine
- this with the adjustment that reserves space for the frame.
+ regs[E_A0_REGNUM + aN] = regs[E_D0_REGNUM + dM];
- add -SIZE, sp
+ pc += 2;
+ }
+ /* add imm8, SP */
+ else if (instr[0] == 0xf8 && instr[1] == 0xfe)
+ {
+ gdb_byte buf[1];
+ LONGEST imm8;
- - Save the floating-point registers. We have two possible
- strategies:
- . Save them at fixed offset from the SP:
+ status = target_read_memory (pc + 2, buf, 1);
+ if (status != 0)
+ break;
- fmov fsN,(OFFSETN,sp)
- fmov fsM,(OFFSETM,sp)
- ...
+ imm8 = extract_signed_integer (buf, 1);
+ regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm8);
- Note that, if OFFSETN happens to be zero, you'll get the
- different opcode: fmov fsN,(sp)
+ pc += 3;
+ /* Stack pointer adjustments are frame related. */
+ after_last_frame_setup_insn = pc;
+ }
+ /* add imm16, SP */
+ else if (instr[0] == 0xfa && instr[1] == 0xfe)
+ {
+ gdb_byte buf[2];
+ LONGEST imm16;
- . Or, set a0 to the start of the save area, and then use
- post-increment addressing to save the FP registers.
+ status = target_read_memory (pc + 2, buf, 2);
+ if (status != 0)
+ break;
- mov sp, a0
- add SIZE, a0
- fmov fsN,(a0+)
- fmov fsM,(a0+)
- ...
+ imm16 = extract_signed_integer (buf, 2);
+ regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm16);
- + If the function needs a frame pointer, we set it here.
+ pc += 4;
+ /* Stack pointer adjustments are frame related. */
+ after_last_frame_setup_insn = pc;
+ }
+ /* add imm32, SP */
+ else if (instr[0] == 0xfc && instr[1] == 0xfe)
+ {
+ gdb_byte buf[4];
+ LONGEST imm32;
- mov sp, a3
+ status = target_read_memory (pc + 2, buf, 4);
+ if (status != 0)
+ break;
- + Now we reserve space for the stack frame proper. This could be
- merged into the `add -SIZE, sp' instruction for FP saves up
- above, unless we needed to set the frame pointer in the previous
- step, or the frame is so large that allocating the whole thing at
- once would put the FP register save slots out of reach of the
- addressing mode (128 bytes).
-
- add -SIZE, sp
- One day we might keep the stack pointer constant, that won't
- change the code for prologues, but it will make the frame
- pointerless case much more common. */
+ imm32 = extract_signed_integer (buf, 4);
+ regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm32);
-/* Analyze the prologue to determine where registers are saved,
- the end of the prologue, etc etc. Return the end of the prologue
- scanned.
+ pc += 6;
+ /* Stack pointer adjustments are frame related. */
+ after_last_frame_setup_insn = pc;
+ }
+ /* add imm8, aN */
+ else if ((instr[0] & 0xfc) == 0x20)
+ {
+ int aN;
+ LONGEST imm8;
- We store into FI (if non-null) several tidbits of information:
+ aN = instr[0] & 0x03;
+ imm8 = extract_signed_integer (&instr[1], 1);
- * stack_size -- size of this stack frame. Note that if we stop in
- certain parts of the prologue/epilogue we may claim the size of the
- current frame is zero. This happens when the current frame has
- not been allocated yet or has already been deallocated.
+ regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
+ imm8);
- * fsr -- Addresses of registers saved in the stack by this frame.
+ pc += 2;
+ }
+ /* add imm16, aN */
+ else if (instr[0] == 0xfa && (instr[1] & 0xfc) == 0xd0)
+ {
+ int aN;
+ LONGEST imm16;
+ gdb_byte buf[2];
- * status -- A (relatively) generic status indicator. It's a bitmask
- with the following bits:
+ aN = instr[1] & 0x03;
- MY_FRAME_IN_SP: The base of the current frame is actually in
- the stack pointer. This can happen for frame pointerless
- functions, or cases where we're stopped in the prologue/epilogue
- itself. For these cases mn10300_analyze_prologue will need up
- update fi->frame before returning or analyzing the register
- save instructions.
+ status = target_read_memory (pc + 2, buf, 2);
+ if (status != 0)
+ break;
- MY_FRAME_IN_FP: The base of the current frame is in the
- frame pointer register ($a3).
