This program also generates the function `peephole2_insns', which
returns 0 if the rtl could not be matched. If there was a match,
the new rtl is returned in an INSN list, and LAST_INSN will point
- to the last recognized insn in the old sequence. */
+ to the last recognized insn in the old sequence.
+
+
+ At a high level, the algorithm used in this file is as follows:
+
+ 1. Build up a decision tree for each routine, using the following
+ approach to matching an rtx:
+
+ - First determine the "shape" of the rtx, based on GET_CODE,
+ XVECLEN and XINT. This phase examines SET_SRCs before SET_DESTs
+ since SET_SRCs tend to be more distinctive. It examines other
+ operands in numerical order, since the canonicalization rules
+ prefer putting complex operands of commutative operators first.
+
+ - Next check modes and predicates. This phase examines all
+ operands in numerical order, even for SETs, since the mode of a
+ SET_DEST is exact while the mode of a SET_SRC can be VOIDmode
+ for constant integers.
+
+ - Next check match_dups.
+
+ - Finally check the C condition and (where appropriate) pnum_clobbers.
+
+ 2. Try to optimize the tree by removing redundant tests, CSEing tests,
+ folding tests together, etc.
+
+ 3. Look for common subtrees and split them out into "pattern" routines.
+ These common subtrees can be identical or they can differ in mode,
+ code, or integer (usually an UNSPEC or UNSPEC_VOLATILE code).
+ In the latter case the users of the pattern routine pass the
+ appropriate mode, etc., as argument. For example, if two patterns
+ contain:
+
+ (plus:SI (match_operand:SI 1 "register_operand")
+ (match_operand:SI 2 "register_operand"))
+
+ we can split the associated matching code out into a subroutine.
+ If a pattern contains:
+
+ (minus:DI (match_operand:DI 1 "register_operand")
+ (match_operand:DI 2 "register_operand"))
+
+ then we can consider using the same matching routine for both
+ the plus and minus expressions, passing PLUS and SImode in the
+ former case and MINUS and DImode in the latter case.
+
+ The main aim of this phase is to reduce the compile time of the
+ insn-recog.c code and to reduce the amount of object code in
+ insn-recog.o.
+
+ 4. Split the matching trees into functions, trying to limit the
+ size of each function to a sensible amount.
+
+ Again, the main aim of this phase is to reduce the compile time
+ of insn-recog.c. (It doesn't help with the size of insn-recog.o.)
+
+ 5. Write out C++ code for each function. */
#include "bconfig.h"
#include "system.h"
#include "errors.h"
#include "read-md.h"
#include "gensupport.h"
-
-#define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
- printf ("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
+#include "hash-table.h"
+#include "inchash.h"
+#include <algorithm>
+
+#undef GENERATOR_FILE
+enum true_rtx_doe {
+#define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) TRUE_##ENUM,
+#include "rtl.def"
+#undef DEF_RTL_EXPR
+ FIRST_GENERATOR_RTX_CODE
+};
+#define NUM_TRUE_RTX_CODE ((int) FIRST_GENERATOR_RTX_CODE)
+#define GENERATOR_FILE 1
+
+/* Debugging variables to control which optimizations are performed.
+ Note that disabling merge_states_p leads to very large output. */
+static const bool merge_states_p = true;
+static const bool collapse_optional_decisions_p = true;
+static const bool cse_tests_p = true;
+static const bool simplify_tests_p = true;
+static const bool use_operand_variables_p = true;
+static const bool use_subroutines_p = true;
+static const bool use_pattern_routines_p = true;
+
+/* Whether to add comments for optional tests that we decided to keep.
+ Can be useful when debugging the generator itself but is noise when
+ debugging the generated code. */
+static const bool mark_optional_transitions_p = false;
+
+/* Whether pattern routines should calculate positions relative to their
+ rtx parameter rather than use absolute positions. This e.g. allows
+ a pattern routine to be shared between a plain SET and a PARALLEL
+ that includes a SET.
+
+ In principle it sounds like this should be useful, especially for
+ recog_for_combine, where the plain SET form is generated automatically
+ from a PARALLEL of a single SET and some CLOBBERs. In practice it doesn't
+ seem to help much and leads to slightly bigger object files. */
+static const bool relative_patterns_p = false;
+
+/* Whether pattern routines should be allowed to test whether pnum_clobbers
+ is null. This requires passing pnum_clobbers around as a parameter. */
+static const bool pattern_have_num_clobbers_p = true;
+
+/* Whether pattern routines should be allowed to test .md file C conditions.
+ This requires passing insn around as a parameter, in case the C
+ condition refers to it. In practice this tends to lead to bigger
+ object files. */
+static const bool pattern_c_test_p = false;
+
+/* Whether to require each parameter passed to a pattern routine to be
+ unique. Disabling this check for example allows unary operators with
+ matching modes (like NEG) and unary operators with mismatched modes
+ (like ZERO_EXTEND) to be matched by a single pattern. However, we then
+ often have cases where the same value is passed too many times. */
+static const bool force_unique_params_p = true;
+
+/* The maximum (approximate) depth of block nesting that an individual
+ routine or subroutine should have. This limit is about keeping the
+ output readable rather than reducing compile time. */
+static const int MAX_DEPTH = 6;
+
+/* The minimum number of pseudo-statements that a state must have before
+ we split it out into a subroutine. */
+static const int MIN_NUM_STATEMENTS = 5;
+
+/* The number of pseudo-statements a state can have before we consider
+ splitting out substates into subroutines. This limit is about avoiding
+ compile-time problems with very big functions (and also about keeping
+ functions within --param optimization limits, etc.). */
+static const int MAX_NUM_STATEMENTS = 200;
+
+/* The minimum number of pseudo-statements that can be used in a pattern
+ routine. */
+static const unsigned int MIN_COMBINE_COST = 4;
+
+/* The maximum number of arguments that a pattern routine can have.
+ The idea is to prevent one pattern getting a ridiculous number of
+ arguments when it would be more beneficial to have a separate pattern
+ routine instead. */
+static const unsigned int MAX_PATTERN_PARAMS = 5;
+
+/* The maximum operand number plus one. */
+int num_operands;
/* Ways of obtaining an rtx to be tested. */
enum position_type {
/* The argument to TYPE (shown as ARG in the position_type comments). */
int arg;
- /* The depth of this position, with 0 as the root. */
- int depth;
-};
-
-/* A listhead of decision trees. The alternatives to a node are kept
- in a doubly-linked list so we can easily add nodes to the proper
- place when merging. */
-
-struct decision_head
-{
- struct decision *first;
- struct decision *last;
-};
-
-/* These types are roughly in the order in which we'd like to test them. */
-enum decision_type
-{
- DT_num_insns,
- DT_mode, DT_code, DT_veclen,
- DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
- DT_const_int,
- DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
- DT_accept_op, DT_accept_insn
-};
-
-/* A single test. The two accept types aren't tests per-se, but
- their equality (or lack thereof) does affect tree merging so
- it is convenient to keep them here. */
-
-struct decision_test
-{
- /* A linked list through the tests attached to a node. */
- struct decision_test *next;
-
- enum decision_type type;
-
- union
- {
- int num_insns; /* Number if insn in a define_peephole2. */
- machine_mode mode; /* Machine mode of node. */
- RTX_CODE code; /* Code to test. */
-
- struct
- {
- const char *name; /* Predicate to call. */
- const struct pred_data *data;
- /* Optimization hints for this predicate. */
- machine_mode mode; /* Machine mode for node. */
- } pred;
-
- const char *c_test; /* Additional test to perform. */
- int veclen; /* Length of vector. */
- int dup; /* Number of operand to compare against. */
- HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
- int opno; /* Operand number matched. */
-
- struct {
- int code_number; /* Insn number matched. */
- int lineno; /* Line number of the insn. */
- int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
- } insn;
- } u;
-};
+ /* The instruction to which the position belongs. */
+ unsigned int insn_id;
-/* Data structure for decision tree for recognizing legitimate insns. */
+ /* The depth of this position relative to the instruction pattern.
+ E.g. if the instruction pattern is a SET, the SET itself has a
+ depth of 0 while the SET_DEST and SET_SRC have depths of 1. */
+ unsigned int depth;
-struct decision
-{
- struct decision_head success; /* Nodes to test on success. */
- struct decision *next; /* Node to test on failure. */
- struct decision *prev; /* Node whose failure tests us. */
- struct decision *afterward; /* Node to test on success,
- but failure of successor nodes. */
-
- struct position *position; /* Position in pattern. */
-
- struct decision_test *tests; /* The tests for this node. */
-
- int number; /* Node number, used for labels */
- int subroutine_number; /* Number of subroutine this node starts */
- int need_label; /* Label needs to be output. */
+ /* A unique identifier for this position. */
+ unsigned int id;
};
-#define SUBROUTINE_THRESHOLD 100
-
-static int next_subroutine_number;
-
-/* We can write three types of subroutines: One for insn recognition,
- one to split insns, and one for peephole-type optimizations. This
- defines which type is being written. */
-
enum routine_type {
- RECOG, SPLIT, PEEPHOLE2
+ SUBPATTERN, RECOG, SPLIT, PEEPHOLE2
};
-#define IS_SPLIT(X) ((X) != RECOG)
-
-/* Next available node number for tree nodes. */
-
-static int next_number;
-
/* Next number to use as an insn_code. */
-
static int next_insn_code;
-/* Record the highest depth we ever have so we know how many variables to
- allocate in each subroutine we make. */
-
-static int max_depth;
-
/* The line number of the start of the pattern currently being processed. */
static int pattern_lineno;
/* The root position (x0). */
static struct position root_pos;
+/* The number of positions created. Also one higher than the maximum
+ position id. */
+static unsigned int num_positions = 1;
+
/* A list of all POS_PEEP2_INSNs. The entry for insn 0 is the root position,
since we are given that instruction's pattern as x0. */
static struct position *peep2_insn_pos_list = &root_pos;
\f
-extern void debug_decision
- (struct decision *);
-extern void debug_decision_list
- (struct decision *);
-\f
/* Return a position with the given BASE, TYPE and ARG. NEXT_PTR
points to where the unique object that represents the position
should be stored. Create the object if it doesn't already exist,
if (!pos)
{
pos = XCNEW (struct position);
- pos->base = base;
pos->type = type;
pos->arg = arg;
- pos->depth = base->depth + 1;
+ if (type == POS_PEEP2_INSN)
+ {
+ pos->base = 0;
+ pos->insn_id = arg;
+ pos->depth = base->depth;
+ }
+ else
+ {
+ pos->base = base;
+ pos->insn_id = base->insn_id;
+ pos->depth = base->depth + 1;
+ }
+ pos->id = num_positions++;
*next_ptr = pos;
}
return pos;
return diff;
}
-/* Create a new node in sequence after LAST. */
-
-static struct decision *
-new_decision (struct position *pos, struct decision_head *last)
-{
- struct decision *new_decision = XCNEW (struct decision);
-
- new_decision->success = *last;
- new_decision->position = pos;
- new_decision->number = next_number++;
-
- last->first = last->last = new_decision;
- return new_decision;
-}
-
-/* Create a new test and link it in at PLACE. */
+/* Return the most deeply-nested position that is common to both
+ POS1 and POS2. If the positions are from different instructions,
+ return the one with the lowest insn_id. */
-static struct decision_test *
-new_decision_test (enum decision_type type, struct decision_test ***pplace)
+static struct position *
+common_position (struct position *pos1, struct position *pos2)
{
- struct decision_test **place = *pplace;
- struct decision_test *test;
-
- test = XNEW (struct decision_test);
- test->next = *place;
- test->type = type;
- *place = test;
-
- place = &test->next;
- *pplace = place;
-
- return test;
+ if (pos1->insn_id != pos2->insn_id)
+ return pos1->insn_id < pos2->insn_id ? pos1 : pos2;
+ if (pos1->depth > pos2->depth)
+ std::swap (pos1, pos2);
+ while (pos1->depth != pos2->depth)
+ pos2 = pos2->base;
+ while (pos1 != pos2)
+ {
+ pos1 = pos1->base;
+ pos2 = pos2->base;
+ }
+ return pos1;
}
-
+\f
/* Search for and return operand N, stop when reaching node STOP. */
static rtx
}
}
}
-
-/* Create a chain of nodes to verify that an rtl expression matches
- PATTERN.
