--- /dev/null
+from nmigen import Module, Signal
+from nmigen.sim import Simulator, Delay, Settle
+from nmutil.formaltest import FHDLTestCase
+import unittest
+from openpower.decoder.isa.caller import ISACaller
+from openpower.decoder.power_decoder import (create_pdecode)
+from openpower.decoder.power_decoder2 import (PowerDecode2)
+from openpower.simulator.program import Program
+from openpower.decoder.isa.caller import ISACaller, SVP64State, CRFields
+from openpower.decoder.selectable_int import SelectableInt
+from openpower.decoder.orderedset import OrderedSet
+from openpower.decoder.isa.all import ISA
+from openpower.decoder.isa.test_caller import Register, run_tst
+from openpower.sv.trans.svp64 import SVP64Asm
+from openpower.consts import SVP64CROffs
+from copy import deepcopy
+
+class DecoderTestCase(FHDLTestCase):
+
+ def _check_regs(self, sim, expected):
+ for i in range(32):
+ self.assertEqual(sim.gpr(i), SelectableInt(expected[i], 64),
+ "reg %d expected %x got %x" % \
+ (i, sim.gpr(i).value, expected[i]))
+
+ def test_sv_bigint_add(self):
+ """performs a carry-rollover-vector-add aka "big integer vector add"
+ this is remarkably simple, each sv.addeo uses and produces a CA which
+ goes into the next sv.addeo. arbitrary size is possible (1024+) as
+ is looping using the CA bit from one sv.addeo on another batch to do
+ unlimited-size biginteger add.
+
+ r3/r2: 0x0000_0000_0000_0001 0xffff_ffff_ffff_ffff +
+ r5/r4: 0x8000_0000_0000_0000 0x0000_0000_0000_0001 =
+ r1/r0: 0x8000_0000_0000_0002 0x0000_0000_0000_0000
+ """
+ isa = SVP64Asm(['sv.addeo *0, *2, *4'
+ ])
+ lst = list(isa)
+ print ("listing", lst)
+
+ # initial values in GPR regfile
+ initial_regs = [0] * 32
+ initial_regs[2] = 0xffff_ffff_ffff_ffff # lo dword A
+ initial_regs[3] = 0x0000_0000_0000_0001 # hi dword A
+ initial_regs[4] = 0x0000_0000_0000_0001 # lo dword B
+ initial_regs[5] = 0x8000_0000_0000_0000 # hi dword B
+ # SVSTATE (in this case, VL=2)
+ svstate = SVP64State()
+ svstate.vl = 2 # VL
+ svstate.maxvl = 2 # MAXVL
+ print ("SVSTATE", bin(svstate.asint()))
+ # copy before running
+ expected_regs = deepcopy(initial_regs)
+ expected_regs[0] = 0x0 # rollover to zero, carry
+ expected_regs[1] = 0x8000_0000_0000_0002 # carry rolled-over
+
+ with Program(lst, bigendian=False) as program:
+ sim = self.run_tst_program(program, initial_regs, svstate)
+ self._check_regs(sim, expected_regs)
+
+ def test_sv_bigint_scalar_shiftright(self):
+ """performs a scalar-to-vector right-shift.
+
+ r3 r2 r1 r4
+ 0x0000_0000_0000_0002 0x8000_8000_8000_8001 0xffff_ffff_ffff_ffff >> 4
+ 0x0000_0000_0000_0002 0x2800_0800_0800_0800 0x1fff_ffff_ffff_ffff >> 4
+ """
+ isa = SVP64Asm(['sv.dsrd *0,*1,4,1'
+ ])
+ lst = list(isa)
+ print ("listing", lst)
+
+ # initial values in GPR regfile
+ initial_regs = [0] * 32
+ initial_regs[0] = 0xffff_ffff_ffff_ffff # lo dword A
+ initial_regs[1] = 0x8000_8000_8000_8001 # mid dword A
+ initial_regs[2] = 0x0000_0000_0000_0002 # hi dword A
+ initial_regs[4] = 0x0000_0000_0000_0004 # shift amount (a nibble)
+ # SVSTATE (in this case, VL=2)
+ svstate = SVP64State()
+ svstate.vl = 2 # VL
+ svstate.maxvl = 2 # MAXVL
+ print ("SVSTATE", bin(svstate.asint()))
+ # copy before running
+ expected_regs = deepcopy(initial_regs)
+ expected_regs[0] = 0x1fff_ffff_ffff_ffff # MSB nibble gets LSB
+ expected_regs[1] = 0x2800_0800_0800_0800 # hi dword A
+
+ with Program(lst, bigendian=False) as program:
+ sim = self.run_tst_program(program, initial_regs, svstate)
+ self._check_regs(sim, expected_regs)
+
+ def test_sv_bigint_scalar_shiftleft(self):
+ """performs a scalar-to-vector left-shift: because the result is moved
+ down by one scalar (RT=0 not 1) there is no need for reverse-gear.
+ r2 is *not* modified (contains its original value).
+ r2 r1 r0 r4
+ 0x0000_0000_0001_0002 0x3fff_ffff_ffff_ffff 0x4000_0000_0000_0001 << 4
+ 0x0000_0000_0001_0002 0x0000_0000_0010_0023 0xffff_ffff_ffff_fff4
+ """
+ isa = SVP64Asm(['sv.dsld *0,*1,4,1'
+ ])
+ lst = list(isa)
+ print ("listing", lst)
+
+ # initial values in GPR regfile
+ initial_regs = [0] * 32
+ initial_regs[0] = 0x4000_0000_0000_0001 # lo dword A
+ initial_regs[1] = 0x3fff_ffff_ffff_ffff # mid dword A
+ initial_regs[2] = 0x0000_0000_0001_0002 # hi dword A
+ initial_regs[4] = 0x0000_0000_0000_0004 # shift amount (a nibble)
+ # SVSTATE (in this case, VL=2)
+ svstate = SVP64State()
+ svstate.vl = 2 # VL
+ svstate.maxvl = 2 # MAXVL
+ print ("SVSTATE", bin(svstate.asint()))
+ # copy before running
+ expected_regs = deepcopy(initial_regs)
+ expected_regs[0] = 0xffff_ffff_ffff_fff4 # MSB nibble gets LSB
+ expected_regs[1] = 0x0000_0000_0010_0023 # hi dword A
+
+ with Program(lst, bigendian=False) as program:
+ sim = self.run_tst_program(program, initial_regs, svstate)
+ self._check_regs(sim, expected_regs)
+
+ def run_tst_program(self, prog, initial_regs=None,
+ svstate=None,
+ initial_cr=0):
+ if initial_regs is None:
+ initial_regs = [0] * 32
+ simulator = run_tst(prog, initial_regs, svstate=svstate,
+ initial_cr=initial_cr)
+ simulator.gpr.dump()
+ return simulator
+
+
+if __name__ == "__main__":
+ unittest.main()