llvmpipe: Remove lp_test_sincos.
authorJosé Fonseca <jfonseca@vmware.com>
Tue, 21 Feb 2012 16:04:54 +0000 (16:04 +0000)
committerJosé Fonseca <jfonseca@vmware.com>
Tue, 21 Feb 2012 16:04:54 +0000 (16:04 +0000)
Completely replaced by lp_test_arit.

src/gallium/drivers/llvmpipe/.gitignore
src/gallium/drivers/llvmpipe/Makefile
src/gallium/drivers/llvmpipe/SConscript
src/gallium/drivers/llvmpipe/lp_test_round.c
src/gallium/drivers/llvmpipe/lp_test_sincos.c [deleted file]
src/gallium/drivers/llvmpipe/sse_mathfun.h [deleted file]

index ce963924b07b248cd5bc9c3083713e991f548838..f6973b54d2cc3b2b964643f001b90822a66a10c3 100644 (file)
@@ -5,4 +5,3 @@ lp_test_conv
 lp_test_format
 lp_test_printf
 lp_test_round
-lp_test_sincos
index f9301354fc5f58db03c2e08cf4cc83ab368813ff..1a4e93d7ce3830bc8e3c0171fc2e492a1e986137 100644 (file)
@@ -55,16 +55,13 @@ PROGS := lp_test_format     \
         lp_test_blend  \
         lp_test_conv   \
         lp_test_printf \
-        lp_test_round \
-         lp_test_sincos
+        lp_test_round
 
 # Need this for the lp_test_*.o files
 CLEAN_EXTRA = *.o
 
 include ../../Makefile.template
 
-lp_test_sincos.o : sse_mathfun.h
-
 PROGS_DEPS := ../../auxiliary/libgallium.a
 
 lp_tile_soa.c: lp_tile_soa.py ../../auxiliary/util/u_format_parse.py ../../auxiliary/util/u_format_pack.py ../../auxiliary/util/u_format.csv
index 129de297824da40530716cc5dff06d43507d0967..c1a63ee877f348a7da190cef9d5b17df8efa4479 100644 (file)
@@ -89,7 +89,6 @@ if not env['embedded']:
         'blend',
         'conv',
         'printf',
-        'sincos',
     ]
 
     if not env['msvc']:
index 8adb25970f2854b5f42771c9e207e664dcfda1ef..fc3edf372d5fd1894fa933802f36c0e1b75370a5 100644 (file)
@@ -50,8 +50,7 @@ write_tsv_header(FILE *fp)
 
 #ifdef PIPE_ARCH_SSE
 
-#define USE_SSE2
-#include "sse_mathfun.h"
+# include <emmintrin.h>
 
 typedef __m128 (*test_round_t)(__m128);
 
@@ -87,16 +86,16 @@ add_test(struct gallivm_state *gallivm, const char *name, lp_func_t lp_func)
 }
 
 static void
-printv(char* string, v4sf value)
+printv(char* string, __m128 value)
 {
-   v4sf v = value;
+   __m128 v = value;
    float *f = (float *)&v;
    printf("%s: %10f %10f %10f %10f\n", string,
            f[0], f[1], f[2], f[3]);
 }
 
 static boolean
-compare(v4sf x, v4sf y)
+compare(__m128 x, __m128 y)
 {
    boolean success = TRUE;
    float *xp = (float *) &x;
@@ -152,13 +151,13 @@ test_round(struct gallivm_state *gallivm, unsigned verbose, FILE *fp)
       /* NOTE: There are several acceptable rules for x.5 rounding: ceiling,
        * nearest even, etc. So we avoid testing such corner cases here.
        */
-      v4sf xvals[3] = {
+      __m128 xvals[3] = {
          {-10.0, -1, 0, 12.0},
          {-1.49, -0.25, 1.25, 2.51},
          {-0.99, -0.01, 0.01, 0.99}
       };
-      v4sf x = xvals[i];
-      v4sf y, ref;
+      __m128 x = xvals[i];
+      __m128 y, ref;
       float *xp = (float *) &x;
       float *refp = (float *) &ref;
 
diff --git a/src/gallium/drivers/llvmpipe/lp_test_sincos.c b/src/gallium/drivers/llvmpipe/lp_test_sincos.c
deleted file mode 100644 (file)
index 066d633..0000000
+++ /dev/null
@@ -1,171 +0,0 @@
-/**************************************************************************
- *
- * Copyright 2010 VMware, Inc.