-
- LAST is a pointer to the listhead in the previous node in the chain (or
- in the calling function, for the first node).
-
- POSITION is the current position in the insn.
-
- INSN_TYPE is the type of insn for which we are emitting code.
-
- A pointer to the final node in the chain is returned. */
-
-static struct decision *
-add_to_sequence (rtx pattern, struct decision_head *last,
- struct position *pos, enum routine_type insn_type, int top)
+\f
+/* Simple list structure for items of type T, for use when being part
+ of a list is an inherent property of T. T must have members equivalent
+ to "T *prev, *next;" and a function "void set_parent (list_head <T> *)"
+ to set the parent list. */
+template <typename T>
+struct list_head
{
- RTX_CODE code;
- struct decision *this_decision, *sub;
- struct decision_test *test;
- struct decision_test **place;
- struct position *subpos, **subpos_ptr;
- size_t i;
- const char *fmt;
- int len;
- machine_mode mode;
- enum position_type pos_type;
+ /* A range of linked items. */
+ struct range
+ {
+ range (T *);
+ range (T *, T *);
- if (pos->depth > max_depth)
- max_depth = pos->depth;
+ T *start, *end;
+ void set_parent (list_head *);
+ };
- sub = this_decision = new_decision (pos, last);
- place = &this_decision->tests;
+ list_head ();
+ range release ();
+ void push_back (range);
+ range remove (range);
+ void replace (range, range);
+ T *singleton () const;
- mode = GET_MODE (pattern);
- code = GET_CODE (pattern);
+ T *first, *last;
+};
- switch (code)
- {
- case PARALLEL:
- /* Toplevel peephole pattern. */
- if (insn_type == PEEPHOLE2 && top)
- {
- int num_insns;
+/* Create a range [START_IN, START_IN]. */
- /* Check we have sufficient insns. This avoids complications
- because we then know peep2_next_insn never fails. */
- num_insns = XVECLEN (pattern, 0);
- if (num_insns > 1)
- {
- test = new_decision_test (DT_num_insns, &place);
- test->u.num_insns = num_insns;
- last = &sub->success;
- }
- else
- {
- /* We don't need the node we just created -- unlink it. */
- last->first = last->last = NULL;
- }
+template <typename T>
+list_head <T>::range::range (T *start_in) : start (start_in), end (start_in) {}
- subpos_ptr = &peep2_insn_pos_list;
- for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
- {
- subpos = next_position (subpos_ptr, &root_pos,
- POS_PEEP2_INSN, i);
- sub = add_to_sequence (XVECEXP (pattern, 0, i),
- last, subpos, insn_type, 0);
- last = &sub->success;
- subpos_ptr = &subpos->next;
- }
- goto ret;
- }
+/* Create a range [START_IN, END_IN], linked by next and prev fields. */
- /* Else nothing special. */
- break;
+template <typename T>
+list_head <T>::range::range (T *start_in, T *end_in)
+ : start (start_in), end (end_in) {}
- case MATCH_PARALLEL:
- /* The explicit patterns within a match_parallel enforce a minimum
- length on the vector. The match_parallel predicate may allow
- for more elements. We do need to check for this minimum here
- or the code generated to match the internals may reference data
- beyond the end of the vector. */
- test = new_decision_test (DT_veclen_ge, &place);
- test->u.veclen = XVECLEN (pattern, 2);
- /* Fall through. */
+template <typename T>
+void
+list_head <T>::range::set_parent (list_head <T> *owner)
+{
+ for (T *item = start; item != end; item = item->next)
+ item->set_parent (owner);
+ end->set_parent (owner);
+}
- case MATCH_OPERAND:
- case MATCH_SCRATCH:
- case MATCH_OPERATOR:
- {
- RTX_CODE was_code = code;
- const char *pred_name;
- bool allows_const_int = true;
+template <typename T>
+list_head <T>::list_head () : first (0), last (0) {}
- if (code == MATCH_SCRATCH)
- {
- pred_name = "scratch_operand";
- code = UNKNOWN;
- }
- else
- {
- pred_name = XSTR (pattern, 1);
- if (code == MATCH_PARALLEL)
- code = PARALLEL;
- else
- code = UNKNOWN;
- }
+/* Add R to the end of the list. */
- if (pred_name[0] != 0)
- {
- const struct pred_data *pred;
+template <typename T>
+void
+list_head <T>::push_back (range r)
+{
+ if (last)
+ last->next = r.start;
+ else
+ first = r.start;
+ r.start->prev = last;
+ last = r.end;
+ r.set_parent (this);
+}
- test = new_decision_test (DT_pred, &place);
- test->u.pred.name = pred_name;
- test->u.pred.mode = mode;
+/* Remove R from the list. R remains valid and can be inserted into
+ other lists. */
- /* See if we know about this predicate.
- If we do, remember it for use below.
+template <typename T>
+typename list_head <T>::range
+list_head <T>::remove (range r)
+{
+ if (r.start->prev)
+ r.start->prev->next = r.end->next;
+ else
+ first = r.end->next;
+ if (r.end->next)
+ r.end->next->prev = r.start->prev;
+ else
+ last = r.start->prev;
+ r.start->prev = 0;
+ r.end->next = 0;
+ r.set_parent (0);
+ return r;
+}
- We can optimize the generated code a little if either
- (a) the predicate only accepts one code, or (b) the
- predicate does not allow CONST_INT or CONST_WIDE_INT,
- in which case it can match only if the modes match. */
- pred = lookup_predicate (pred_name);
- if (pred)
- {
- test->u.pred.data = pred;
- allows_const_int = (pred->codes[CONST_INT]
- || pred->codes[CONST_WIDE_INT]);
- if (was_code == MATCH_PARALLEL
- && pred->singleton != PARALLEL)
- error_with_line (pattern_lineno,
- "predicate '%s' used in match_parallel "
- "does not allow only PARALLEL", pred->name);
- else
- code = pred->singleton;
- }
- else
- error_with_line (pattern_lineno,
- "unknown predicate '%s' in '%s' expression",
- pred_name, GET_RTX_NAME (was_code));
- }
+/* Replace OLDR with NEWR. OLDR remains valid and can be inserted into
+ other lists. */
- /* Can't enforce a mode if we allow const_int. */
- if (allows_const_int)
- mode = VOIDmode;
+template <typename T>
+void
+list_head <T>::replace (range oldr, range newr)
+{
+ newr.start->prev = oldr.start->prev;
+ newr.end->next = oldr.end->next;
- /* Accept the operand, i.e. record it in `operands'. */
- test = new_decision_test (DT_accept_op, &place);
- test->u.opno = XINT (pattern, 0);
+ oldr.start->prev = 0;
+ oldr.end->next = 0;
+ oldr.set_parent (0);
- if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
- {
- if (was_code == MATCH_OPERATOR)
- {
- pos_type = POS_XEXP;
- subpos_ptr = &pos->xexps;
- }
- else
- {
- pos_type = POS_XVECEXP0;
- subpos_ptr = &pos->xvecexp0s;
- }
- for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
- {
- subpos = next_position (subpos_ptr, pos, pos_type, i);
- sub = add_to_sequence (XVECEXP (pattern, 2, i),
- &sub->success, subpos, insn_type, 0);
- subpos_ptr = &subpos->next;
- }
- }
- goto fini;
- }
+ if (newr.start->prev)
+ newr.start->prev->next = newr.start;
+ else
+ first = newr.start;
+ if (newr.end->next)
+ newr.end->next->prev = newr.end;
+ else
+ last = newr.end;
+ newr.set_parent (this);
+}
- case MATCH_OP_DUP:
- code = UNKNOWN;
+/* Empty the list and return the previous contents as a range that can
+ be inserted into other lists. */
- test = new_decision_test (DT_dup, &place);
- test->u.dup = XINT (pattern, 0);
+template <typename T>
+typename list_head <T>::range
+list_head <T>::release ()
+{
+ range r (first, last);
+ first = 0;
+ last = 0;
+ r.set_parent (0);
+ return r;
+}
- test = new_decision_test (DT_accept_op, &place);
- test->u.opno = XINT (pattern, 0);
+/* If the list contains a single item, return that item, otherwise return
+ null. */
- subpos_ptr = &pos->xexps;
- for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
- {
- subpos = next_position (subpos_ptr, pos, POS_XEXP, i);
- sub = add_to_sequence (XVECEXP (pattern, 1, i),
- &sub->success, subpos, insn_type, 0);
- subpos_ptr = &subpos->next;
- }
- goto fini;
+template <typename T>
+T *
+list_head <T>::singleton () const
+{
+ return first == last ? first : 0;
+}
+\f
+struct state;
- case MATCH_DUP:
- case MATCH_PAR_DUP:
- code = UNKNOWN;
+/* Describes a possible successful return from a routine. */
+struct acceptance_type
+{
+ /* The type of routine we're returning from. */
+ routine_type type : 16;
- test = new_decision_test (DT_dup, &place);
- test->u.dup = XINT (pattern, 0);
- goto fini;
+ /* True if this structure only really represents a partial match,
+ and if we must call a subroutine of type TYPE to complete the match.
+ In this case we'll call the subroutine and, if it succeeds, return
+ whatever the subroutine returned.
