* how many scalar fields are set to non-constant values,
and place it in *P_NC_ELTS; and
* how many scalar fields in total are in CTOR,
- and place it in *P_ELT_COUNT. */
+ and place it in *P_ELT_COUNT.
+ * if a type is a union, and the initializer from the constructor
+ is not the largest element in the union, then set *p_must_clear. */
static void
categorize_ctor_elements_1 (tree ctor, HOST_WIDE_INT *p_nz_elts,
HOST_WIDE_INT *p_nc_elts,
- HOST_WIDE_INT *p_elt_count)
+ HOST_WIDE_INT *p_elt_count,
+ bool *p_must_clear)
{
HOST_WIDE_INT nz_elts, nc_elts, elt_count;
tree list;
{
case CONSTRUCTOR:
{
- HOST_WIDE_INT nz = 0, nc = 0, count = 0;
- categorize_ctor_elements_1 (value, &nz, &nc, &count);
+ HOST_WIDE_INT nz = 0, nc = 0, ic = 0;
+ categorize_ctor_elements_1 (value, &nz, &nc, &ic, p_must_clear);
nz_elts += mult * nz;
nc_elts += mult * nc;
- elt_count += mult * count;
+ elt_count += mult * ic;
}
break;
}
}
+ if (!*p_must_clear
+ && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
+ || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
+ {
+ tree init_sub_type;
+
+ /* We don't expect more than one element of the union to be
+ initialized. Not sure what we should do otherwise... */
+ list = CONSTRUCTOR_ELTS (ctor);
+ gcc_assert (TREE_CHAIN (list) == NULL);
+
+ init_sub_type = TREE_TYPE (TREE_VALUE (list));
+
+ /* ??? We could look at each element of the union, and find the
+ largest element. Which would avoid comparing the size of the
+ initialized element against any tail padding in the union.
+ Doesn't seem worth the effort... */
+ if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
+ TYPE_SIZE (init_sub_type)) == 1)
+ {
+ /* And now we have to find out if the element itself is fully
+ constructed. E.g. for union { struct { int a, b; } s; } u
+ = { .s = { .a = 1 } }. */
+ if (elt_count != count_type_elements (init_sub_type))
+ *p_must_clear = true;
+ }
+ else
+ *p_must_clear = true;
+ }
+
*p_nz_elts += nz_elts;
*p_nc_elts += nc_elts;
*p_elt_count += elt_count;
void
categorize_ctor_elements (tree ctor, HOST_WIDE_INT *p_nz_elts,
HOST_WIDE_INT *p_nc_elts,
- HOST_WIDE_INT *p_elt_count)
+ HOST_WIDE_INT *p_elt_count,
+ bool *p_must_clear)
{
*p_nz_elts = 0;
*p_nc_elts = 0;
*p_elt_count = 0;
- categorize_ctor_elements_1 (ctor, p_nz_elts, p_nc_elts, p_elt_count);
+ *p_must_clear = false;
+ categorize_ctor_elements_1 (ctor, p_nz_elts, p_nc_elts, p_elt_count,
+ p_must_clear);
}
/* Count the number of scalars in TYPE. Return -1 on overflow or
{
HOST_WIDE_INT nz_elts, nc_elts, count, elts;
+ bool must_clear;
+
+ categorize_ctor_elements (exp, &nz_elts, &nc_elts, &count, &must_clear);
+ if (must_clear)
+ return 1;
- categorize_ctor_elements (exp, &nz_elts, &nc_elts, &count);
elts = count_type_elements (TREE_TYPE (exp));
return nz_elts < elts / 4;
categorize_ctor_elements (ctor, &num_nonzero_elements,
&num_nonconstant_elements,
- &num_ctor_elements);
+ &num_ctor_elements, &cleared);
/* If a const aggregate variable is being initialized, then it
should never be a lose to promote the variable to be static. */
if (num_nonconstant_elements == 0
+ && num_nonzero_elements > 1
&& TREE_READONLY (object)
&& TREE_CODE (object) == VAR_DECL)
{
num_type_elements = count_type_elements (TREE_TYPE (ctor));
/* If there are "lots" of zeros, then block clear the object first. */
- cleared = false;
if (num_type_elements - num_nonzero_elements > CLEAR_RATIO
&& num_nonzero_elements < num_type_elements/4)
cleared = true;