- * All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the
- * "Software"), to deal in the Software without restriction, including
- * without limitation the rights to use, copy, modify, merge, publish,
- * distribute, sub license, and/or sell copies of the Software, and to
- * permit persons to whom the Software is furnished to do so, subject to
- * the following conditions:
- *
- * The above copyright notice and this permission notice (including the
- * next paragraph) shall be included in all copies or substantial portions
- * of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
- * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
- * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
- * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
- * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- *
- **************************************************************************/
-
-
-#include <stdlib.h>
-#include <stdio.h>
-
-#include "util/u_pointer.h"
-
-#include "gallivm/lp_bld.h"
-#include "gallivm/lp_bld_init.h"
-#include "gallivm/lp_bld_arit.h"
-
-#include "lp_test.h"
-
-
-void
-write_tsv_header(FILE *fp)
-{
-   fprintf(fp,
-           "result\t"
-           "format\n");
-
-   fflush(fp);
-}
-
-
-#ifdef PIPE_ARCH_SSE
-
-#define USE_SSE2
-#include "sse_mathfun.h"
-
-typedef __m128 (*test_sincos_t)(__m128);
-
-static LLVMValueRef
-add_sincos_test(struct gallivm_state *gallivm, LLVMModuleRef module,
-                LLVMContextRef context, boolean sin)
-{
-   LLVMTypeRef v4sf = LLVMVectorType(LLVMFloatTypeInContext(context), 4);
-   LLVMTypeRef args[1] = { v4sf };
-   LLVMValueRef func = LLVMAddFunction(module, "sincos", LLVMFunctionType(v4sf, args, 1, 0));
-   LLVMValueRef arg1 = LLVMGetParam(func, 0);
-   LLVMBuilderRef builder = gallivm->builder;
-   LLVMBasicBlockRef block = LLVMAppendBasicBlockInContext(context, func, "entry");
-   LLVMValueRef ret;
-   struct lp_build_context bld;
-
-   lp_build_context_init(&bld, gallivm, lp_float32_vec4_type());
-
-   LLVMSetFunctionCallConv(func, LLVMCCallConv);
-
-   LLVMPositionBuilderAtEnd(builder, block);
-   ret = sin ? lp_build_sin(&bld, arg1) : lp_build_cos(&bld, arg1);
-   LLVMBuildRet(builder, ret);
-   return func;
-}
-
-static void
-printv(char* string, v4sf value)
-{
-   v4sf v = value;
-   uint32_t  *p = (uint32_t *) &v;
-   float *f = (float *)&v;
-   printf("%s: %f(%x) %f(%x) %f(%x) %f(%x)\n", string,
-           f[0], p[0], f[1], p[1], f[2], p[2], f[3], p[3]);
-}
-
-PIPE_ALIGN_STACK
-static boolean
-test_sincos(struct gallivm_state *gallivm, unsigned verbose, FILE *fp)
-{
-   LLVMModuleRef module = gallivm->module;
-   LLVMValueRef test_sin = NULL, test_cos = NULL;
-   LLVMExecutionEngineRef engine = gallivm->engine;
-   LLVMContextRef context = gallivm->context;
-   char *error = NULL;
-   test_sincos_t sin_func;
-   test_sincos_t cos_func;
-   float unpacked[4];
-   boolean success = TRUE;
-
-   test_sin = add_sincos_test(gallivm, module, context, TRUE);
-   test_cos = add_sincos_test(gallivm, module, context,FALSE);
-
-   if(LLVMVerifyModule(module, LLVMPrintMessageAction, &error)) {
-      printf("LLVMVerifyModule: %s\n", error);
-      LLVMDumpModule(module);
-      abort();
-   }
-   LLVMDisposeMessage(error);
-
-   sin_func = (test_sincos_t) pointer_to_func(LLVMGetPointerToGlobal(engine, test_sin));
-   cos_func = (test_sincos_t) pointer_to_func(LLVMGetPointerToGlobal(engine, test_cos));
-
-   memset(unpacked, 0, sizeof unpacked);
-
-
-   // LLVMDumpModule(module);
-   {
-      v4sf src = {3.14159/4.0, -3.14159/4.0, 1.0, -1.0};
-      printv("ref ",sin_ps(src));
-      printv("llvm", sin_func(src));
-      printv("ref ",cos_ps(src));
-      printv("llvm",cos_func(src));
-   }
-
-   LLVMFreeMachineCodeForFunction(engine, test_sin);
-   LLVMFreeMachineCodeForFunction(engine, test_cos);
-
-   return success;
-}
-
-#else /* !PIPE_ARCH_SSE */
-
-static boolean
-test_sincos(struct gallivm_state *gallivm, unsigned verbose, FILE *fp)
-{
-   return TRUE;
-}
-
-#endif /* !PIPE_ARCH_SSE */
-
-
-boolean
-test_all(struct gallivm_state *gallivm, unsigned verbose, FILE *fp)
-{
-   boolean success = TRUE;
-
-   test_sincos(gallivm, verbose, fp);
-
-   return success;
-}
-
-
-boolean
-test_some(struct gallivm_state *gallivm, unsigned verbose, FILE *fp,
-          unsigned long n)
-{
-   return test_all(gallivm, verbose, fp);
-}
-
-boolean
-test_single(struct gallivm_state *gallivm, unsigned verbose, FILE *fp)
-{
-   printf("no test_single()");
-   return TRUE;
-}
diff --git a/src/gallium/drivers/llvmpipe/sse_mathfun.h b/src/gallium/drivers/llvmpipe/sse_mathfun.h
deleted file mode 100644 (file)
index 0077f34..0000000
+++ /dev/null
@@ -1,724 +0,0 @@
-/* SIMD (SSE1+MMX or SSE2) implementation of sin, cos, exp and log
-
-   Inspired by Intel Approximate Math library, and based on the
-   corresponding algorithms of the cephes math library
-
-   The default is to use the SSE1 version. If you define USE_SSE2 the
-   the SSE2 intrinsics will be used in place of the MMX intrinsics. Do
-   not expect any significant performance improvement with SSE2.