- NO_MORE_FRAMES: Set this if the current frame is "start" or
- if the first instruction looks like mov <imm>,sp. This tells
- frame chain to not bother trying to unwind past this frame. */
+ imm16 = extract_signed_integer (buf, 2);
-static CORE_ADDR
-mn10300_analyze_prologue (struct gdbarch *gdbarch, struct frame_info *fi,
- void **this_cache,
- CORE_ADDR pc)
-{
- CORE_ADDR func_addr, func_end, addr, stop;
- long stack_extra_size = 0;
- int imm_size;
- unsigned char buf[4];
- int status;
- int movm_args = 0;
- int fpregmask = 0;
- char *name;
- int frame_in_fp = 0;
+ regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
+ imm16);
- /* Use the PC in the frame if it's provided to look up the
- start of this function.
+ pc += 4;
+ }
+ /* add imm32, aN */
+ else if (instr[0] == 0xfc && (instr[1] & 0xfc) == 0xd0)
+ {
+ int aN;
+ LONGEST imm32;
+ gdb_byte buf[4];
- Note: kevinb/2003-07-16: We used to do the following here:
- pc = (fi ? get_frame_pc (fi) : pc);
- But this is (now) badly broken when called from analyze_dummy_frame().
- */
- if (fi)
- {
- pc = (pc ? pc : get_frame_pc (fi));
- }
+ aN = instr[1] & 0x03;
- /* Find the start of this function. */
- status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
+ status = target_read_memory (pc + 2, buf, 4);
+ if (status != 0)
+ break;
- /* Do nothing if we couldn't find the start of this function
+ imm32 = extract_signed_integer (buf, 2);
- MVS: comment went on to say "or if we're stopped at the first
- instruction in the prologue" -- but code doesn't reflect that,
- and I don't want to do that anyway. */
- if (status == 0)
- {
- addr = pc;
- goto finish_prologue;
- }
+ regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
+ imm32);
+ pc += 6;
+ }
+ /* fmov fsM, (rN) */
+ else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x30)
+ {
+ int fsM, sM, Y, rN;
+ gdb_byte buf[1];
- /* If we're in start, then give up. */
- if (strcmp (name, "start") == 0)
- {
- addr = pc;
- goto finish_prologue;
- }
+ Y = (instr[1] & 0x02) >> 1;
- /* Figure out where to stop scanning. */
- stop = fi ? pc : func_end;
+ status = target_read_memory (pc + 2, buf, 1);
+ if (status != 0)
+ break;
- /* Don't walk off the end of the function. */
- stop = stop > func_end ? func_end : stop;
+ sM = (buf[0] & 0xf0) >> 4;
+ rN = buf[0] & 0x0f;
+ fsM = (Y << 4) | sM;
- /* Start scanning on the first instruction of this function. */
- addr = func_addr;
+ pv_area_store (stack, regs[translate_rreg (rN)], 4,
+ regs[E_FS0_REGNUM + fsM]);
- /* Suck in two bytes. */
- if (addr + 2 > stop || !safe_frame_unwind_memory (fi, addr, buf, 2))
- goto finish_prologue;
+ pc += 3;
+ }
+ /* fmov fsM, (sp) */
+ else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x34)
+ {
+ int fsM, sM, Y;
+ gdb_byte buf[1];
- /* First see if this insn sets the stack pointer from a register; if
- so, it's probably the initialization of the stack pointer in _start,
- so mark this as the bottom-most frame. */
- if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
- {
- goto finish_prologue;
- }
+ Y = (instr[1] & 0x02) >> 1;
- /* Now look for movm [regs],sp, which saves the callee saved registers.