- default:
- break;
- }
+ False if this structure presents a full match. */
+ unsigned int partial_p : 1;
- fmt = GET_RTX_FORMAT (code);
- len = GET_RTX_LENGTH (code);
+ union
+ {
+ /* If PARTIAL_P, this is the number of the subroutine to call. */
+ int subroutine_id;
- /* Do tests against the current node first. */
- for (i = 0; i < (size_t) len; i++)
+ /* Valid if !PARTIAL_P. */
+ struct
{
- if (fmt[i] == 'i')
- {
- gcc_assert (i < 2);
+ /* The identifier of the matching pattern. For SUBPATTERNs this
+ value belongs to an ad-hoc routine-specific enum. For the
+ others it's the number of an .md file pattern. */
+ int code;
+ union
+ {
+ /* For RECOG, the number of clobbers that must be added to the
+ pattern in order for it to match CODE. */
+ int num_clobbers;
+
+ /* For PEEPHOLE2, the number of additional instructions that were
+ included in the optimization. */
+ int match_len;
+ } u;
+ } full;
+ } u;
+};
- if (!i)
- {
- test = new_decision_test (DT_elt_zero_int, &place);
- test->u.intval = XINT (pattern, i);
- }
- else
- {
- test = new_decision_test (DT_elt_one_int, &place);
- test->u.intval = XINT (pattern, i);
- }
- }
- else if (fmt[i] == 'w')
- {
- /* If this value actually fits in an int, we can use a switch
- statement here, so indicate that. */
- enum decision_type type
- = ((int) XWINT (pattern, i) == XWINT (pattern, i))
- ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
+bool
+operator == (const acceptance_type &a, const acceptance_type &b)
+{
+ if (a.partial_p != b.partial_p)
+ return false;
+ if (a.partial_p)
+ return a.u.subroutine_id == b.u.subroutine_id;
+ else
+ return a.u.full.code == b.u.full.code;
+}
- gcc_assert (!i);
+bool
+operator != (const acceptance_type &a, const acceptance_type &b)
+{
+ return !operator == (a, b);
+}
- test = new_decision_test (type, &place);
- test->u.intval = XWINT (pattern, i);
- }
- else if (fmt[i] == 'E')
- {
- gcc_assert (!i);
+/* Represents a parameter to a pattern routine. */
+struct parameter
+{
+ /* The C type of parameter. */
+ enum type_enum {
+ /* Represents an invalid parameter. */
+ UNSET,
- test = new_decision_test (DT_veclen, &place);
- test->u.veclen = XVECLEN (pattern, i);
- }
- }
+ /* A machine_mode parameter. */
+ MODE,
- /* Now test our sub-patterns. */
- subpos_ptr = &pos->xexps;
- for (i = 0; i < (size_t) len; i++)
- {
- subpos = next_position (subpos_ptr, pos, POS_XEXP, i);
- switch (fmt[i])
- {
- case 'e': case 'u':
- sub = add_to_sequence (XEXP (pattern, i), &sub->success,
- subpos, insn_type, 0);
- break;
+ /* An rtx_code parameter. */
+ CODE,
- case 'E':
- {
- struct position *subpos2, **subpos2_ptr;
- int j;
+ /* An int parameter. */
+ INT,
- subpos2_ptr = &pos->xvecexp0s;
- for (j = 0; j < XVECLEN (pattern, i); j++)
- {
- subpos2 = next_position (subpos2_ptr, pos, POS_XVECEXP0, j);
- sub = add_to_sequence (XVECEXP (pattern, i, j),
- &sub->success, subpos2, insn_type, 0);
- subpos2_ptr = &subpos2->next;
- }
- break;
- }
+ /* A HOST_WIDE_INT parameter. */
+ WIDE_INT
+ };
- case 'i': case 'w':
- /* Handled above. */
- break;
- case '0':
- break;
+ parameter ();
+ parameter (type_enum, bool, uint64_t);
- default:
- gcc_unreachable ();
- }
- subpos_ptr = &subpos->next;
- }
+ /* The type of the parameter. */
+ type_enum type;
- fini:
- /* Insert nodes testing mode and code, if they're still relevant,
- before any of the nodes we may have added above. */
- if (code != UNKNOWN)
- {
- place = &this_decision->tests;
- test = new_decision_test (DT_code, &place);
- test->u.code = code;
- }
+ /* True if the value passed is variable, false if it is constant. */
+ bool is_param;
- if (mode != VOIDmode)
- {
- place = &this_decision->tests;
- test = new_decision_test (DT_mode, &place);
- test->u.mode = mode;
- }
+ /* If IS_PARAM, this is the number of the variable passed, for an "i%d"
+ format string. If !IS_PARAM, this is the constant value passed. */
+ uint64_t value;
+};
- /* If we didn't insert any tests or accept nodes, hork. */
- gcc_assert (this_decision->tests);
+parameter::parameter ()
+ : type (UNSET), is_param (false), value (0) {}
- ret:
- return sub;
-}
-\f
-/* A subroutine of maybe_both_true; examines only one test.
- Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
+parameter::parameter (type_enum type_in, bool is_param_in, uint64_t value_in)
+ : type (type_in), is_param (is_param_in), value (value_in) {}
-static int
-maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
+bool
+operator == (const parameter ¶m1, const parameter ¶m2)
{
- if (d1->type == d2->type)
- {
- switch (d1->type)
- {
- case DT_num_insns:
- if (d1->u.num_insns == d2->u.num_insns)
- return 1;
- else
- return -1;
-
- case DT_mode:
- return d1->u.mode == d2->u.mode;
-
- case DT_code:
- return d1->u.code == d2->u.code;
-
- case DT_veclen:
- return d1->u.veclen == d2->u.veclen;
-
- case DT_elt_zero_int:
- case DT_elt_one_int:
- case DT_elt_zero_wide:
- case DT_elt_zero_wide_safe:
- return d1->u.intval == d2->u.intval;
-
- default:
- break;
- }
- }
+ return (param1.type == param2.type
+ && param1.is_param == param2.is_param
+ && param1.value == param2.value);
+}
- /* If either has a predicate that we know something about, set
- things up so that D1 is the one that always has a known
- predicate. Then see if they have any codes in common. */
+bool
+operator != (const parameter ¶m1, const parameter ¶m2)
+{
+ return !operator == (param1, param2);
+}
- if (d1->type == DT_pred || d2->type == DT_pred)
- {
- if (d2->type == DT_pred)
- {
- struct decision_test *tmp;
- tmp = d1, d1 = d2, d2 = tmp;
- }
+/* Represents a routine that matches a partial rtx pattern, returning
+ an ad-hoc enum value on success and -1 on failure. The routine can
+ be used by any subroutine type. The match can be parameterized by
+ things like mode, code and UNSPEC number. */
+struct pattern_routine
+{
+ /* The state that implements the pattern. */
+ state *s;
- /* If D2 tests a mode, see if it matches D1. */
- if (d1->u.pred.mode != VOIDmode)
- {
- if (d2->type == DT_mode)
- {
- if (d1->u.pred.mode != d2->u.mode
- /* The mode of an address_operand predicate is the
- mode of the memory, not the operand. It can only
- be used for testing the predicate, so we must
- ignore it here. */
- && strcmp (d1->u.pred.name, "address_operand") != 0)
- return 0;
- }
- /* Don't check two predicate modes here, because if both predicates
- accept CONST_INT, then both can still be true even if the modes
- are different. If they don't accept CONST_INT, there will be a
- separate DT_mode that will make maybe_both_true_1 return 0. */
- }
+ /* The deepest root position from which S can access all the rtxes it needs.
+ This is NULL if the pattern doesn't need an rtx input, usually because
+ all matching is done on operands[] instead. */
+ position *pos;
- if (d1->u.pred.data)
- {
- /* If D2 tests a code, see if it is in the list of valid
- codes for D1's predicate. */
- if (d2->type == DT_code)
- {
- if (!d1->u.pred.data->codes[d2->u.code])
- return 0;
- }
+ /* A unique identifier for the routine. */
+ unsigned int pattern_id;
- /* Otherwise see if the predicates have any codes in common. */
- else if (d2->type == DT_pred && d2->u.pred.data)
- {
- bool common = false;
- int c;
+ /* True if the routine takes pnum_clobbers as argument. */
+ bool pnum_clobbers_p;
- for (c = 0; c < NUM_RTX_CODE; c++)
- if (d1->u.pred.data->codes[c] && d2->u.pred.data->codes[c])
- {
- common = true;
- break;
- }
+ /* True if the routine takes the enclosing instruction as argument. */
+ bool insn_p;
- if (!common)
- return 0;
- }
- }
- }
+ /* The types of the other parameters to the routine, if any. */
+ auto_vec <parameter::type_enum, MAX_PATTERN_PARAMS> param_types;
+};
- /* Tests vs veclen may be known when strict equality is involved. */
- if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
- return d1->u.veclen >= d2->u.veclen;
- if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
- return d2->u.veclen >= d1->u.veclen;
+/* All defined patterns. */
+static vec <pattern_routine *> patterns;
- return -1;
-}
+/* Represents one use of a pattern routine. */
+struct pattern_use
+{
+ /* The pattern routine to use. */
+ pattern_routine *routine;
-/* A subroutine of maybe_both_true; examines all the tests for a given node.
- Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
+ /* The values to pass as parameters. This vector has the same length
+ as ROUTINE->PARAM_TYPES. */
+ auto_vec <parameter, MAX_PATTERN_PARAMS> params;
+};
-static int
-maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
+/* Represents a test performed by a decision. */
+struct test
{
- struct decision_test *t1, *t2;
+ test ();
- /* A match_operand with no predicate can match anything. Recognize
- this by the existence of a lone DT_accept_op test. */
- if (d1->type == DT_accept_op || d2->type == DT_accept_op)
- return 1;
+ /* The types of test that can be performed. Most of them take as input
+ an rtx X. Some also take as input a transition label LABEL; the others
+ are booleans for which the transition label is always "true".
- /* Eliminate pairs of tests while they can exactly match. */
- while (d1 && d2 && d1->type == d2->type)
- {
- if (maybe_both_true_2 (d1, d2) == 0)
- return 0;
- d1 = d1->next, d2 = d2->next;
- }
+ The order of the enum isn't important. */
+ enum kind_enum {
+ /* Check GET_CODE (X) == LABEL. */
+ CODE,
- /* After that, consider all pairs. */
- for (t1 = d1; t1 ; t1 = t1->next)
- for (t2 = d2; t2 ; t2 = t2->next)
- if (maybe_both_true_2 (t1, t2) == 0)
- return 0;
-
- return -1;
-}
+ /* Check GET_MODE (X) == LABEL. */
+ MODE,
-/* Return 0 if we can prove that there is no RTL that can match both
- D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
- can match both or just that we couldn't prove there wasn't such an RTL).