-*/
-
-/* Copyright (C) 2007  Julien Pommier
-
-  This software is provided 'as-is', without any express or implied
-  warranty.  In no event will the authors be held liable for any damages
-  arising from the use of this software.
-
-  Permission is granted to anyone to use this software for any purpose,
-  including commercial applications, and to alter it and redistribute it
-  freely, subject to the following restrictions:
-
-  1. The origin of this software must not be misrepresented; you must not
-     claim that you wrote the original software. If you use this software
-     in a product, an acknowledgment in the product documentation would be
-     appreciated but is not required.
-  2. Altered source versions must be plainly marked as such, and must not be
-     misrepresented as being the original software.
-  3. This notice may not be removed or altered from any source distribution.
-
-  (this is the zlib license)
-*/
-
-#include <xmmintrin.h>
-
-/* yes I know, the top of this file is quite ugly */
-
-#ifdef _MSC_VER /* visual c++ */
-# define ALIGN16_BEG __declspec(align(16))
-# define ALIGN16_END 
-#else /* gcc or icc */
-# define ALIGN16_BEG
-# define ALIGN16_END __attribute__((aligned(16)))
-#endif
-
-/* __m128 is ugly to write */
-typedef __m128 v4sf;  // vector of 4 float (sse1)
-
-#ifdef USE_SSE2
-# include <emmintrin.h>
-typedef __m128i v4si; // vector of 4 int (sse2)
-#else
-typedef __m64 v2si;   // vector of 2 int (mmx)
-#endif
-
-/* declare some SSE constants -- why can't I figure a better way to do that? */
-#define _PS_CONST(Name, Val)                                            \
-  static const ALIGN16_BEG float _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
-#define _PI32_CONST(Name, Val)                                            \
-  static const ALIGN16_BEG int _pi32_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
-#define _PS_CONST_TYPE(Name, Type, Val)                                 \
-  static const ALIGN16_BEG Type _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
-
-_PS_CONST(1  , 1.0f);
-_PS_CONST(0p5, 0.5f);
-/* the smallest non denormalized float number */
-_PS_CONST_TYPE(min_norm_pos, int, 0x00800000);
-_PS_CONST_TYPE(mant_mask, int, 0x7f800000);
-_PS_CONST_TYPE(inv_mant_mask, int, ~0x7f800000);
-
-_PS_CONST_TYPE(sign_mask, int, 0x80000000);
-_PS_CONST_TYPE(inv_sign_mask, int, ~0x80000000);
-
-_PI32_CONST(1, 1);
-_PI32_CONST(inv1, ~1);
-_PI32_CONST(2, 2);
-_PI32_CONST(4, 4);
-_PI32_CONST(0x7f, 0x7f);
-
-_PS_CONST(cephes_SQRTHF, 0.707106781186547524);
-_PS_CONST(cephes_log_p0, 7.0376836292E-2);
-_PS_CONST(cephes_log_p1, - 1.1514610310E-1);
-_PS_CONST(cephes_log_p2, 1.1676998740E-1);
-_PS_CONST(cephes_log_p3, - 1.2420140846E-1);
-_PS_CONST(cephes_log_p4, + 1.4249322787E-1);
-_PS_CONST(cephes_log_p5, - 1.6668057665E-1);
-_PS_CONST(cephes_log_p6, + 2.0000714765E-1);
-_PS_CONST(cephes_log_p7, - 2.4999993993E-1);
-_PS_CONST(cephes_log_p8, + 3.3333331174E-1);
-_PS_CONST(cephes_log_q1, -2.12194440e-4);
-_PS_CONST(cephes_log_q2, 0.693359375);
-
-v4sf log_ps(v4sf x);
-v4sf exp_ps(v4sf x);
-v4sf sin_ps(v4sf x);
-v4sf cos_ps(v4sf x);
-void sincos_ps(v4sf x, v4sf *s, v4sf *c);
-
-#ifndef USE_SSE2
-typedef union xmm_mm_union {
-  __m128 xmm;
-  __m64 mm[2];
-} xmm_mm_union;
-
-#define COPY_XMM_TO_MM(xmm_, mm0_, mm1_) {          \
-    xmm_mm_union u; u.xmm = xmm_;                   \
-    mm0_ = u.mm[0];                                 \
-    mm1_ = u.mm[1];                                 \
-}
-
-#define COPY_MM_TO_XMM(mm0_, mm1_, xmm_) {                         \
