--- /dev/null
+/*
+ * Copyright © 2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+/**
+ * \file ir_mat_op_to_vec.cpp
+ *
+ * Breaks matrix operation expressions down to a series of vector operations.
+ *
+ * Generally this is how we have to codegen matrix operations for a
+ * GPU, so this gives us the chance to constant fold operations on a
+ * column or row.
+ */
+
+#include "ir.h"
+#include "ir_expression_flattening.h"
+#include "glsl_types.h"
+
+class ir_mat_op_to_vec_visitor : public ir_hierarchical_visitor {
+public:
+ ir_mat_op_to_vec_visitor()
+ {
+ this->made_progress = false;
+ }
+
+ ir_visitor_status visit_leave(ir_assignment *);
+
+ ir_rvalue *get_column(ir_variable *var, int i);
+
+ bool made_progress;
+};
+
+static bool
+mat_op_to_vec_predicate(ir_instruction *ir)
+{
+ ir_expression *expr = ir->as_expression();
+ unsigned int i;
+
+ if (!expr)
+ return false;
+
+ for (i = 0; i < expr->get_num_operands(); i++) {
+ if (expr->operands[i]->type->is_matrix())
+ return true;
+ }
+
+ return false;
+}
+
+bool
+do_mat_op_to_vec(exec_list *instructions)
+{
+ ir_mat_op_to_vec_visitor v;
+
+ /* Pull out any matrix expression to a separate assignment to a
+ * temp. This will make our handling of the breakdown to
+ * operations on the matrix's vector components much easier.
+ */
+ do_expression_flattening(instructions, mat_op_to_vec_predicate);
+
+ visit_list_elements(&v, instructions);
+
+ return v.made_progress;
+}
+
+ir_rvalue *
+ir_mat_op_to_vec_visitor::get_column(ir_variable *var, int i)
+{
+ ir_dereference *deref;
+
+ if (!var->type->is_matrix()) {
+ deref = new(base_ir) ir_dereference_variable(var);
+ } else {
+ deref = new(base_ir) ir_dereference_variable(var);
+ deref = new(base_ir) ir_dereference_array(deref,
+ new(base_ir) ir_constant(i));
+ }
+
+ return deref;
+}
+
+ir_visitor_status
+ir_mat_op_to_vec_visitor::visit_leave(ir_assignment *assign)
+{
+ ir_expression *expr = assign->rhs->as_expression();
+ bool found_matrix = false;
+ unsigned int i, matrix_columns = 1;
+ ir_variable *op_var[2];
+
+ if (!expr)
+ return visit_continue;
+
+ for (i = 0; i < expr->get_num_operands(); i++) {
+ if (expr->operands[i]->type->is_matrix()) {
+ found_matrix = true;
+ matrix_columns = expr->operands[i]->type->matrix_columns;
+ break;
+ }
+ }
+ if (!found_matrix)
+ return visit_continue;
+
+ /* FINISHME: see below */
+ if (expr->operation == ir_binop_mul)
+ return visit_continue;
+
+ ir_dereference_variable *lhs_deref = assign->lhs->as_dereference_variable();
+ assert(lhs_deref);
+
+ ir_variable *result_var = lhs_deref->var;
+
+ /* Store the expression operands in temps so we can use them
+ * multiple times.
+ */
+ for (i = 0; i < expr->get_num_operands(); i++) {
+ ir_assignment *assign;
+
+ op_var[i] = new(base_ir) ir_variable(expr->operands[i]->type,
+ "mat_op_to_vec");
+ base_ir->insert_before(op_var[i]);
+
+ lhs_deref = new(base_ir) ir_dereference_variable(op_var[i]);
+ assign = new(base_ir) ir_assignment(lhs_deref,
+ expr->operands[i],
+ NULL);
+ base_ir->insert_before(assign);
+ }
+
+ /* OK, time to break down this matrix operation. */
+ switch (expr->operation) {
+ case ir_binop_add:
+ case ir_binop_sub:
+ case ir_binop_div:
+ case ir_binop_mod:
+ /* For most operations, the matrix version is just going
+ * column-wise through and applying the operation to each column
+ * if available.
+ */
+ for (i = 0; i < matrix_columns; i++) {
+ ir_rvalue *op0 = get_column(op_var[0], i);
+ ir_rvalue *op1 = get_column(op_var[1], i);
+ ir_rvalue *result = get_column(result_var, i);
+ ir_expression *column_expr;
+ ir_assignment *column_assign;
+
+ column_expr = new(base_ir) ir_expression(expr->operation,
+ result->type,
+ op0,
+ op1);
+
+ column_assign = new(base_ir) ir_assignment(result,
+ column_expr,
+ NULL);
+ base_ir->insert_before(column_assign);
+ }
+ break;
+ case ir_binop_mul:
+ /* FINISHME */
+ return visit_continue;
+ break;
+ default:
+ printf("FINISHME: Handle matrix operation for %s\n", expr->operator_string());
+ abort();
+ }
+ assign->remove();
+ this->made_progress = true;
+
+ return visit_continue;
+}