+ status = target_read_memory (pc + 2, buf, 1);
+ if (status != 0)
+ break;
- At this time we don't know if fi->frame is valid, so we only note
- that we encountered a movm instruction. Later, we'll set the entries
- in fsr.regs as needed. */
- if (buf[0] == 0xcf)
- {
- /* Extract the register list for the movm instruction. */
- movm_args = buf[1];
+ sM = (buf[0] & 0xf0) >> 4;
+ fsM = (Y << 4) | sM;
- addr += 2;
+ pv_area_store (stack, regs[E_SP_REGNUM], 4,
+ regs[E_FS0_REGNUM + fsM]);
- /* Quit now if we're beyond the stop point. */
- if (addr >= stop)
- goto finish_prologue;
+ pc += 3;
+ }
+ /* fmov fsM, (rN, rI) */
+ else if (instr[0] == 0xfb && instr[1] == 0x37)
+ {
+ int fsM, sM, Z, rN, rI;
+ gdb_byte buf[2];
- /* Get the next two bytes so the prologue scan can continue. */
- if (!safe_frame_unwind_memory (fi, addr, buf, 2))
- goto finish_prologue;
- }
- /* Check for "mov pc, a2", an instruction found in optimized, position
- independent code. Skip it if found. */
- if (buf[0] == 0xf0 && buf[1] == 0x2e)
- {
- addr += 2;
+ status = target_read_memory (pc + 2, buf, 2);
+ if (status != 0)
+ break;
- /* Quit now if we're beyond the stop point. */
- if (addr >= stop)
- goto finish_prologue;
+ rI = (buf[0] & 0xf0) >> 4;
+ rN = buf[0] & 0x0f;
+ sM = (buf[1] & 0xf0) >> 4;
+ Z = (buf[1] & 0x02) >> 1;
+ fsM = (Z << 4) | sM;
- /* Get the next two bytes so the prologue scan can continue. */
- status = target_read_memory (addr, buf, 2);
- if (status != 0)
- goto finish_prologue;
- }
+ pv_area_store (stack,
+ pv_add (regs[translate_rreg (rN)],
+ regs[translate_rreg (rI)]),
+ 4, regs[E_FS0_REGNUM + fsM]);
- if (AM33_MODE (gdbarch) == 2)
- {
- /* Determine if any floating point registers are to be saved.
- Look for one of the following three prologue formats:
-
- [movm [regs],(sp)] [movm [regs],(sp)] [movm [regs],(sp)]
-
- add -SIZE,sp add -SIZE,sp add -SIZE,sp
- fmov fs#,(sp) mov sp,a0/a1 mov sp,a0/a1
- fmov fs#,(#,sp) fmov fs#,(a0/a1+) add SIZE2,a0/a1
- ... ... fmov fs#,(a0/a1+)
- ... ... ...
- fmov fs#,(#,sp) fmov fs#,(a0/a1+) fmov fs#,(a0/a1+)
-
- [mov sp,a3] [mov sp,a3]
- [add -SIZE2,sp] [add -SIZE2,sp] */
-
- /* Remember the address at which we started in the event that we
- don't ultimately find an fmov instruction. Once we're certain
- that we matched one of the above patterns, we'll set
- ``restore_addr'' to the appropriate value. Note: At one time
- in the past, this code attempted to not adjust ``addr'' until
- there was a fair degree of certainty that the pattern would be
- matched. However, that code did not wait until an fmov instruction
- was actually encountered. As a consequence, ``addr'' would
- sometimes be advanced even when no fmov instructions were found. */
- CORE_ADDR restore_addr = addr;
- int fmov_found = 0;
-
- /* First, look for add -SIZE,sp (i.e. add imm8,sp (0xf8feXX)
- or add imm16,sp (0xfafeXXXX)
- or add imm32,sp (0xfcfeXXXXXXXX)) */
- imm_size = 0;
- if (buf[0] == 0xf8 && buf[1] == 0xfe)
- imm_size = 1;
- else if (buf[0] == 0xfa && buf[1] == 0xfe)
- imm_size = 2;
- else if (buf[0] == 0xfc && buf[1] == 0xfe)
- imm_size = 4;
- if (imm_size != 0)
+ pc += 4;
+ }
+ /* fmov fsM, (d8, rN) */
+ else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x30)
{
- /* An "add -#,sp" instruction has been found. "addr + 2 + imm_size"
- is the address of the next instruction. Don't modify "addr" until
- the next "floating point prologue" instruction is found. If this
- is not a prologue that saves floating point registers we need to
- be able to back out of this bit of code and continue with the
- prologue analysis. */
- if (addr + 2 + imm_size < stop)
- {
- if (!safe_frame_unwind_memory (fi, addr + 2 + imm_size, buf, 3))
- goto finish_prologue;
- if ((buf[0] & 0xfc) == 0x3c)
- {
- /* Occasionally, especially with C++ code, the "fmov"
- instructions will be preceded by "mov sp,aN"
- (aN => a0, a1, a2, or a3).
-
- This is a one byte instruction: mov sp,aN = 0011 11XX
- where XX is the register number.