-    xmm_mm_union u; u.mm[0]=mm0_; u.mm[1]=mm1_; xmm_ = u.xmm;      \
-  }
-
-#endif // USE_SSE2
-
-/* natural logarithm computed for 4 simultaneous float 
-   return NaN for x <= 0
-*/
-v4sf log_ps(v4sf x) {
-#ifdef USE_SSE2
-  v4si emm0;
-#else
-  v2si mm0, mm1;
-#endif
-  v4sf one = *(v4sf*)_ps_1;
-
-  v4sf invalid_mask = _mm_cmple_ps(x, _mm_setzero_ps());
-  v4sf e, mask, tmp, z, y;
-
-  x = _mm_max_ps(x, *(v4sf*)_ps_min_norm_pos);  /* cut off denormalized stuff */
-
-#ifndef USE_SSE2
-  /* part 1: x = frexpf(x, &e); */
-  COPY_XMM_TO_MM(x, mm0, mm1);
-  mm0 = _mm_srli_pi32(mm0, 23);
-  mm1 = _mm_srli_pi32(mm1, 23);
-#else
-  emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23);
-#endif
-  /* keep only the fractional part */
-  x = _mm_and_ps(x, *(v4sf*)_ps_inv_mant_mask);
-  x = _mm_or_ps(x, *(v4sf*)_ps_0p5);
-
-#ifndef USE_SSE2
-  /* now e=mm0:mm1 contain the really base-2 exponent */
-  mm0 = _mm_sub_pi32(mm0, *(v2si*)_pi32_0x7f);
-  mm1 = _mm_sub_pi32(mm1, *(v2si*)_pi32_0x7f);
-  e = _mm_cvtpi32x2_ps(mm0, mm1);
-  _mm_empty(); /* bye bye mmx */
-#else
-  emm0 = _mm_sub_epi32(emm0, *(v4si*)_pi32_0x7f);
-  e = _mm_cvtepi32_ps(emm0);
-#endif
-
-  e = _mm_add_ps(e, one);
-
-  /* part2: 
-     if( x < SQRTHF ) {
-       e -= 1;
-       x = x + x - 1.0;
-     } else { x = x - 1.0; }
-  */
-
-  mask = _mm_cmplt_ps(x, *(v4sf*)_ps_cephes_SQRTHF);
-  tmp = _mm_and_ps(x, mask);
-  x = _mm_sub_ps(x, one);
-  e = _mm_sub_ps(e, _mm_and_ps(one, mask));
-  x = _mm_add_ps(x, tmp);
-
-
-  z = _mm_mul_ps(x,x);
-
-  y = *(v4sf*)_ps_cephes_log_p0;
-  y = _mm_mul_ps(y, x);
-  y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p1);
-  y = _mm_mul_ps(y, x);
-  y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p2);
-  y = _mm_mul_ps(y, x);
-  y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p3);
-  y = _mm_mul_ps(y, x);
-  y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p4);
-  y = _mm_mul_ps(y, x);
-  y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p5);
-  y = _mm_mul_ps(y, x);
-  y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p6);
-  y = _mm_mul_ps(y, x);
-  y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p7);
-  y = _mm_mul_ps(y, x);
-  y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p8);
-  y = _mm_mul_ps(y, x);
-
-  y = _mm_mul_ps(y, z);
-  
-
-  tmp = _mm_mul_ps(e, *(v4sf*)_ps_cephes_log_q1);
-  y = _mm_add_ps(y, tmp);
-
-
-  tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
-  y = _mm_sub_ps(y, tmp);
-
-  tmp = _mm_mul_ps(e, *(v4sf*)_ps_cephes_log_q2);
-  x = _mm_add_ps(x, y);
-  x = _mm_add_ps(x, tmp);
-  x = _mm_or_ps(x, invalid_mask); // negative arg will be NAN
-  return x;
-}
-
-_PS_CONST(exp_hi,      88.3762626647949f);
-_PS_CONST(exp_lo,      -88.3762626647949f);
-
-_PS_CONST(cephes_LOG2EF, 1.44269504088896341);
-_PS_CONST(cephes_exp_C1, 0.693359375);
-_PS_CONST(cephes_exp_C2, -2.12194440e-4);
-
-_PS_CONST(cephes_exp_p0, 1.9875691500E-4);
-_PS_CONST(cephes_exp_p1, 1.3981999507E-3);
-_PS_CONST(cephes_exp_p2, 8.3334519073E-3);
-_PS_CONST(cephes_exp_p3, 4.1665795894E-2);
-_PS_CONST(cephes_exp_p4, 1.6666665459E-1);
-_PS_CONST(cephes_exp_p5, 5.0000001201E-1);
-
-v4sf exp_ps(v4sf x) {
-  v4sf tmp = _mm_setzero_ps(), fx;
-#ifdef USE_SSE2
-  v4si emm0;
-#else
-  v2si mm0, mm1;
-#endif
-  v4sf one = *(v4sf*)_ps_1;
-  v4sf mask, z, y, pow2n; 
-
-  x = _mm_min_ps(x, *(v4sf*)_ps_exp_hi);
-  x = _mm_max_ps(x, *(v4sf*)_ps_exp_lo);
-
-  /* express exp(x) as exp(g + n*log(2)) */
-  fx = _mm_mul_ps(x, *(v4sf*)_ps_cephes_LOG2EF);
-  fx = _mm_add_ps(fx, *(v4sf*)_ps_0p5);
-