+ /* Check XINT (X, u.opno) == LABEL. */
+ INT_FIELD,
- TOPLEVEL is nonzero if we are to only look at the top level and not
- recursively descend. */
+ /* Check XWINT (X, u.opno) == LABEL. */
+ WIDE_INT_FIELD,
-static int
-maybe_both_true (struct decision *d1, struct decision *d2,
- int toplevel)
-{
- struct decision *p1, *p2;
- int cmp;
+ /* Check XVECLEN (X, 0) == LABEL. */
+ VECLEN,
- /* Don't compare strings on the different positions in insn. Doing so
- is incorrect and results in false matches from constructs like
+ /* Check peep2_current_count >= u.min_len. */
+ PEEP2_COUNT,
- [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
- (subreg:HI (match_operand:SI "register_operand" "r") 0))]
- vs
- [(set (match_operand:HI "register_operand" "r")
- (match_operand:HI "register_operand" "r"))]
+ /* Check XVECLEN (X, 0) >= u.min_len. */
+ VECLEN_GE,
- If we are presented with such, we are recursing through the remainder
- of a node's success nodes (from the loop at the end of this function).
- Skip forward until we come to a position that matches.
+ /* Check whether X is a cached const_int with value u.integer. */
+ SAVED_CONST_INT,
- Due to the way positions are constructed, we know that iterating
- forward from the lexically lower position will run into the lexically
- higher position and not the other way around. This saves a bit
- of effort. */
+ /* Check u.predicate.data (X, u.predicate.mode). */
+ PREDICATE,
- cmp = compare_positions (d1->position, d2->position);
- if (cmp != 0)
- {
- gcc_assert (!toplevel);
+ /* Check rtx_equal_p (X, operands[u.opno]). */
+ DUPLICATE,
- /* If the d2->position was lexically lower, swap. */
- if (cmp > 0)
- p1 = d1, d1 = d2, d2 = p1;
+ /* Check whether X matches pattern u.pattern. */
+ PATTERN,
- if (d1->success.first == 0)
- return 1;
- for (p1 = d1->success.first; p1; p1 = p1->next)
- if (maybe_both_true (p1, d2, 0))
- return 1;
+ /* Check whether pnum_clobbers is nonnull (RECOG only). */
+ HAVE_NUM_CLOBBERS,
- return 0;
- }
+ /* Check whether general C test u.string holds. In general the condition
+ needs access to "insn" and the full operand list. */
+ C_TEST,
- /* Test the current level. */
- cmp = maybe_both_true_1 (d1->tests, d2->tests);
- if (cmp >= 0)
- return cmp;
+ /* Execute operands[u.opno] = X. (Always succeeds.) */
+ SET_OP,
- /* We can't prove that D1 and D2 cannot both be true. If we are only
- to check the top level, return 1. Otherwise, see if we can prove
- that all choices in both successors are mutually exclusive. If
- either does not have any successors, we can't prove they can't both
- be true. */
+ /* Accept u.acceptance. Always succeeds for SUBPATTERN, RECOG and SPLIT.
+ May fail for PEEPHOLE2 if the define_peephole2 C code executes FAIL. */
+ ACCEPT
+ };
- if (toplevel || d1->success.first == 0 || d2->success.first == 0)
- return 1;
+ /* The position of rtx X in the above description, relative to the
+ incoming instruction "insn". The position is null if the test
+ doesn't take an X as input. */
+ position *pos;
- for (p1 = d1->success.first; p1; p1 = p1->next)
- for (p2 = d2->success.first; p2; p2 = p2->next)
- if (maybe_both_true (p1, p2, 0))
- return 1;
+ /* Which element of operands[] already contains POS, or -1 if no element
+ is known to hold POS. */
+ int pos_operand;
- return 0;
-}
-
-/* A subroutine of nodes_identical. Examine two tests for equivalence. */
-
-static int
-nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
-{
- switch (d1->type)
+ /* The type of test and its parameters, as described above. */
+ kind_enum kind;
+ union
+ {
+ int opno;
+ int min_len;
+ struct
{
- case DT_num_insns:
- return d1->u.num_insns == d2->u.num_insns;
-
- case DT_mode:
- return d1->u.mode == d2->u.mode;
-
- case DT_code:
- return d1->u.code == d2->u.code;
-
- case DT_pred:
- return (d1->u.pred.mode == d2->u.pred.mode
- && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
+ bool is_param;
+ int value;
+ } integer;
+ struct
+ {
+ const struct pred_data *data;
+ /* True if the mode is taken from a machine_mode parameter
+ to the routine rather than a constant machine_mode. If true,
+ MODE is the number of the parameter (for an "i%d" format string),
+ otherwise it is the mode itself. */
+ bool mode_is_param;
+ unsigned int mode;
+ } predicate;
+ pattern_use *pattern;
+ const char *string;
+ acceptance_type acceptance;
+ } u;
- case DT_c_test:
- return strcmp (d1->u.c_test, d2->u.c_test) == 0;
+ static test code (position *);
+ static test mode (position *);
+ static test int_field (position *, int);
+ static test wide_int_field (position *, int);
+ static test veclen (position *);
+ static test peep2_count (int);
+ static test veclen_ge (position *, int);
+ static test predicate (position *, const pred_data *, machine_mode);
+ static test duplicate (position *, int);
+ static test pattern (position *, pattern_use *);
+ static test have_num_clobbers ();
+ static test c_test (const char *);
+ static test set_op (position *, int);
+ static test accept (const acceptance_type &);
+
+ bool terminal_p () const;
+ bool single_outcome_p () const;
+
+private:
+ test (position *, kind_enum);
+};
- case DT_veclen:
- case DT_veclen_ge:
- return d1->u.veclen == d2->u.veclen;
+test::test () {}
- case DT_dup:
- return d1->u.dup == d2->u.dup;
+test::test (position *pos_in, kind_enum kind_in)
+ : pos (pos_in), pos_operand (-1), kind (kind_in) {}
- case DT_elt_zero_int:
- case DT_elt_one_int:
- case DT_elt_zero_wide:
- case DT_elt_zero_wide_safe:
- return d1->u.intval == d2->u.intval;
+test
+test::code (position *pos)
+{
+ return test (pos, test::CODE);
+}
- case DT_accept_op:
- return d1->u.opno == d2->u.opno;
+test
+test::mode (position *pos)
+{
+ return test (pos, test::MODE);
+}
- case DT_accept_insn:
- /* Differences will be handled in merge_accept_insn. */
- return 1;
+test
+test::int_field (position *pos, int opno)
+{
+ test res (pos, test::INT_FIELD);
+ res.u.opno = opno;
+ return res;
+}
- default:
- gcc_unreachable ();
- }
+test
+test::wide_int_field (position *pos, int opno)
+{
+ test res (pos, test::WIDE_INT_FIELD);
+ res.u.opno = opno;
+ return res;
}
-/* True iff the two nodes are identical (on one level only). Due
- to the way these lists are constructed, we shouldn't have to
- consider different orderings on the tests. */
+test
+test::veclen (position *pos)
+{
+ return test (pos, test::VECLEN);
+}
-static int
-nodes_identical (struct decision *d1, struct decision *d2)
+test
+test::peep2_count (int min_len)
{
- struct decision_test *t1, *t2;
+ test res (0, test::PEEP2_COUNT);
+ res.u.min_len = min_len;
+ return res;
+}
- for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
- {
- if (t1->type != t2->type)
- return 0;
- if (! nodes_identical_1 (t1, t2))
- return 0;
- }
+test
+test::veclen_ge (position *pos, int min_len)
+{
+ test res (pos, test::VECLEN_GE);
+ res.u.min_len = min_len;
+ return res;
+}
- /* For success, they should now both be null. */
- if (t1 != t2)
- return 0;
+test
+test::predicate (position *pos, const struct pred_data *data,
+ machine_mode mode)
+{
+ test res (pos, test::PREDICATE);
+ res.u.predicate.data = data;
+ res.u.predicate.mode_is_param = false;
+ res.u.predicate.mode = mode;
+ return res;
+}
- /* Check that their subnodes are at the same position, as any one set
- of sibling decisions must be at the same position. Allowing this
- requires complications to find_afterward and when change_state is
- invoked. */
- if (d1->success.first
- && d2->success.first
- && d1->success.first->position != d2->success.first->position)
- return 0;
+test
+test::duplicate (position *pos, int opno)
+{
+ test res (pos, test::DUPLICATE);
+ res.u.opno = opno;
+ return res;
+}
- return 1;
+test
+test::pattern (position *pos, pattern_use *pattern)
+{
+ test res (pos, test::PATTERN);
+ res.u.pattern = pattern;
+ return res;
}
-/* A subroutine of merge_trees; given two nodes that have been declared
- identical, cope with two insn accept states. If they differ in the
- number of clobbers, then the conflict was created by make_insn_sequence
- and we can drop the with-clobbers version on the floor. If both
- nodes have no additional clobbers, we have found an ambiguity in the
- source machine description. */
+test
+test::have_num_clobbers ()
+{
+ return test (0, test::HAVE_NUM_CLOBBERS);
+}
-static void
-merge_accept_insn (struct decision *oldd, struct decision *addd)
+test
+test::c_test (const char *string)
{
- struct decision_test *old, *add;
+ test res (0, test::C_TEST);
+ res.u.string = string;
+ return res;
+}
- for (old = oldd->tests; old; old = old->next)
- if (old->type == DT_accept_insn)
- break;
- if (old == NULL)
- return;
+test
+test::set_op (position *pos, int opno)
+{
+ test res (pos, test::SET_OP);
+ res.u.opno = opno;
+ return res;
+}
- for (add = addd->tests; add; add = add->next)
- if (add->type == DT_accept_insn)
- break;
- if (add == NULL)
- return;
+test
+test::accept (const acceptance_type &acceptance)
+{
+ test res (0, test::ACCEPT);
+ res.u.acceptance = acceptance;
+ return res;
+}
- /* If one node is for a normal insn and the second is for the base
- insn with clobbers stripped off, the second node should be ignored. */
+/* Return true if the test represents an unconditionally successful match. */
- if (old->u.insn.num_clobbers_to_add == 0
- && add->u.insn.num_clobbers_to_add > 0)
- {
- /* Nothing to do here. */
- }
- else if (old->u.insn.num_clobbers_to_add > 0
- && add->u.insn.num_clobbers_to_add == 0)
- {
- /* In this case, replace OLD with ADD. */
- old->u.insn = add->u.insn;
- }
- else
- {
- error_with_line (add->u.insn.lineno, "`%s' matches `%s'",
- get_insn_name (add->u.insn.code_number),
- get_insn_name (old->u.insn.code_number));
- message_with_line (old->u.insn.lineno, "previous definition of `%s'",
- get_insn_name (old->u.insn.code_number));
- }
+bool
+test::terminal_p () const
+{
+ return kind == test::ACCEPT && u.acceptance.type != PEEPHOLE2;
}
-/* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
+/* Return true if the test is a boolean that is always true. */
-static void
-merge_trees (struct decision_head *oldh, struct decision_head *addh)
+bool
+test::single_outcome_p () const
{
- struct decision *next, *add;
+ return terminal_p () || kind == test::SET_OP;
+}
- if (addh->first == 0)
- return;
- if (oldh->first == 0)
+bool
+operator == (const test &a, const test &b)
+{
+ if (a.pos != b.pos || a.kind != b.kind)
+ return false;
+ switch (a.kind)
{
- *oldh = *addh;
- return;
+ case test::CODE:
+ case test::MODE:
+ case test::VECLEN:
+ case test::HAVE_NUM_CLOBBERS:
+ return true;
+
+ case test::PEEP2_COUNT:
+ case test::VECLEN_GE:
+ return a.u.min_len == b.u.min_len;
+
+ case test::INT_FIELD:
+ case test::WIDE_INT_FIELD:
+ case test::DUPLICATE:
+ case test::SET_OP:
+ return a.u.opno == b.u.opno;
+
+ case test::SAVED_CONST_INT:
+ return (a.u.integer.is_param == b.u.integer.is_param
+ && a.u.integer.value == b.u.integer.value);
+
+ case test::PREDICATE:
+ return (a.u.predicate.data == b.u.predicate.data
+ && a.u.predicate.mode_is_param == b.u.predicate.mode_is_param
+ && a.u.predicate.mode == b.u.predicate.mode);
+
+ case test::PATTERN:
+ return (a.u.pattern->routine == b.u.pattern->routine
+ && a.u.pattern->params == b.u.pattern->params);
+
+ case test::C_TEST:
+ return strcmp (a.u.string, b.u.string) == 0;
+
+ case test::ACCEPT:
+ return a.u.acceptance == b.u.acceptance;
}
+ gcc_unreachable ();
+}
- /* Trying to merge bits at different positions isn't possible. */
- gcc_assert (oldh->first->position == addh->first->position);
+bool
+operator != (const test &a, const test &b)
+{
+ return !operator == (a, b);
+}
- for (add = addh->first; add ; add = next)
- {
- struct decision *old, *insert_before = NULL;
+/* A simple set of transition labels. Most transitions have a singleton
+ label, so try to make that case as efficient as possible. */
+struct int_set : public auto_vec <uint64_t, 1>
+{
+ typedef uint64_t *iterator;
- next = add->next;
+ int_set ();
+ int_set (uint64_t);
+ int_set (const int_set &);
- /* The semantics of pattern matching state that the tests are
- done in the order given in the MD file so that if an insn
- matches two patterns, the first one will be used. However,
- in practice, most, if not all, patterns are unambiguous so
- that their order is independent. In that case, we can merge
- identical tests and group all similar modes and codes together.