-
- Skip this instruction by incrementing addr. The "fmov"
- instructions will have the form "fmov fs#,(aN+)" in this
- case, but that will not necessitate a change in the
- "fmov" parsing logic below. */
-
- addr++;
-
- if ((buf[1] & 0xfc) == 0x20)
- {
- /* Occasionally, especially with C++ code compiled with
- the -fomit-frame-pointer or -O3 options, the
- "mov sp,aN" instruction will be followed by an
- "add #,aN" instruction. This indicates the
- "stack_size", the size of the portion of the stack
- containing the arguments. This instruction format is:
- add #,aN = 0010 00XX YYYY YYYY
- where XX is the register number
- YYYY YYYY is the constant.
- Note the size of the stack (as a negative number) in
- the frame info structure. */
- if (fi)
- stack_extra_size += -buf[2];
-
- addr += 2;
- }
- }
-
- if ((buf[0] & 0xfc) == 0x3c ||
- buf[0] == 0xf9 || buf[0] == 0xfb)
- {
- /* An "fmov" instruction has been found indicating that this
- prologue saves floating point registers (or, as described
- above, a "mov sp,aN" and possible "add #,aN" have been
- found and we will assume an "fmov" follows). Process the
- consecutive "fmov" instructions. */
- for (addr += 2 + imm_size;;addr += imm_size)
- {
- int regnum;
-
- /* Read the "fmov" instruction. */
- if (addr >= stop ||
- !safe_frame_unwind_memory (fi, addr, buf, 4))
- goto finish_prologue;
-
- if (buf[0] != 0xf9 && buf[0] != 0xfb)
- break;
-
- /* An fmov instruction has just been seen. We can
- now really commit to the pattern match. */
-
- fmov_found = 1;
-
- /* Get the floating point register number from the
- 2nd and 3rd bytes of the "fmov" instruction:
- Machine Code: 0000 00X0 YYYY 0000 =>
- Regnum: 000X YYYY */
- regnum = (buf[1] & 0x02) << 3;
- regnum |= ((buf[2] & 0xf0) >> 4) & 0x0f;
-
- /* Add this register number to the bit mask of floating
- point registers that have been saved. */
- fpregmask |= 1 << regnum;
-
- /* Determine the length of this "fmov" instruction.
- fmov fs#,(sp) => 3 byte instruction
- fmov fs#,(#,sp) => 4 byte instruction */
- imm_size = (buf[0] == 0xf9) ? 3 : 4;
- }
- }
- }
+ int fsM, sM, Y, rN;
+ LONGEST d8;
+ gdb_byte buf[2];
+
+ Y = (instr[1] & 0x02) >> 1;
+
+ status = target_read_memory (pc + 2, buf, 2);
+ if (status != 0)
+ break;
+
+ sM = (buf[0] & 0xf0) >> 4;
+ rN = buf[0] & 0x0f;
+ fsM = (Y << 4) | sM;
+ d8 = extract_signed_integer (&buf[1], 1);
+
+ pv_area_store (stack,
+ pv_add_constant (regs[translate_rreg (rN)], d8),
+ 4, regs[E_FS0_REGNUM + fsM]);
+
+ pc += 4;
}
- /* If no fmov instructions were found by the above sequence, reset
- the state and pretend that the above bit of code never happened. */
- if (!fmov_found)
+ /* fmov fsM, (d24, rN) */
+ else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x30)
{
- addr = restore_addr;
- status = target_read_memory (addr, buf, 2);
+ int fsM, sM, Y, rN;
+ LONGEST d24;
+ gdb_byte buf[4];
+
+ Y = (instr[1] & 0x02) >> 1;
+
+ status = target_read_memory (pc + 2, buf, 4);
if (status != 0)
- goto finish_prologue;
- stack_extra_size = 0;
+ break;
+
+ sM = (buf[0] & 0xf0) >> 4;
+ rN = buf[0] & 0x0f;
+ fsM = (Y << 4) | sM;
+ d24 = extract_signed_integer (&buf[1], 3);
+
+ pv_area_store (stack,
+ pv_add_constant (regs[translate_rreg (rN)], d24),
+ 4, regs[E_FS0_REGNUM + fsM]);
+
+ pc += 6;
}
- }
+ /* fmov fsM, (d32, rN) */
+ else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x30)
+ {
+ int fsM, sM, Y, rN;
+ LONGEST d32;
+ gdb_byte buf[5];
- /* Now see if we set up a frame pointer via "mov sp,a3" */
- if (buf[0] == 0x3f)
- {
- addr += 1;