-  /* how to perform a floorf with SSE: just below */
-#ifndef USE_SSE2
-  /* step 1 : cast to int */
-  tmp = _mm_movehl_ps(tmp, fx);
-  mm0 = _mm_cvttps_pi32(fx);
-  mm1 = _mm_cvttps_pi32(tmp);
-  /* step 2 : cast back to float */
-  tmp = _mm_cvtpi32x2_ps(mm0, mm1);
-#else
-  emm0 = _mm_cvttps_epi32(fx);
-  tmp  = _mm_cvtepi32_ps(emm0);
-#endif
-  /* if greater, substract 1 */
-  mask = _mm_cmpgt_ps(tmp, fx);    
-  mask = _mm_and_ps(mask, one);
-  fx = _mm_sub_ps(tmp, mask);
-
-  tmp = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C1);
-  z = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C2);
-  x = _mm_sub_ps(x, tmp);
-  x = _mm_sub_ps(x, z);
-
-  z = _mm_mul_ps(x,x);
-  
-  y = *(v4sf*)_ps_cephes_exp_p0;
-  y = _mm_mul_ps(y, x);
-  y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p1);
-  y = _mm_mul_ps(y, x);
-  y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p2);
-  y = _mm_mul_ps(y, x);
-  y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p3);
-  y = _mm_mul_ps(y, x);
-  y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p4);
-  y = _mm_mul_ps(y, x);
-  y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p5);
-  y = _mm_mul_ps(y, z);
-  y = _mm_add_ps(y, x);
-  y = _mm_add_ps(y, one);
-
-  /* build 2^n */
-#ifndef USE_SSE2
-  z = _mm_movehl_ps(z, fx);
-  mm0 = _mm_cvttps_pi32(fx);
-  mm1 = _mm_cvttps_pi32(z);
-  mm0 = _mm_add_pi32(mm0, *(v2si*)_pi32_0x7f);
-  mm1 = _mm_add_pi32(mm1, *(v2si*)_pi32_0x7f);
-  mm0 = _mm_slli_pi32(mm0, 23); 
-  mm1 = _mm_slli_pi32(mm1, 23);
-  
-  COPY_MM_TO_XMM(mm0, mm1, pow2n);
-  _mm_empty();
-#else
-  emm0 = _mm_cvttps_epi32(fx);
-  emm0 = _mm_add_epi32(emm0, *(v4si*)_pi32_0x7f);
-  emm0 = _mm_slli_epi32(emm0, 23);
-  pow2n = _mm_castsi128_ps(emm0);
-#endif
-  y = _mm_mul_ps(y, pow2n);
-  return y;
-}
-
-_PS_CONST(minus_cephes_DP1, -0.78515625);
-_PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4);
-_PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8);
-_PS_CONST(sincof_p0, -1.9515295891E-4);
-_PS_CONST(sincof_p1,  8.3321608736E-3);
-_PS_CONST(sincof_p2, -1.6666654611E-1);
-_PS_CONST(coscof_p0,  2.443315711809948E-005);
-_PS_CONST(coscof_p1, -1.388731625493765E-003);
-_PS_CONST(coscof_p2,  4.166664568298827E-002);
-_PS_CONST(cephes_FOPI, 1.27323954473516); // 4 / M_PI
-
-
-/* evaluation of 4 sines at onces, using only SSE1+MMX intrinsics so
-   it runs also on old athlons XPs and the pentium III of your grand
-   mother.
-
-   The code is the exact rewriting of the cephes sinf function.
-   Precision is excellent as long as x < 8192 (I did not bother to
-   take into account the special handling they have for greater values
-   -- it does not return garbage for arguments over 8192, though, but
-   the extra precision is missing).
-
-   Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
-   surprising but correct result.
-
-   Performance is also surprisingly good, 1.33 times faster than the
-   macos vsinf SSE2 function, and 1.5 times faster than the
-   __vrs4_sinf of amd's ACML (which is only available in 64 bits). Not
-   too bad for an SSE1 function (with no special tuning) !
-   However the latter libraries probably have a much better handling of NaN,
-   Inf, denormalized and other special arguments..
-
-   On my core 1 duo, the execution of this function takes approximately 95 cycles.
-
-   From what I have observed on the experiments with Intel AMath lib, switching to an
-   SSE2 version would improve the perf by only 10%.
-
-   Since it is based on SSE intrinsics, it has to be compiled at -O2 to
-   deliver full speed.