+ int_set &operator = (const int_set &);
- Scan starting from the end of OLDH until we reach a point
- where we reach the head of the list or where we pass a
- pattern that could also be true if NEW is true. If we find
- an identical pattern, we can merge them. Also, record the
- last node that tests the same code and mode and the last one
- that tests just the same mode.
+ iterator begin ();
+ iterator end ();
+};
- If we have no match, place NEW after the closest match we found. */
+int_set::int_set () {}
- for (old = oldh->last; old; old = old->prev)
- {
- if (nodes_identical (old, add))
- {
- merge_accept_insn (old, add);
- merge_trees (&old->success, &add->success);
- goto merged_nodes;
- }
+int_set::int_set (uint64_t label)
+{
+ safe_push (label);
+}
- if (maybe_both_true (old, add, 0))
- break;
+int_set::int_set (const int_set &other)
+{
+ safe_splice (other);
+}
- /* Insert the nodes in DT test type order, which is roughly
- how expensive/important the test is. Given that the tests
- are also ordered within the list, examining the first is
- sufficient. */
- if ((int) add->tests->type < (int) old->tests->type)
- insert_before = old;
- }
+int_set &
+int_set::operator = (const int_set &other)
+{
+ truncate (0);
+ safe_splice (other);
+ return *this;
+}
- if (insert_before == NULL)
- {
- add->next = NULL;
- add->prev = oldh->last;
- oldh->last->next = add;
- oldh->last = add;
- }
- else
- {
- if ((add->prev = insert_before->prev) != NULL)
- add->prev->next = add;
- else
- oldh->first = add;
- add->next = insert_before;
- insert_before->prev = add;
- }
+int_set::iterator
+int_set::begin ()
+{
+ return address ();
+}
- merged_nodes:;
- }
+int_set::iterator
+int_set::end ()
+{
+ return address () + length ();
}
-\f
-/* Walk the tree looking for sub-nodes that perform common tests.
- Factor out the common test into a new node. This enables us
- (depending on the test type) to emit switch statements later. */
-static void
-factor_tests (struct decision_head *head)
+bool
+operator == (const int_set &a, const int_set &b)
{
- struct decision *first, *next;
+ if (a.length () != b.length ())
+ return false;
+ for (unsigned int i = 0; i < a.length (); ++i)
+ if (a[i] != b[i])
+ return false;
+ return true;
+}
- for (first = head->first; first && first->next; first = next)
- {
- enum decision_type type;
- struct decision *new_dec, *old_last;
+bool
+operator != (const int_set &a, const int_set &b)
+{
+ return !operator == (a, b);
+}
- type = first->tests->type;
- next = first->next;
+struct decision;
- /* Want at least two compatible sequential nodes. */
- if (next->tests->type != type)
- continue;
+/* Represents a transition between states, dependent on the result of
+ a test T. */
+struct transition
+{
+ transition (const int_set &, state *, bool);
- /* Don't want all node types, just those we can turn into
- switch statements. */
- if (type != DT_mode
- && type != DT_code
- && type != DT_veclen
- && type != DT_elt_zero_int
- && type != DT_elt_one_int
- && type != DT_elt_zero_wide_safe)
- continue;
+ void set_parent (list_head <transition> *);
- /* If we'd been performing more than one test, create a new node
- below our first test. */
- if (first->tests->next != NULL)
- {
- new_dec = new_decision (first->position, &first->success);
- new_dec->tests = first->tests->next;
- first->tests->next = NULL;
- }
+ /* Links to other transitions for T. Always null for boolean tests. */
+ transition *prev, *next;
- /* Crop the node tree off after our first test. */
- first->next = NULL;
- old_last = head->last;
- head->last = first;
+ /* The transition should be taken when T has one of these values.
+ E.g. for test::CODE this is a set of codes, while for booleans like
+ test::PREDICATE it is always a singleton "true". The labels are
+ sorted in ascending order. */
+ int_set labels;
- /* For each compatible test, adjust to perform only one test in
- the top level node, then merge the node back into the tree. */
- do
- {
- struct decision_head h;
+ /* The source decision. */
+ decision *from;
- if (next->tests->next != NULL)
- {
- new_dec = new_decision (next->position, &next->success);
- new_dec->tests = next->tests->next;
- next->tests->next = NULL;
- }
- new_dec = next;
- next = next->next;
- new_dec->next = NULL;
- h.first = h.last = new_dec;
+ /* The target state. */
+ state *to;
- merge_trees (head, &h);
- }
- while (next && next->tests->type == type);
+ /* True if TO would function correctly even if TEST wasn't performed.
+ E.g. it isn't necessary to check whether GET_MODE (x1) is SImode
+ before calling register_operand (x1, SImode), since register_operand
+ performs its own mode check. However, checking GET_MODE can be a cheap
+ way of disambiguating SImode and DImode register operands. */
+ bool optional;
- /* After we run out of compatible tests, graft the remaining nodes
- back onto the tree. */
- if (next)
- {
- next->prev = head->last;
- head->last->next = next;
- head->last = old_last;
- }
- }
+ /* True if LABELS contains parameter numbers rather than constants.
+ E.g. if this is true for a test::CODE, the label is the number
+ of an rtx_code parameter rather than an rtx_code itself.
+ LABELS is always a singleton when this variable is true. */
+ bool is_param;
+};
- /* Recurse. */
- for (first = head->first; first; first = first->next)
- factor_tests (&first->success);
-}
+/* Represents a test and the action that should be taken on the result.
+ If a transition exists for the test outcome, the machine switches
+ to the transition's target state. If no suitable transition exists,
+ the machine either falls through to the next decision or, if there are no
+ more decisions to try, fails the match. */
+struct decision : list_head <transition>
+{
+ decision (const test &);
-/* After factoring, try to simplify the tests on any one node.
- Tests that are useful for switch statements are recognizable
- by having only a single test on a node -- we'll be manipulating
- nodes with multiple tests:
+ void set_parent (list_head <decision> *s);
+ bool if_statement_p (uint64_t * = 0) const;
- If we have mode tests or code tests that are redundant with
- predicates, remove them. */
+ /* The state to which this decision belongs. */
+ state *s;
-static void
-simplify_tests (struct decision_head *head)
-{
- struct decision *tree;
+ /* Links to other decisions in the same state. */
+ decision *prev, *next;
- for (tree = head->first; tree; tree = tree->next)
- {
- struct decision_test *a, *b;
+ /* The test to perform. */
+ struct test test;
+};
- a = tree->tests;
- b = a->next;
- if (b == NULL)
- continue;
+/* Represents one machine state. For each state the machine tries a list
+ of decisions, in order, and acts on the first match. It fails without
+ further backtracking if no decisions match. */
+struct state : list_head <decision>
+{
+ void set_parent (list_head <state> *) {}
+};
- /* Find a predicate node. */
- while (b && b->type != DT_pred)
- b = b->next;
- if (b)
- {
- /* Due to how these tests are constructed, we don't even need
- to check that the mode and code are compatible -- they were
- generated from the predicate in the first place. */
- while (a->type == DT_mode || a->type == DT_code)
- a = a->next;
- tree->tests = a;
- }
- }
+transition::transition (const int_set &labels_in, state *to_in,
+ bool optional_in)
+ : prev (0), next (0), labels (labels_in), from (0), to (to_in),
+ optional (optional_in), is_param (false) {}
+
+/* Set the source decision of the transition. */
- /* Recurse. */
- for (tree = head->first; tree; tree = tree->next)
- simplify_tests (&tree->success);
+void
+transition::set_parent (list_head <transition> *from_in)
+{
+ from = static_cast <decision *> (from_in);
}
-/* Count the number of subnodes of HEAD. If the number is high enough,
- make the first node in HEAD start a separate subroutine in the C code
- that is generated. */
+decision::decision (const struct test &test_in)
+ : prev (0), next (0), test (test_in) {}
-static int
-break_out_subroutines (struct decision_head *head, int initial)
+/* Set the state to which this decision belongs. */
+
+void
+decision::set_parent (list_head <decision> *s_in)
{
- int size = 0;
- struct decision *sub;
+ s = static_cast <state *> (s_in);
+}
- for (sub = head->first; sub; sub = sub->next)
- size += 1 + break_out_subroutines (&sub->success, 0);
+/* Return true if the decision has a single transition with a single label.