+ Y = (instr[1] & 0x02) >> 1;
+
+ status = target_read_memory (pc + 2, buf, 5);
+ if (status != 0)
+ break;
+
+ sM = (buf[0] & 0xf0) >> 4;
+ rN = buf[0] & 0x0f;
+ fsM = (Y << 4) | sM;
+ d32 = extract_signed_integer (&buf[1], 4);
- /* The frame pointer is now valid. */
- if (fi)
+ pv_area_store (stack,
+ pv_add_constant (regs[translate_rreg (rN)], d32),
+ 4, regs[E_FS0_REGNUM + fsM]);
+
+ pc += 7;
+ }
+ /* fmov fsM, (d8, SP) */
+ else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x34)
{
- frame_in_fp = 1;
+ int fsM, sM, Y;
+ LONGEST d8;
+ gdb_byte buf[2];
+
+ Y = (instr[1] & 0x02) >> 1;
+
+ status = target_read_memory (pc + 2, buf, 2);
+ if (status != 0)
+ break;
+
+ sM = (buf[0] & 0xf0) >> 4;
+ fsM = (Y << 4) | sM;
+ d8 = extract_signed_integer (&buf[1], 1);
+
+ pv_area_store (stack,
+ pv_add_constant (regs[E_SP_REGNUM], d8),
+ 4, regs[E_FS0_REGNUM + fsM]);
+
+ pc += 4;
}
+ /* fmov fsM, (d24, SP) */
+ else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x34)
+ {
+ int fsM, sM, Y;
+ LONGEST d24;
+ gdb_byte buf[4];
- /* Quit now if we're beyond the stop point. */
- if (addr >= stop)
- goto finish_prologue;
+ Y = (instr[1] & 0x02) >> 1;
- /* Get two more bytes so scanning can continue. */
- if (!safe_frame_unwind_memory (fi, addr, buf, 2))
- goto finish_prologue;
- }
+ status = target_read_memory (pc + 2, buf, 4);
+ if (status != 0)
+ break;
- /* Next we should allocate the local frame. No more prologue insns
- are found after allocating the local frame.
+ sM = (buf[0] & 0xf0) >> 4;
+ fsM = (Y << 4) | sM;
+ d24 = extract_signed_integer (&buf[1], 3);
- Search for add imm8,sp (0xf8feXX)
- or add imm16,sp (0xfafeXXXX)
- or add imm32,sp (0xfcfeXXXXXXXX).
+ pv_area_store (stack,
+ pv_add_constant (regs[E_SP_REGNUM], d24),
+ 4, regs[E_FS0_REGNUM + fsM]);
- If none of the above was found, then this prologue has no
- additional stack. */
+ pc += 6;
+ }
+ /* fmov fsM, (d32, SP) */
+ else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x34)
+ {
+ int fsM, sM, Y;
+ LONGEST d32;
+ gdb_byte buf[5];
- imm_size = 0;
- if (buf[0] == 0xf8 && buf[1] == 0xfe)
- imm_size = 1;
- else if (buf[0] == 0xfa && buf[1] == 0xfe)
- imm_size = 2;
- else if (buf[0] == 0xfc && buf[1] == 0xfe)
- imm_size = 4;
+ Y = (instr[1] & 0x02) >> 1;
- if (imm_size != 0)
- {
- /* Suck in imm_size more bytes, they'll hold the size of the
- current frame. */
- if (!safe_frame_unwind_memory (fi, addr + 2, buf, imm_size))
- goto finish_prologue;
+ status = target_read_memory (pc + 2, buf, 5);
+ if (status != 0)
+ break;
+
+ sM = (buf[0] & 0xf0) >> 4;
+ fsM = (Y << 4) | sM;
+ d32 = extract_signed_integer (&buf[1], 4);
+
+ pv_area_store (stack,
+ pv_add_constant (regs[E_SP_REGNUM], d32),
+ 4, regs[E_FS0_REGNUM + fsM]);
+
+ pc += 7;
+ }
+ /* fmov fsM, (rN+) */
+ else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x31)
+ {
+ int fsM, sM, Y, rN, rN_regnum;
+ gdb_byte buf[1];
+
+ Y = (instr[1] & 0x02) >> 1;
+
+ status = target_read_memory (pc + 2, buf, 1);
+ if (status != 0)
+ break;
+
+ sM = (buf[0] & 0xf0) >> 4;
+ rN = buf[0] & 0x0f;
+ fsM = (Y << 4) | sM;
+
+ rN_regnum = translate_rreg (rN);
+
+ pv_area_store (stack, regs[rN_regnum], 4,
+ regs[E_FS0_REGNUM + fsM]);
+ regs[rN_regnum] = pv_add_constant (regs[rN_regnum], 4);
+
+ pc += 3;
+ }
+ /* fmov fsM, (rN+, imm8) */
+ else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x31)
+ {
+ int fsM, sM, Y, rN, rN_regnum;
+ LONGEST imm8;
+ gdb_byte buf[2];
+
+ Y = (instr[1] & 0x02) >> 1;
+
+ status = target_read_memory (pc + 2, buf, 2);
+ if (status != 0)
+ break;
+
+ sM = (buf[0] & 0xf0) >> 4;