-*/
-v4sf sin_ps(v4sf x) { // any x
-  v4sf xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y;
-
-#ifdef USE_SSE2
-  v4si emm0, emm2;
-#else
-  v2si mm0, mm1, mm2, mm3;
-#endif
-  v4sf swap_sign_bit, poly_mask, z, tmp, y2;
-
-  sign_bit = x;
-  /* take the absolute value */
-  x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
-  /* extract the sign bit (upper one) */
-  sign_bit = _mm_and_ps(sign_bit, *(v4sf*)_ps_sign_mask);
-  
-  /* scale by 4/Pi */
-  y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
-
-  //printf("plop:"); print4(y); 
-#ifdef USE_SSE2
-  /* store the integer part of y in mm0 */
-  emm2 = _mm_cvttps_epi32(y);
-  /* j=(j+1) & (~1) (see the cephes sources) */
-  emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
-  emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
-  y = _mm_cvtepi32_ps(emm2);
-  /* get the swap sign flag */
-  emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4);
-  emm0 = _mm_slli_epi32(emm0, 29);
-  /* get the polynom selection mask 
-     there is one polynom for 0 <= x <= Pi/4
-     and another one for Pi/4<x<=Pi/2
-
-     Both branches will be computed.
-  */
-  emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
-  emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
-  
-  swap_sign_bit = _mm_castsi128_ps(emm0);
-  poly_mask = _mm_castsi128_ps(emm2);
-  sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
-#else
-  /* store the integer part of y in mm0:mm1 */
-  xmm2 = _mm_movehl_ps(xmm2, y);
-  mm2 = _mm_cvttps_pi32(y);
-  mm3 = _mm_cvttps_pi32(xmm2);
-  /* j=(j+1) & (~1) (see the cephes sources) */
-  mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1);
-  mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1);
-  mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1);
-  mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1);
-  y = _mm_cvtpi32x2_ps(mm2, mm3);
-  /* get the swap sign flag */
-  mm0 = _mm_and_si64(mm2, *(v2si*)_pi32_4);
-  mm1 = _mm_and_si64(mm3, *(v2si*)_pi32_4);
-  mm0 = _mm_slli_pi32(mm0, 29);
-  mm1 = _mm_slli_pi32(mm1, 29);
-  /* get the polynom selection mask */
-  mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2);
-  mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2);
-  mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64());
-  mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64());
-
-  COPY_MM_TO_XMM(mm0, mm1, swap_sign_bit);
-  COPY_MM_TO_XMM(mm2, mm3, poly_mask);
-  sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
-  _mm_empty(); /* good-bye mmx */
-#endif
-  
-  /* The magic pass: "Extended precision modular arithmetic" 
-     x = ((x - y * DP1) - y * DP2) - y * DP3; */
-  xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
-  xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
-  xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
-  xmm1 = _mm_mul_ps(y, xmm1);
-  xmm2 = _mm_mul_ps(y, xmm2);
-  xmm3 = _mm_mul_ps(y, xmm3);
-  x = _mm_add_ps(x, xmm1);
-  x = _mm_add_ps(x, xmm2);
-  x = _mm_add_ps(x, xmm3);
-
-  /* Evaluate the first polynom  (0 <= x <= Pi/4) */
-  y = *(v4sf*)_ps_coscof_p0;
-  z = _mm_mul_ps(x,x);
-
-  y = _mm_mul_ps(y, z);
-  y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
-  y = _mm_mul_ps(y, z);
-  y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
-  y = _mm_mul_ps(y, z);
-  y = _mm_mul_ps(y, z);
-  tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
-  y = _mm_sub_ps(y, tmp);
-  y = _mm_add_ps(y, *(v4sf*)_ps_1);
-  
-  /* Evaluate the second polynom  (Pi/4 <= x <= 0) */
-
-  y2 = *(v4sf*)_ps_sincof_p0;
-  y2 = _mm_mul_ps(y2, z);
-  y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
-  y2 = _mm_mul_ps(y2, z);
-  y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
-  y2 = _mm_mul_ps(y2, z);
-  y2 = _mm_mul_ps(y2, x);
-  y2 = _mm_add_ps(y2, x);
-
-  /* select the correct result from the two polynoms */  
-  xmm3 = poly_mask;
-  y2 = _mm_and_ps(xmm3, y2); //, xmm3);
-  y = _mm_andnot_ps(xmm3, y);
-  y = _mm_add_ps(y,y2);