+ If so, return the label in *LABEL if nonnull. */
- if (size > SUBROUTINE_THRESHOLD && ! initial)
+inline bool
+decision::if_statement_p (uint64_t *label) const
+{
+ if (singleton () && first->labels.length () == 1)
{
- head->first->subroutine_number = ++next_subroutine_number;
- size = 1;
+ if (label)
+ *label = first->labels[0];
+ return true;
}
- return size;
+ return false;
}
-/* For each node p, find the next alternative that might be true
- when p is true. */
+/* Add to FROM a decision that performs TEST and has a single transition
+ TRANS. */
static void
-find_afterward (struct decision_head *head, struct decision *real_afterward)
+add_decision (state *from, const test &test, transition *trans)
{
- struct decision *p, *q, *afterward;
-
- /* We can't propagate alternatives across subroutine boundaries.
- This is not incorrect, merely a minor optimization loss. */
-
- p = head->first;
- afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
-
- for ( ; p ; p = p->next)
- {
- /* Find the next node that might be true if this one fails. */
- for (q = p->next; q ; q = q->next)
- if (maybe_both_true (p, q, 1))
- break;
-
- /* If we reached the end of the list without finding one,
- use the incoming afterward position. */
- if (!q)
- q = afterward;
- p->afterward = q;
- if (q)
- q->need_label = 1;
- }
-
- /* Recurse. */
- for (p = head->first; p ; p = p->next)
- if (p->success.first)
- find_afterward (&p->success, p->afterward);
-
- /* When we are generating a subroutine, record the real afterward
- position in the first node where write_tree can find it, and we
- can do the right thing at the subroutine call site. */
- p = head->first;
- if (p->subroutine_number > 0)
- p->afterward = real_afterward;
+ decision *d = new decision (test);
+ from->push_back (d);
+ d->push_back (trans);
}
-\f
-/* Assuming that the state of argument is denoted by OLDPOS, take whatever
- actions are necessary to move to NEWPOS. If we fail to move to the
- new state, branch to node AFTERWARD if nonzero, otherwise return.
- Failure to move to the new state can only occur if we are trying to
- match multiple insns and we try to step past the end of the stream. */
+/* Add a transition from FROM to a new, empty state that is taken
+ when TEST == LABELS. OPTIONAL says whether the new transition
+ should be optional. Return the new state. */
-static void
-change_state (struct position *oldpos, struct position *newpos,
- const char *indent)
+static state *
+add_decision (state *from, const test &test, int_set labels, bool optional)
{
- while (oldpos->depth > newpos->depth)
- oldpos = oldpos->base;
-
- if (oldpos != newpos)
- switch (newpos->type)
- {
- case POS_PEEP2_INSN:
- printf ("%stem = peep2_next_insn (%d);\n", indent, newpos->arg);
- printf ("%sx%d = PATTERN (tem);\n", indent, newpos->depth);
- break;
+ state *to = new state;
+ add_decision (from, test, new transition (labels, to, optional));
+ return to;
+}
- case POS_XEXP:
- change_state (oldpos, newpos->base, indent);
- printf ("%sx%d = XEXP (x%d, %d);\n",
- indent, newpos->depth, newpos->depth - 1, newpos->arg);
- break;
+/* Insert a decision before decisions R to make them dependent on
+ TEST == LABELS. OPTIONAL says whether the new transition should be
+ optional. */
- case POS_XVECEXP0:
- change_state (oldpos, newpos->base, indent);
- printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
- indent, newpos->depth, newpos->depth - 1, newpos->arg);
- break;
- }
+static decision *
+insert_decision_before (state::range r, const test &test,
+ const int_set &labels, bool optional)
+{
+ decision *newd = new decision (test);
+ state *news = new state;
+ newd->push_back (new transition (labels, news, optional));
+ r.start->s->replace (r, newd);
+ news->push_back (r);
+ return newd;
}
-\f
-/* Print the enumerator constant for CODE -- the upcase version of
- the name. */
+
+/* Remove any optional transitions from S that turned out not to be useful. */
static void
-print_code (enum rtx_code code)
+collapse_optional_decisions (state *s)
{
- const char *p;
- for (p = GET_RTX_NAME (code); *p; p++)
- putchar (TOUPPER (*p));
+ decision *d = s->first;
+ while (d)
+ {
+ decision *next = d->next;
+ for (transition *trans = d->first; trans; trans = trans->next)
+ collapse_optional_decisions (trans->to);
+ /* A decision with a single optional transition doesn't help
+ partition the potential matches and so is unlikely to be
+ worthwhile. In particular, if the decision that performs the
+ test is the last in the state, the best it could do is reject
+ an invalid pattern slightly earlier. If instead the decision
+ is not the last in the state, the condition it tests could hold
+ even for the later decisions in the state. The best it can do
+ is save work in some cases where only the later decisions can
+ succeed.
+
+ In both cases the optional transition would add extra work to
+ successful matches when the tested condition holds. */
+ if (transition *trans = d->singleton ())
+ if (trans->optional)
+ s->replace (d, trans->to->release ());
+ d = next;
+ }
}
-/* Emit code to cross an afterward link -- change state and branch. */
+/* Try to squash several separate tests into simpler ones. */
static void
-write_afterward (struct decision *start, struct decision *afterward,
- const char *indent)
+simplify_tests (state *s)
{
- if (!afterward || start->subroutine_number > 0)
- printf ("%sgoto ret0;\n", indent);
- else
+ for (decision *d = s->first; d; d = d->next)
{
- change_state (start->position, afterward->position, indent);
- printf ("%sgoto L%d;\n", indent, afterward->number);
+ uint64_t label;
+ /* Convert checks for GET_CODE (x) == CONST_INT and XWINT (x, 0) == N
+ into checks for const_int_rtx[N'], if N is suitably small. */
+ if (d->test.kind == test::CODE
+ && d->if_statement_p (&label)
+ && label == CONST_INT)
+ if (decision *second = d->first->to->singleton ())
+ if (second->test.kind == test::WIDE_INT_FIELD
+ && second->test.u.opno == 0
+ && second->if_statement_p (&label)
+ && IN_RANGE (int64_t (label),
+ -MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT))
+ {
+ d->test.kind = test::SAVED_CONST_INT;
+ d->test.u.integer.is_param = false;
+ d->test.u.integer.value = label;
+ d->replace (d->first, second->release ());
+ d->first->labels[0] = true;
+ }
+ /* If we have a CODE test followed by a PREDICATE test, rely on
+ the predicate to test the code.
+
+ This case exists for match_operators. We initially treat the
+ CODE test for a match_operator as non-optional so that we can
+ safely move down to its operands. It may turn out that all
+ paths that reach that code test require the same predicate
+ to be true. cse_tests will then put the predicate test in
+ series with the code test. */
+ if (d->test.kind == test::CODE)
+ if (transition *trans = d->singleton ())
+ {
+ state *s = trans->to;
+ while (decision *d2 = s->singleton ())
+ {
+ if (d->test.pos != d2->test.pos)
+ break;
+ transition *trans2 = d2->singleton ();
+ if (!trans2)
+ break;
+ if (d2->test.kind == test::PREDICATE)
+ {
+ d->test = d2->test;
+ trans->labels = int_set (true);
+ s->replace (d2, trans2->to->release ());
+ break;
+ }
+ s = trans2->to;
+ }
+ }
+ for (transition *trans = d->first; trans; trans = trans->next)
+ simplify_tests (trans->to);
}
}
-/* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
- special care to avoid "decimal constant is so large that it is unsigned"
- warnings in the resulting code. */
+/* Return true if all successful returns passing through D require the
+ condition tested by COMMON to be true.
-static void
-print_host_wide_int (HOST_WIDE_INT val)
+ When returning true, add all transitions like COMMON in D to WHERE.
+ WHERE may contain a partial result on failure. */
+
+static bool
+common_test_p (decision *d, transition *common, vec <transition *> *where)
{
- HOST_WIDE_INT min = (unsigned HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1);
- if (val == min)
- printf ("(" HOST_WIDE_INT_PRINT_DEC_C "-1)", val + 1);
- else
- printf (HOST_WIDE_INT_PRINT_DEC_C, val);
+ if (d->test.kind == test::ACCEPT)
+ /* We found a successful return that didn't require COMMON. */
+ return false;
+ if (d->test == common->from->test)
+ {
+ transition *trans = d->singleton ();
+ if (!trans
+ || trans->optional != common->optional
+ || trans->labels != common->labels)
+ return false;
+ where->safe_push (trans);
+ return true;
+ }
+ for (transition *trans = d->first; trans; trans = trans->next)
+ for (decision *subd = trans->to->first; subd; subd = subd->next)
+ if (!common_test_p (subd, common, where))
+ return false;
+ return true;
}
-/* Emit a switch statement, if possible, for an initial sequence of
- nodes at START. Return the first node yet untested. */
+/* Indicates that we have tested GET_CODE (X) for a particular rtx X. */
+const unsigned char TESTED_CODE = 1;
-static struct decision *
-write_switch (struct decision *start, int depth)
-{
- struct decision *p = start;
- enum decision_type type = p->tests->type;
- struct decision *needs_label = NULL;
+/* Indicates that we have tested XVECLEN (X, 0) for a particular rtx X. */
+const unsigned char TESTED_VECLEN = 2;
- /* If we have two or more nodes in sequence that test the same one
- thing, we may be able to use a switch statement. */
+/* Represents a set of conditions that are known to hold. */
+struct known_conditions
+{
+ /* A mask of TESTED_ values for each position, indexed by the position's
+ id field. */
+ auto_vec <unsigned char> position_tests;
- if (!p->next
- || p->tests->next
- || p->next->tests->type != type
- || p->next->tests->next
- || nodes_identical_1 (p->tests, p->next->tests))
- return p;
+ /* Index N says whether operands[N] has been set. */
+ auto_vec <bool> set_operands;
- /* DT_code is special in that we can do interesting things with
- known predicates at the same time. */
- if (type == DT_code)
- {
- char codemap[NUM_RTX_CODE];
- struct decision *ret;
- RTX_CODE code;
+ /* A guranteed lower bound on the value of peep2_current_count. */
+ int peep2_count;
+};
- memset (codemap, 0, sizeof (codemap));
+/* Return true if TEST can safely be performed at D, where
+ the conditions in KC hold. TEST is known to occur along the
+ first path from D (i.e. always following the first transition
+ of the first decision). Any intervening tests can be used as
+ negative proof that hoisting isn't safe, but only KC can be used
+ as positive proof. */
- printf (" switch (GET_CODE (x%d))\n {\n", depth);
- code = p->tests->u.code;
- do
+static bool
+safe_to_hoist_p (decision *d, const test &test, known_conditions *kc)
+{
+ switch (test.kind)
+ {
+ case test::C_TEST:
+ /* In general, C tests require everything else to have been
+ verified and all operands to have been set up. */
+ return false;
+
+ case test::ACCEPT:
+ /* Don't accept something before all conditions have been tested. */
+ return false;
+
+ case test::PREDICATE:
+ /* Don't move a predicate over a test for VECLEN_GE, since the
+ predicate used in a match_parallel can legitimately expect the
+ length to be checked first. */
+ for (decision *subd = d;
+ subd->test != test;
+ subd = subd->first->to->first)
+ if (subd->test.pos == test.pos
+ && subd->test.kind == test::VECLEN_GE)
+ return false;
+ goto any_rtx;
+
+ case test::DUPLICATE:
+ /* Don't test for a match_dup until the associated operand has
+ been set. */
+ if (!kc->set_operands[test.u.opno])
+ return false;
+ goto any_rtx;
+
+ case test::CODE:
+ case test::MODE:
+ case test::SAVED_CONST_INT:
+ case test::SET_OP:
+ any_rtx:
+ /* Check whether it is safe to access the rtx under test. */
+ switch (test.pos->type)
{
- if (p != start && p->need_label && needs_label == NULL)
- needs_label = p;
+ case POS_PEEP2_INSN:
+ return test.pos->arg < kc->peep2_count;
- printf (" case ");
- print_code (code);
- printf (":\n goto L%d;\n", p->success.first->number);
- p->success.first->need_label = 1;
+ case POS_XEXP:
+ return kc->position_tests[test.pos->base->id] & TESTED_CODE;
- codemap[code] = 1;
- p = p->next;
+ case POS_XVECEXP0:
+ return kc->position_tests[test.pos->base->id] & TESTED_VECLEN;
}
- while (p
- && ! p->tests->next
- && p->tests->type == DT_code
- && ! codemap[code = p->tests->u.code]);
-
- /* If P is testing a predicate that we know about and we haven't
- seen any of the codes that are valid for the predicate, we can
- write a series of "case" statement, one for each possible code.