+ rN = buf[0] & 0x0f;
+ fsM = (Y << 4) | sM;
+ imm8 = extract_signed_integer (&buf[1], 1);
+
+ rN_regnum = translate_rreg (rN);
+
+ pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
+ regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm8);
+
+ pc += 4;
+ }
+ /* fmov fsM, (rN+, imm24) */
+ else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x31)
+ {
+ int fsM, sM, Y, rN, rN_regnum;
+ LONGEST imm24;
+ gdb_byte buf[4];
+
+ Y = (instr[1] & 0x02) >> 1;
+
+ status = target_read_memory (pc + 2, buf, 4);
+ if (status != 0)
+ break;
+
+ sM = (buf[0] & 0xf0) >> 4;
+ rN = buf[0] & 0x0f;
+ fsM = (Y << 4) | sM;
+ imm24 = extract_signed_integer (&buf[1], 3);
+
+ rN_regnum = translate_rreg (rN);
+
+ pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
+ regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm24);
+
+ pc += 6;
+ }
+ /* fmov fsM, (rN+, imm32) */
+ else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x31)
+ {
+ int fsM, sM, Y, rN, rN_regnum;
+ LONGEST imm32;
+ gdb_byte buf[5];
+
+ Y = (instr[1] & 0x02) >> 1;
+
+ status = target_read_memory (pc + 2, buf, 5);
+ if (status != 0)
+ break;
+
+ sM = (buf[0] & 0xf0) >> 4;
+ rN = buf[0] & 0x0f;
+ fsM = (Y << 4) | sM;
+ imm32 = extract_signed_integer (&buf[1], 4);
+
+ rN_regnum = translate_rreg (rN);
+
+ pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
+ regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm32);
+
+ pc += 7;
+ }
+ /* mov imm8, aN */
+ else if ((instr[0] & 0xf0) == 0x90)
+ {
+ int aN = instr[0] & 0x03;
+ LONGEST imm8;
- /* Note the size of the stack. */
- stack_extra_size -= extract_signed_integer (buf, imm_size);
+ imm8 = extract_signed_integer (&instr[1], 1);
- /* We just consumed 2 + imm_size bytes. */
- addr += 2 + imm_size;
+ regs[E_A0_REGNUM + aN] = pv_constant (imm8);
+ pc += 2;
+ }
+ /* mov imm16, aN */
+ else if ((instr[0] & 0xfc) == 0x24)
+ {
+ int aN = instr[0] & 0x03;
+ gdb_byte buf[2];
+ LONGEST imm16;
+
+ status = target_read_memory (pc + 1, buf, 2);
+ if (status != 0)
+ break;
+
+ imm16 = extract_signed_integer (buf, 2);
+ regs[E_A0_REGNUM + aN] = pv_constant (imm16);
+ pc += 3;
+ }
+ /* mov imm32, aN */
+ else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xdc))
+ {
+ int aN = instr[1] & 0x03;
+ gdb_byte buf[4];
+ LONGEST imm32;
+
+ status = target_read_memory (pc + 2, buf, 4);
+ if (status != 0)
+ break;
+
+ imm32 = extract_signed_integer (buf, 4);
+ regs[E_A0_REGNUM + aN] = pv_constant (imm32);
+ pc += 6;
+ }
+ /* mov imm8, dN */
+ else if ((instr[0] & 0xf0) == 0x80)
+ {
+ int dN = instr[0] & 0x03;
+ LONGEST imm8;
+
+ imm8 = extract_signed_integer (&instr[1], 1);
+
+ regs[E_D0_REGNUM + dN] = pv_constant (imm8);
+ pc += 2;
+ }
+ /* mov imm16, dN */
+ else if ((instr[0] & 0xfc) == 0x2c)
+ {
+ int dN = instr[0] & 0x03;
+ gdb_byte buf[2];
+ LONGEST imm16;
+
+ status = target_read_memory (pc + 1, buf, 2);
+ if (status != 0)
+ break;
+
+ imm16 = extract_signed_integer (buf, 2);
+ regs[E_D0_REGNUM + dN] = pv_constant (imm16);
+ pc += 3;
+ }
+ /* mov imm32, dN */
+ else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xcc))
+ {
+ int dN = instr[1] & 0x03;
+ gdb_byte buf[4];
+ LONGEST imm32;
+
+ status = target_read_memory (pc + 2, buf, 4);
+ if (status != 0)
+ break;
+
+ imm32 = extract_signed_integer (buf, 4);
+ regs[E_D0_REGNUM + dN] = pv_constant (imm32);
+ pc += 6;
+ }
+ else
+ {
+ /* We've hit some instruction that we don't recognize. Hopefully,
+ we have enough to do prologue analysis. */
+ break;
+ }
+ }
+
+ /* Is the frame size (offset, really) a known constant? */