-  /* update the sign */
-  y = _mm_xor_ps(y, sign_bit);
-
-  return y;
-}
-
-/* almost the same as sin_ps */
-v4sf cos_ps(v4sf x) { // any x
-  v4sf xmm1, xmm2 = _mm_setzero_ps(), xmm3, y;
-#ifdef USE_SSE2
-  v4si emm0, emm2;
-#else
-  v2si mm0, mm1, mm2, mm3;
-#endif
-  v4sf sign_bit, poly_mask, z, tmp, y2;
-
-  /* take the absolute value */
-  x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
-  
-  /* scale by 4/Pi */
-  y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
-  
-#ifdef USE_SSE2
-  /* store the integer part of y in mm0 */
-  emm2 = _mm_cvttps_epi32(y);
-  /* j=(j+1) & (~1) (see the cephes sources) */
-  emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
-  emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
-  y = _mm_cvtepi32_ps(emm2);
-
-  emm2 = _mm_sub_epi32(emm2, *(v4si*)_pi32_2);
-  
-  /* get the swap sign flag */
-  emm0 = _mm_andnot_si128(emm2, *(v4si*)_pi32_4);
-  emm0 = _mm_slli_epi32(emm0, 29);
-  /* get the polynom selection mask */
-  emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
-  emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
-  
-  sign_bit = _mm_castsi128_ps(emm0);
-  poly_mask = _mm_castsi128_ps(emm2);
-#else
-  /* store the integer part of y in mm0:mm1 */
-  xmm2 = _mm_movehl_ps(xmm2, y);
-  mm2 = _mm_cvttps_pi32(y);
-  mm3 = _mm_cvttps_pi32(xmm2);
-
-  /* j=(j+1) & (~1) (see the cephes sources) */
-  mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1);
-  mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1);
-  mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1);
-  mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1);
-
-  y = _mm_cvtpi32x2_ps(mm2, mm3);
-
-
-  mm2 = _mm_sub_pi32(mm2, *(v2si*)_pi32_2);
-  mm3 = _mm_sub_pi32(mm3, *(v2si*)_pi32_2);
-
-  /* get the swap sign flag in mm0:mm1 and the 
-     polynom selection mask in mm2:mm3 */
-
-  mm0 = _mm_andnot_si64(mm2, *(v2si*)_pi32_4);
-  mm1 = _mm_andnot_si64(mm3, *(v2si*)_pi32_4);
-  mm0 = _mm_slli_pi32(mm0, 29);
-  mm1 = _mm_slli_pi32(mm1, 29);
-
-  mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2);
-  mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2);
-
-  mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64());
-  mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64());
-
-  COPY_MM_TO_XMM(mm0, mm1, sign_bit);
-  COPY_MM_TO_XMM(mm2, mm3, poly_mask);
-  _mm_empty(); /* good-bye mmx */
-#endif
-  /* The magic pass: "Extended precision modular arithmetic" 
-     x = ((x - y * DP1) - y * DP2) - y * DP3; */
-  xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
-  xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
-  xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
-  xmm1 = _mm_mul_ps(y, xmm1);
-  xmm2 = _mm_mul_ps(y, xmm2);
-  xmm3 = _mm_mul_ps(y, xmm3);
-  x = _mm_add_ps(x, xmm1);
-  x = _mm_add_ps(x, xmm2);
-  x = _mm_add_ps(x, xmm3);
-  
-  /* Evaluate the first polynom  (0 <= x <= Pi/4) */
-  y = *(v4sf*)_ps_coscof_p0;
-  z = _mm_mul_ps(x,x);
-
-  y = _mm_mul_ps(y, z);
-  y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
-  y = _mm_mul_ps(y, z);
-  y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
-  y = _mm_mul_ps(y, z);
-  y = _mm_mul_ps(y, z);
-  tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
-  y = _mm_sub_ps(y, tmp);
-  y = _mm_add_ps(y, *(v4sf*)_ps_1);
-  
-  /* Evaluate the second polynom  (Pi/4 <= x <= 0) */
-
-  y2 = *(v4sf*)_ps_sincof_p0;
-  y2 = _mm_mul_ps(y2, z);
-  y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
-  y2 = _mm_mul_ps(y2, z);
-  y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
-  y2 = _mm_mul_ps(y2, z);
-  y2 = _mm_mul_ps(y2, x);
-  y2 = _mm_add_ps(y2, x);
-
-  /* select the correct result from the two polynoms */  
-  xmm3 = poly_mask;
-  y2 = _mm_and_ps(xmm3, y2); //, xmm3);
-  y = _mm_andnot_ps(xmm3, y);
-  y = _mm_add_ps(y,y2);
-  /* update the sign */
-  y = _mm_xor_ps(y, sign_bit);
-
-  return y;
-}
-
-/* since sin_ps and cos_ps are almost identical, sincos_ps could replace both of them..