- Since we are already in a switch, these redundant tests are very
- cheap and will reduce the number of predicates called. */
-
- /* Note that while we write out cases for these predicates here,
- we don't actually write the test here, as it gets kinda messy.
- It is trivial to leave this to later by telling our caller that
- we only processed the CODE tests. */
- if (needs_label != NULL)
- ret = needs_label;
- else
- ret = p;
-
- while (p && p->tests->type == DT_pred && p->tests->u.pred.data)
- {
- const struct pred_data *data = p->tests->u.pred.data;
- int c;
-
- for (c = 0; c < NUM_RTX_CODE; c++)
- if (codemap[c] && data->codes[c])
- goto pred_done;
+ gcc_unreachable ();
- for (c = 0; c < NUM_RTX_CODE; c++)
- if (data->codes[c])
- {
- fputs (" case ", stdout);
- print_code ((enum rtx_code) c);
- fputs (":\n", stdout);
- codemap[c] = 1;
- }
+ case test::INT_FIELD:
+ case test::WIDE_INT_FIELD:
+ case test::VECLEN:
+ case test::VECLEN_GE:
+ /* These tests access a specific part of an rtx, so are only safe
+ once we know what the rtx is. */
+ return kc->position_tests[test.pos->id] & TESTED_CODE;
- printf (" goto L%d;\n", p->number);
- p->need_label = 1;
- p = p->next;
- }
+ case test::PEEP2_COUNT:
+ case test::HAVE_NUM_CLOBBERS:
+ /* These tests can be performed anywhere. */
+ return true;
- pred_done:
- /* Make the default case skip the predicates we managed to match. */
+ case test::PATTERN:
+ gcc_unreachable ();
+ }
+ gcc_unreachable ();
+}
- printf (" default:\n");
- if (p != ret)
+/* Look for a transition that is taken by all successful returns from a range
+ of decisions starting at OUTER and that would be better performed by
+ OUTER's state instead. On success, store all instances of that transition
+ in WHERE and return the last decision in the range. The range could
+ just be OUTER, or it could include later decisions as well.
+
+ WITH_POSITION_P is true if only tests with position POS should be tried,
+ false if any test should be tried. WORTHWHILE_SINGLE_P is true if the
+ result is useful even when the range contains just a single decision
+ with a single transition. KC are the conditions that are known to
+ hold at OUTER. */
+
+static decision *
+find_common_test (decision *outer, bool with_position_p,
+ position *pos, bool worthwhile_single_p,
+ known_conditions *kc, vec <transition *> *where)
+{
+ /* After this, WORTHWHILE_SINGLE_P indicates whether a range that contains
+ just a single decision is useful, regardless of the number of
+ transitions it has. */
+ if (!outer->singleton ())
+ worthwhile_single_p = true;
+ /* Quick exit if we don't have enough decisions to form a worthwhile
+ range. */
+ if (!worthwhile_single_p && !outer->next)
+ return 0;
+ /* Follow the first chain down, as one example of a path that needs
+ to contain the common test. */
+ for (decision *d = outer; d; d = d->first->to->first)
+ {
+ transition *trans = d->singleton ();
+ if (trans
+ && (!with_position_p || d->test.pos == pos)
+ && safe_to_hoist_p (outer, d->test, kc))
{
- if (p)
+ if (common_test_p (outer, trans, where))
{
- printf (" goto L%d;\n", p->number);
- p->need_label = 1;
+ if (!outer->next)
+ /* We checked above whether the move is worthwhile. */
+ return outer;
+ /* See how many decisions in OUTER's chain could reuse
+ the same test. */
+ decision *outer_end = outer;
+ do
+ {
+ unsigned int length = where->length ();
+ if (!common_test_p (outer_end->next, trans, where))
+ {
+ where->truncate (length);
+ break;
+ }
+ outer_end = outer_end->next;
+ }
+ while (outer_end->next);
+ /* It is worth moving TRANS if it can be shared by more than
+ one decision. */
+ if (outer_end != outer || worthwhile_single_p)
+ return outer_end;
}
- else
- write_afterward (start, start->afterward, " ");
+ where->truncate (0);
}
- else
- printf (" break;\n");
- printf (" }\n");
-
- return ret;
}
- else if (type == DT_mode
- || type == DT_veclen
- || type == DT_elt_zero_int
- || type == DT_elt_one_int
- || type == DT_elt_zero_wide_safe)
- {
- const char *indent = "";
+ return 0;
+}
+
+/* Try to promote common subtests in S to a single, shared decision.
+ Also try to bunch tests for the same position together. POS is the
+ position of the rtx tested before reaching S. KC are the conditions
+ that are known to hold on entry to S. */
- /* We cast switch parameter to integer, so we must ensure that the value
- fits. */
- if (type == DT_elt_zero_wide_safe)
+static void
+cse_tests (position *pos, state *s, known_conditions *kc)
+{
+ for (decision *d = s->first; d; d = d->next)
+ {
+ auto_vec <transition *, 16> where;
+ if (d->test.pos)
{
- indent = " ";
- printf (" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n",
- depth, depth);
+ /* Try to find conditions that don't depend on a particular rtx,
+ such as pnum_clobbers != NULL or peep2_current_count >= X.
+ It's usually better to check these conditions as soon as
+ possible, so the change is worthwhile even if there is
+ only one copy of the test. */
+ decision *endd = find_common_test (d, true, 0, true, kc, &where);
+ if (!endd && d->test.pos != pos)
+ /* Try to find other conditions related to position POS
+ before moving to the new position. Again, this is
+ worthwhile even if there is only one copy of the test,
+ since it means that fewer position variables are live
+ at a given time. */
+ endd = find_common_test (d, true, pos, true, kc, &where);
+ if (!endd)
+ /* Try to find any condition that is used more than once. */
+ endd = find_common_test (d, false, 0, false, kc, &where);
+ if (endd)
+ {
+ transition *common = where[0];
+ /* Replace [D, ENDD] with a test like COMMON. We'll recurse
+ on the common test and see the original D again next time. */
+ d = insert_decision_before (state::range (d, endd),
+ common->from->test,
+ common->labels,
+ common->optional);
+ /* Remove the old tests. */
+ while (!where.is_empty ())
+ {
+ transition *trans = where.pop ();
+ trans->from->s->replace (trans->from, trans->to->release ());
+ }
+ }
}
- printf ("%s switch (", indent);
- switch (type)
+
+ /* Make sure that safe_to_hoist_p isn't being overly conservative.
+ It should realize that D's test is safe in the current
+ environment. */
+ gcc_assert (d->test.kind == test::C_TEST
+ || d->test.kind == test::ACCEPT
+ || safe_to_hoist_p (d, d->test, kc));
+
+ /* D won't be changed any further by the current optimization.
+ Recurse with the state temporarily updated to include D. */
+ int prev = 0;
+ switch (d->test.kind)
{
- case DT_mode:
- printf ("GET_MODE (x%d)", depth);
+ case test::CODE:
+ prev = kc->position_tests[d->test.pos->id];
+ kc->position_tests[d->test.pos->id] |= TESTED_CODE;
break;
- case DT_veclen:
- printf ("XVECLEN (x%d, 0)", depth);
- break;
- case DT_elt_zero_int:
- printf ("XINT (x%d, 0)", depth);
+
+ case test::VECLEN:
+ case test::VECLEN_GE:
+ prev = kc->position_tests[d->test.pos->id];
+ kc->position_tests[d->test.pos->id] |= TESTED_VECLEN;
break;
- case DT_elt_one_int:
- printf ("XINT (x%d, 1)", depth);
+
+ case test::SET_OP:
+ prev = kc->set_operands[d->test.u.opno];
+ gcc_assert (!prev);
+ kc->set_operands[d->test.u.opno] = true;
break;
- case DT_elt_zero_wide_safe:
- /* Convert result of XWINT to int for portability since some C
- compilers won't do it and some will. */
- printf ("(int) XWINT (x%d, 0)", depth);
+
+ case test::PEEP2_COUNT:
+ prev = kc->peep2_count;
+ kc->peep2_count = MAX (prev, d->test.u.min_len);
break;
+
default:
- gcc_unreachable ();
+ break;
}
- printf (")\n%s {\n", indent);
-
- do
+ for (transition *trans = d->first; trans; trans = trans->next)
+ cse_tests (d->test.pos ? d->test.pos : pos, trans->to, kc);
+ switch (d->test.kind)
{
- /* Merge trees will not unify identical nodes if their
- sub-nodes are at different levels. Thus we must check
- for duplicate cases. */
- struct decision *q;
- for (q = start; q != p; q = q->next)
- if (nodes_identical_1 (p->tests, q->tests))
- goto case_done;
-
- if (p != start && p->need_label && needs_label == NULL)
- needs_label = p;
-
- printf ("%s case ", indent);
- switch (type)
- {
- case DT_mode:
- printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
- break;
- case DT_veclen:
- printf ("%d", p->tests->u.veclen);
- break;
- case DT_elt_zero_int:
- case DT_elt_one_int:
- case DT_elt_zero_wide:
- case DT_elt_zero_wide_safe:
- print_host_wide_int (p->tests->u.intval);
- break;
- default:
- gcc_unreachable ();
- }
- printf (":\n%s goto L%d;\n", indent, p->success.first->number);
- p->success.first->need_label = 1;
+ case test::CODE:
+ case test::VECLEN:
+ case test::VECLEN_GE:
+ kc->position_tests[d->test.pos->id] = prev;
+ break;
- p = p->next;
- }
- while (p && p->tests->type == type && !p->tests->next);
+ case test::SET_OP:
+ kc->set_operands[d->test.u.opno] = prev;
+ break;
- case_done:
- printf ("%s default:\n%s break;\n%s }\n",
- indent, indent, indent);
+ case test::PEEP2_COUNT:
+ kc->peep2_count = prev;
+ break;
- return needs_label != NULL ? needs_label : p;
+ default:
+ break;
+ }
}
- else
+}
+
+/* Return the type of value that can be used to parameterize test KIND,
+ or parameter::UNSET if none. */
+
+parameter::type_enum
+transition_parameter_type (test::kind_enum kind)
+{
+ switch (kind)
{
- /* None of the other tests are amenable. */
- return p;
+ case test::CODE:
+ return parameter::CODE;
+
+ case test::MODE:
+ return parameter::MODE;
+
+ case test::INT_FIELD:
+ case test::VECLEN:
+ case test::PATTERN:
+ return parameter::INT;
+
+ case test::WIDE_INT_FIELD:
+ return parameter::WIDE_INT;
+
+ case test::PEEP2_COUNT:
+ case test::VECLEN_GE:
+ case test::SAVED_CONST_INT:
+ case test::PREDICATE:
+ case test::DUPLICATE:
+ case test::HAVE_NUM_CLOBBERS:
+ case test::C_TEST:
+ case test::SET_OP:
+ case test::ACCEPT:
+ return parameter::UNSET;
}
+ gcc_unreachable ();
}
-/* Emit code for one test. */
+/* Initialize the pos_operand fields of each state reachable from S.