+ if (pv_is_register (regs[E_SP_REGNUM], E_SP_REGNUM))
+ result->frame_size = regs[E_SP_REGNUM].k;
- /* No more prologue insns follow, so begin preparation to return. */
- goto finish_prologue;
+ /* Was the frame pointer initialized? */
+ if (pv_is_register (regs[E_A3_REGNUM], E_SP_REGNUM))
+ {
+ result->has_frame_ptr = 1;
+ result->frame_ptr_offset = regs[E_A3_REGNUM].k;
}
- /* Do the essentials and get out of here. */
- finish_prologue:
- /* Note if/where callee saved registers were saved. */
- if (fi)
- set_reg_offsets (fi, this_cache, movm_args, fpregmask, stack_extra_size,
- frame_in_fp);
- return addr;
+
+ /* Record where all the registers were saved. */
+ pv_area_scan (stack, check_for_saved, (void *) result);
+
+ result->prologue_end = after_last_frame_setup_insn;
+
+ do_cleanups (back_to);
}
/* Function: skip_prologue
static CORE_ADDR
mn10300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
- return mn10300_analyze_prologue (gdbarch, NULL, NULL, pc);
+ char *name;
+ CORE_ADDR func_addr, func_end;
+ struct mn10300_prologue p;
+
+ /* Try to find the extent of the function that contains PC. */
+ if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
+ return pc;
+
+ mn10300_analyze_prologue (gdbarch, pc, func_end, &p);
+ return p.prologue_end;
}
-/* Simple frame_unwind_cache.
- This finds the "extra info" for the frame. */
-struct trad_frame_cache *
-mn10300_frame_unwind_cache (struct frame_info *this_frame,
- void **this_prologue_cache)
+/* Wrapper for mn10300_analyze_prologue: find the function start;
+ use the current frame PC as the limit, then
+ invoke mn10300_analyze_prologue and return its result. */
+static struct mn10300_prologue *
+mn10300_analyze_frame_prologue (struct frame_info *this_frame,
+ void **this_prologue_cache)
{
- struct gdbarch *gdbarch;
- struct trad_frame_cache *cache;
- CORE_ADDR pc, start, end;
- void *cache_p;
-
- if (*this_prologue_cache)
- return (*this_prologue_cache);
-
- gdbarch = get_frame_arch (this_frame);
- cache_p = trad_frame_cache_zalloc (this_frame);
- pc = get_frame_register_unsigned (this_frame, E_PC_REGNUM);
- mn10300_analyze_prologue (gdbarch, this_frame, &cache_p, pc);
- cache = cache_p;
-
- if (find_pc_partial_function (pc, NULL, &start, &end))
- trad_frame_set_id (cache,
- frame_id_build (trad_frame_get_this_base (cache),
- start));
- else
+ if (!*this_prologue_cache)
{
- start = get_frame_func (this_frame);
- trad_frame_set_id (cache,
- frame_id_build (trad_frame_get_this_base (cache),
- start));
+ CORE_ADDR func_start, stop_addr;
+
+ *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct mn10300_prologue);
+
+ func_start = get_frame_func (this_frame);
+ stop_addr = get_frame_pc (this_frame);
+
+ /* If we couldn't find any function containing the PC, then
+ just initialize the prologue cache, but don't do anything. */
+ if (!func_start)
+ stop_addr = func_start;
+
+ mn10300_analyze_prologue (get_frame_arch (this_frame),
+ func_start, stop_addr, *this_prologue_cache);
}
- (*this_prologue_cache) = cache;
- return cache;
+ return *this_prologue_cache;
+}
+
+/* Given the next frame and a prologue cache, return this frame's
+ base. */
+static CORE_ADDR
+mn10300_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
+{
+ struct mn10300_prologue *p
+ = mn10300_analyze_frame_prologue (this_frame, this_prologue_cache);
+
+ /* In functions that use alloca, the distance between the stack
+ pointer and the frame base varies dynamically, so we can't use
+ the SP plus static information like prologue analysis to find the