-   it is almost as fast, and gives you a free cosine with your sine */
-void sincos_ps(v4sf x, v4sf *s, v4sf *c) {
-  v4sf xmm1, xmm2, xmm3 = _mm_setzero_ps(), sign_bit_sin, y;
-#ifdef USE_SSE2
-  v4si emm0, emm2, emm4;
-#else
-  v2si mm0, mm1, mm2, mm3, mm4, mm5;
-#endif
-  v4sf swap_sign_bit_sin, poly_mask, z, tmp, y2, ysin1, ysin2;
-  v4sf sign_bit_cos;
-
-  sign_bit_sin = x;
-  /* take the absolute value */
-  x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
-  /* extract the sign bit (upper one) */
-  sign_bit_sin = _mm_and_ps(sign_bit_sin, *(v4sf*)_ps_sign_mask);
-  
-  /* scale by 4/Pi */
-  y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
-    
-#ifdef USE_SSE2
-  /* store the integer part of y in emm2 */
-  emm2 = _mm_cvttps_epi32(y);
-
-  /* j=(j+1) & (~1) (see the cephes sources) */
-  emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
-  emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
-  y = _mm_cvtepi32_ps(emm2);
-
-  emm4 = emm2;
-
-  /* get the swap sign flag for the sine */
-  emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4);
-  emm0 = _mm_slli_epi32(emm0, 29);
-  swap_sign_bit_sin = _mm_castsi128_ps(emm0);
-
-  /* get the polynom selection mask for the sine*/
-  emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
-  emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
-  poly_mask = _mm_castsi128_ps(emm2);
-#else
-  /* store the integer part of y in mm2:mm3 */
-  xmm3 = _mm_movehl_ps(xmm3, y);
-  mm2 = _mm_cvttps_pi32(y);
-  mm3 = _mm_cvttps_pi32(xmm3);
-
-  /* j=(j+1) & (~1) (see the cephes sources) */
-  mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1);
-  mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1);
-  mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1);
-  mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1);
-
-  y = _mm_cvtpi32x2_ps(mm2, mm3);
-
-  mm4 = mm2;
-  mm5 = mm3;
-
-  /* get the swap sign flag for the sine */
-  mm0 = _mm_and_si64(mm2, *(v2si*)_pi32_4);
-  mm1 = _mm_and_si64(mm3, *(v2si*)_pi32_4);
-  mm0 = _mm_slli_pi32(mm0, 29);
-  mm1 = _mm_slli_pi32(mm1, 29);
-
-  COPY_MM_TO_XMM(mm0, mm1, swap_sign_bit_sin);
-
-  /* get the polynom selection mask for the sine */
-
-  mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2);
-  mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2);
-  mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64());
-  mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64());
-
-  COPY_MM_TO_XMM(mm2, mm3, poly_mask);
-#endif
-
-  /* The magic pass: "Extended precision modular arithmetic" 
-     x = ((x - y * DP1) - y * DP2) - y * DP3; */
-  xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
-  xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
-  xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
-  xmm1 = _mm_mul_ps(y, xmm1);
-  xmm2 = _mm_mul_ps(y, xmm2);
-  xmm3 = _mm_mul_ps(y, xmm3);
-  x = _mm_add_ps(x, xmm1);
-  x = _mm_add_ps(x, xmm2);
-  x = _mm_add_ps(x, xmm3);
-
-#ifdef USE_SSE2
-  emm4 = _mm_sub_epi32(emm4, *(v4si*)_pi32_2);
-  emm4 = _mm_andnot_si128(emm4, *(v4si*)_pi32_4);
-  emm4 = _mm_slli_epi32(emm4, 29);
-  sign_bit_cos = _mm_castsi128_ps(emm4);
-#else
-  /* get the sign flag for the cosine */
-  mm4 = _mm_sub_pi32(mm4, *(v2si*)_pi32_2);
-  mm5 = _mm_sub_pi32(mm5, *(v2si*)_pi32_2);
-  mm4 = _mm_andnot_si64(mm4, *(v2si*)_pi32_4);
-  mm5 = _mm_andnot_si64(mm5, *(v2si*)_pi32_4);
-  mm4 = _mm_slli_pi32(mm4, 29);
-  mm5 = _mm_slli_pi32(mm5, 29);
-  COPY_MM_TO_XMM(mm4, mm5, sign_bit_cos);
-  _mm_empty(); /* good-bye mmx */
-#endif
-
-  sign_bit_sin = _mm_xor_ps(sign_bit_sin, swap_sign_bit_sin);
-
-  
-  /* Evaluate the first polynom  (0 <= x <= Pi/4) */
-  z = _mm_mul_ps(x,x);
-  y = *(v4sf*)_ps_coscof_p0;
-
-  y = _mm_mul_ps(y, z);
-  y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
-  y = _mm_mul_ps(y, z);
-  y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
-  y = _mm_mul_ps(y, z);
-  y = _mm_mul_ps(y, z);
-  tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
-  y = _mm_sub_ps(y, tmp);
-  y = _mm_add_ps(y, *(v4sf*)_ps_1);
-  
-  /* Evaluate the second polynom  (Pi/4 <= x <= 0) */
-
-  y2 = *(v4sf*)_ps_sincof_p0;
-  y2 = _mm_mul_ps(y2, z);
-  y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
-  y2 = _mm_mul_ps(y2, z);
-  y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
-  y2 = _mm_mul_ps(y2, z);
-  y2 = _mm_mul_ps(y2, x);
-  y2 = _mm_add_ps(y2, x);
-
-  /* select the correct result from the two polynoms */  
-  xmm3 = poly_mask;
-  ysin2 = _mm_and_ps(xmm3, y2);
-  ysin1 = _mm_andnot_ps(xmm3, y);
-  y2 = _mm_sub_ps(y2,ysin2);
-  y = _mm_sub_ps(y, ysin1);
-
-  xmm1 = _mm_add_ps(ysin1,ysin2);
-  xmm2 = _mm_add_ps(y,y2);
-  /* update the sign */
-  *s = _mm_xor_ps(xmm1, sign_bit_sin);
-  *c = _mm_xor_ps(xmm2, sign_bit_cos);
-}
-