- The ``clkbuf_sink`` attribute can be set on an input port of a module to
request clock buffer insertion by the ``clkbufmap`` pass.
+- The ``clkbuf_inv`` attribute can be set on an output port of a module
+ with the value set to the name of an input port of that module. When
+ the ``clkbufmap`` would otherwise insert a clock buffer on this output,
+ it will instead try inserting the clock buffer on the input port (this
+ is used to implement clock inverter cells that clock buffer insertion
+ will "see through").
+
- The ``clkbuf_inhibit`` is the default attribute to set on a wire to prevent
automatic clock buffer insertion by ``clkbufmap``. This behaviour can be
overridden by providing a custom selection to ``clkbufmap``.
// Cell type, port name, bit index.
pool<pair<IdString, pair<IdString, int>>> sink_ports;
pool<pair<IdString, pair<IdString, int>>> buf_ports;
+ dict<pair<IdString, pair<IdString, int>>, pair<IdString, int>> inv_ports_out;
+ dict<pair<IdString, pair<IdString, int>>, pair<IdString, int>> inv_ports_in;
// Process submodules before module using them.
std::vector<Module *> modules_sorted;
if (wire->get_bool_attribute("\\clkbuf_sink"))
for (int i = 0; i < GetSize(wire); i++)
sink_ports.insert(make_pair(module->name, make_pair(wire->name, i)));
+ auto it = wire->attributes.find("\\clkbuf_inv");
+ if (it != wire->attributes.end()) {
+ IdString in_name = RTLIL::escape_id(it->second.decode_string());
+ for (int i = 0; i < GetSize(wire); i++) {
+ inv_ports_out[make_pair(module->name, make_pair(wire->name, i))] = make_pair(in_name, i);
+ inv_ports_in[make_pair(module->name, make_pair(in_name, i))] = make_pair(wire->name, i);
+ }
+ }
}
continue;
}
if (buf_ports.count(make_pair(cell->type, make_pair(port.first, i))))
buf_wire_bits.insert(sigmap(port.second[i]));
+ // Third, propagate tags through inverters.
+ bool retry = true;
+ while (retry) {
+ retry = false;
+ for (auto cell : module->cells())
+ for (auto port : cell->connections())
+ for (int i = 0; i < port.second.size(); i++) {
+ auto it = inv_ports_out.find(make_pair(cell->type, make_pair(port.first, i)));
+ auto bit = sigmap(port.second[i]);
+ // If output of an inverter is connected to a sink, mark it as buffered,
+ // and request a buffer on the inverter's input instead.
+ if (it != inv_ports_out.end() && !buf_wire_bits.count(bit) && sink_wire_bits.count(bit)) {
+ buf_wire_bits.insert(bit);
+ auto other_bit = sigmap(cell->getPort(it->second.first)[it->second.second]);
+ sink_wire_bits.insert(other_bit);
+ retry = true;
+ }
+ // If input of an inverter is marked as already-buffered,
+ // mark its output already-buffered as well.
+ auto it2 = inv_ports_in.find(make_pair(cell->type, make_pair(port.first, i)));
+ if (it2 != inv_ports_in.end() && buf_wire_bits.count(bit)) {
+ auto other_bit = sigmap(cell->getPort(it2->second.first)[it2->second.second]);
+ if (!buf_wire_bits.count(other_bit)) {
+ buf_wire_bits.insert(other_bit);
+ retry = true;
+ }
+ }
+
+ }
+ };
+
// Collect all driven bits.
for (auto cell : module->cells())
for (auto port : cell->connections())
// assign O = IO, IO = T ? 1'bz : I;
// endmodule
-module INV(output O, input I);
+module INV(
+ (* clkbuf_inv = "I" *)
+ output O,
+ input I
+);
assign O = !I;
endmodule
module dffe ((* clkbuf_sink *) input c, input d, e, output q); endmodule
module latch (input e, d, output q); endmodule
module clkgen (output o); endmodule
+module inv ((* clkbuf_inv = "i" *) output o, input i); endmodule
module top(input clk1, clk2, clk3, d, e, output [4:0] q);
wire clk4, clk5, clk6;
endmodule
module sub(output sclk4, output sclk5, output sclk6, input sd, output sq);
+wire sclk7, sclk8, sclk9;
+wire siq;
wire tmp;
clkgen s7(.o(sclk4));
clkgen s8(.o(sclk5));
clkgen s9(.o(tmp));
-clkbuf s10(.i(tmp), .o(sclk6));
-dff s11(.clk(sclk4), .d(sd), .q(sq));
+clkbuf s10(.i(tmp), .o(sclk7));
+dff s11(.clk(sclk4), .d(sd), .q(siq));
+inv s15(.i(sclk7), .o(sclk6));
+clkgen s12(.o(sclk8));
+inv s13(.o(sclk9), .i(sclk8));
+dff s14(.clk(sclk9), .d(siq), .q(sq));
endmodule
EOT
design -load ref
clkbufmap -buf clkbuf o:i
select -assert-count 3 top/t:clkbuf
-select -assert-count 2 sub/t:clkbuf
+select -assert-count 3 sub/t:clkbuf
select -set clk1 w:clk1 %a %co t:clkbuf %i # Find 'clk1' fanouts that are 'clkbuf'
select -assert-count 1 @clk1 # Check there is one such fanout
select -assert-count 1 @clk1 %x:+[o] %co c:s* %i # Check that the 'o' of that clkbuf drives one fanout
select -assert-count 1 @sclk4
select -assert-count 1 @sclk4 %x:+[o] %co c:s11 %i
select -assert-count 1 @sclk4 %x:+[i] %ci c:s7 %i
+select -set sclk8 w:sclk8 %a %ci t:clkbuf %i
+select -assert-count 1 @sclk8
+select -assert-count 1 @sclk8 %x:+[o] %co c:s13 %i
+select -assert-count 1 @sclk8 %x:+[i] %ci c:s12 %i
# ----------------------
setattr -set buffer_type "bufg" w:clk2
clkbufmap -buf clkbuf o:i w:* a:buffer_type=none a:buffer_type=bufr %u %d
select -assert-count 3 top/t:clkbuf
-select -assert-count 2 sub/t:clkbuf
+select -assert-count 3 sub/t:clkbuf
select -set clk1 w:clk1 %a %co t:clkbuf %i # Find 'clk1' fanouts that are 'clkbuf'
select -assert-count 1 @clk1 # Check there is one such fanout
select -assert-count 1 @clk1 %x:+[o] %co c:s* %i # Check that the 'o' of that clkbuf drives one fanout
select -assert-count 0 w:clk1 %a %co t:clkbuf %i
select -assert-count 0 w:clk2 %a %co t:clkbuf %i
select -assert-count 0 top/t:clkbuf
-select -assert-count 1 sub/t:clkbuf
+select -assert-count 2 sub/t:clkbuf