+ frame base. However, such functions must have a frame pointer,
+ to be able to restore the SP on exit. So whenever we do have a
+ frame pointer, use that to find the base. */
+ if (p->has_frame_ptr)
+ {
+ CORE_ADDR fp = get_frame_register_unsigned (this_frame, E_A3_REGNUM);
+ return fp - p->frame_ptr_offset;
+ }
+ else
+ {
+ CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
+ return sp - p->frame_size;
+ }
}
/* Here is a dummy implementation. */
return frame_id_build (sp, pc);
}
-/* Trad frame implementation. */
static void
mn10300_frame_this_id (struct frame_info *this_frame,
void **this_prologue_cache,
struct frame_id *this_id)
{
- struct trad_frame_cache *cache =
- mn10300_frame_unwind_cache (this_frame, this_prologue_cache);
+ *this_id = frame_id_build (mn10300_frame_base (this_frame, this_prologue_cache),
+ get_frame_func (this_frame));
- trad_frame_get_id (cache, this_id);
}
static struct value *
mn10300_frame_prev_register (struct frame_info *this_frame,
- void **this_prologue_cache, int regnum)
+ void **this_prologue_cache, int regnum)
{
- struct trad_frame_cache *cache =
- mn10300_frame_unwind_cache (this_frame, this_prologue_cache);
-
- return trad_frame_get_register (cache, this_frame, regnum);
+ struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
+ struct mn10300_prologue *p
+ = mn10300_analyze_frame_prologue (this_frame, this_prologue_cache);
+ CORE_ADDR frame_base = mn10300_frame_base (this_frame, this_prologue_cache);
+ int reg_size = register_size (get_frame_arch (this_frame), regnum);
+
+ if (regnum == E_SP_REGNUM)
+ return frame_unwind_got_constant (this_frame, regnum, frame_base);
+
+ /* If prologue analysis says we saved this register somewhere,
+ return a description of the stack slot holding it. */
+ if (p->reg_offset[regnum] != 1)
+ return frame_unwind_got_memory (this_frame, regnum,
+ frame_base + p->reg_offset[regnum]);
+
+ /* Otherwise, presume we haven't changed the value of this
+ register, and get it from the next frame. */
+ return frame_unwind_got_register (this_frame, regnum, regnum);
}
static const struct frame_unwind mn10300_frame_unwind = {
};
static CORE_ADDR
-mn10300_frame_base_address (struct frame_info *this_frame,
- void **this_prologue_cache)
-{
- struct trad_frame_cache *cache =
- mn10300_frame_unwind_cache (this_frame, this_prologue_cache);
-
- return trad_frame_get_this_base (cache);
-}
-
-static const struct frame_base mn10300_frame_base = {
- &mn10300_frame_unwind,
- mn10300_frame_base_address,
- mn10300_frame_base_address,
- mn10300_frame_base_address
-};
-
-static CORE_ADDR
-mn10300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
+mn10300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
ULONGEST pc;
- pc = frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
+ pc = frame_unwind_register_unsigned (this_frame, E_PC_REGNUM);
return pc;
}
static CORE_ADDR
-mn10300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
+mn10300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
ULONGEST sp;
- sp = frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
+ sp = frame_unwind_register_unsigned (this_frame, E_SP_REGNUM);
return sp;
}
{
dwarf2_append_unwinders (gdbarch);
frame_unwind_append_unwinder (gdbarch, &mn10300_frame_unwind);
- frame_base_set_default (gdbarch, &mn10300_frame_base);
set_gdbarch_dummy_id (gdbarch, mn10300_dummy_id);
set_gdbarch_unwind_pc (gdbarch, mn10300_unwind_pc);
set_gdbarch_unwind_sp (gdbarch, mn10300_unwind_sp);
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63,
- 9
+ 9, 11
};
if (dwarf2 < 0