+ If OPERAND_POS[ID] >= 0, the position with id ID is stored in
+ operands[OPERAND_POS[ID]] on entry to S. */
static void
-write_cond (struct decision_test *p, int depth,
- enum routine_type subroutine_type)
+find_operand_positions (state *s, vec <int> &operand_pos)
{
- switch (p->type)
+ for (decision *d = s->first; d; d = d->next)
{
- case DT_num_insns:
- printf ("peep2_current_count >= %d", p->u.num_insns);
- break;
-
- case DT_mode:
- printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
- break;
-
- case DT_code:
- printf ("GET_CODE (x%d) == ", depth);
- print_code (p->u.code);
- break;
+ int this_operand = (d->test.pos ? operand_pos[d->test.pos->id] : -1);
+ if (this_operand >= 0)
+ d->test.pos_operand = this_operand;
+ if (d->test.kind == test::SET_OP)
+ operand_pos[d->test.pos->id] = d->test.u.opno;
+ for (transition *trans = d->first; trans; trans = trans->next)
+ find_operand_positions (trans->to, operand_pos);
+ if (d->test.kind == test::SET_OP)
+ operand_pos[d->test.pos->id] = this_operand;
+ }
+}
- case DT_veclen:
- printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
- break;
+/* Statistics about a matching routine. */
+struct stats
+{
+ stats ();
+
+ /* The total number of decisions in the routine, excluding trivial
+ ones that never fail. */
+ unsigned int num_decisions;
+
+ /* The number of non-trivial decisions on the longest path through
+ the routine, and the return value that contributes most to that
+ long path. */
+ unsigned int longest_path;
+ int longest_path_code;
+
+ /* The maximum number of times that a single call to the routine
+ can backtrack, and the value returned at the end of that path.
+ "Backtracking" here means failing one decision in state and
+ going onto to the next. */
+ unsigned int longest_backtrack;
+ int longest_backtrack_code;
+};
- case DT_elt_zero_int:
- printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
- break;
+stats::stats ()
+ : num_decisions (0), longest_path (0), longest_path_code (-1),
+ longest_backtrack (0), longest_backtrack_code (-1) {}
- case DT_elt_one_int:
- printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
- break;
+/* Return statistics about S. */
- case DT_elt_zero_wide:
- case DT_elt_zero_wide_safe:
- printf ("XWINT (x%d, 0) == ", depth);
- print_host_wide_int (p->u.intval);
- break;
+static stats
+get_stats (state *s)
+{
+ stats for_s;
+ unsigned int longest_path = 0;
+ for (decision *d = s->first; d; d = d->next)
+ {
+ /* Work out the statistics for D. */
+ stats for_d;
+ for (transition *trans = d->first; trans; trans = trans->next)
+ {
+ stats for_trans = get_stats (trans->to);
+ for_d.num_decisions += for_trans.num_decisions;
+ /* Each transition is mutually-exclusive, so just pick the
+ longest of the individual paths. */
+ if (for_d.longest_path <= for_trans.longest_path)
+ {
+ for_d.longest_path = for_trans.longest_path;
+ for_d.longest_path_code = for_trans.longest_path_code;
+ }
+ /* Likewise for backtracking. */
+ if (for_d.longest_backtrack <= for_trans.longest_backtrack)
+ {
+ for_d.longest_backtrack = for_trans.longest_backtrack;
+ for_d.longest_backtrack_code = for_trans.longest_backtrack_code;
+ }
+ }
- case DT_const_int:
- printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
- depth, (int) p->u.intval);
- break;
+ /* Account for D's test in its statistics. */
+ if (!d->test.single_outcome_p ())
+ {
+ for_d.num_decisions += 1;
+ for_d.longest_path += 1;
+ }
+ if (d->test.kind == test::ACCEPT)
+ {
+ for_d.longest_path_code = d->test.u.acceptance.u.full.code;
+ for_d.longest_backtrack_code = d->test.u.acceptance.u.full.code;
+ }
- case DT_veclen_ge:
- printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
- break;
+ /* Keep a running count of the number of backtracks. */
+ if (d->prev)
+ for_s.longest_backtrack += 1;
- case DT_dup:
- printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
- break;
+ /* Accumulate D's statistics into S's. */
+ for_s.num_decisions += for_d.num_decisions;
+ for_s.longest_path += for_d.longest_path;
+ for_s.longest_backtrack += for_d.longest_backtrack;
- case DT_pred:
- printf ("%s (x%d, %smode)", p->u.pred.name, depth,
- GET_MODE_NAME (p->u.pred.mode));
- break;
+ /* Use the code from the decision with the longest individual path,
+ since that's more likely to be useful if trying to make the
+ path shorter. In the event of a tie, pick the later decision,
+ since that's closer to the end of the path. */
+ if (longest_path <= for_d.longest_path)
+ {
+ longest_path = for_d.longest_path;
+ for_s.longest_path_code = for_d.longest_path_code;
+ }
- case DT_c_test:
- print_c_condition (p->u.c_test);
- break;
+ /* Later decisions in a state are necessarily in a longer backtrack
+ than earlier decisions. */
+ for_s.longest_backtrack_code = for_d.longest_backtrack_code;
+ }
+ return for_s;
+}
- case DT_accept_insn:
- gcc_assert (subroutine_type == RECOG);
- gcc_assert (p->u.insn.num_clobbers_to_add);
- printf ("pnum_clobbers != NULL");
- break;
+/* Optimize ROOT. Use TYPE to describe ROOT in status messages. */
- default:
- gcc_unreachable ();
+static void
+optimize_subroutine_group (const char *type, state *root)
+{
+ /* Remove optional transitions that turned out not to be worthwhile. */
+ if (collapse_optional_decisions_p)
+ collapse_optional_decisions (root);
+
+ /* Try to remove duplicated tests and to rearrange tests into a more
+ logical order. */
+ if (cse_tests_p)
+ {
+ known_conditions kc;
+ kc.position_tests.safe_grow_cleared (num_positions);
+ kc.set_operands.safe_grow_cleared (num_operands);
+ kc.peep2_count = 1;
+ cse_tests (&root_pos, root, &kc);
+ }
+
+ /* Try to simplify two or more tests into one. */
+ if (simplify_tests_p)
+ simplify_tests (root);
+
+ /* Try to use operands[] instead of xN variables. */
+ if (use_operand_variables_p)
+ {
+ auto_vec <int> operand_pos (num_positions);
+ for (unsigned int i = 0; i < num_positions; ++i)
+ operand_pos.quick_push (-1);
+ find_operand_positions (root, operand_pos);
+ }
+
+ /* Print a summary of the new state. */
+ stats st = get_stats (root);
+ fprintf (stderr, "Statistics for %s:\n", type);
+ fprintf (stderr, " Number of decisions: %6d\n", st.num_decisions);
+ fprintf (stderr, " longest path: %6d (code: %6d)\n",
+ st.longest_path, st.longest_path_code);
+ fprintf (stderr, " longest backtrack: %6d (code: %6d)\n",
+ st.longest_backtrack, st.longest_backtrack_code);
+}
+
+struct merge_pattern_info;
+
+/* Represents a transition from one pattern to another. */
+struct merge_pattern_transition
+{
+ merge_pattern_transition (merge_pattern_info *);
+
+ /* The target pattern. */
+ merge_pattern_info *to;
+
+ /* The parameters that the source pattern passes to the target pattern.
+ "parameter (TYPE, true, I)" represents parameter I of the source
+ pattern. */
+ auto_vec <parameter, MAX_PATTERN_PARAMS> params;
+};
+
+merge_pattern_transition::merge_pattern_transition (merge_pattern_info *to_in)
+ : to (to_in)
+{
+}
+
+/* Represents a pattern that can might match several states. The pattern
+ may replace parts of the test with a parameter value. It may also
+ replace transition labels with parameters. */
+struct merge_pattern_info
+{
+ merge_pattern_info (unsigned int);
+
+ /* If PARAM_TEST_P, the state's singleton test should be generalized
+ to use the runtime value of PARAMS[PARAM_TEST]. */
+ unsigned int param_test : 8;
+
+ /* If PARAM_TRANSITION_P, the state's single transition label should
+ be replaced by the runtime value of PARAMS[PARAM_TRANSITION]. */
+ unsigned int param_transition : 8;
+
+ /* True if we have decided to generalize the root decision's test,
+ as per PARAM_TEST. */
+ unsigned int param_test_p : 1;
+
+ /* Likewise for the root decision's transition, as per PARAM_TRANSITION. */
+ unsigned int param_transition_p : 1;
+
+ /* True if the contents of the structure are completely filled in. */
+ unsigned int complete_p : 1;
+
+ /* The number of pseudo-statements in the pattern. Used to decide
+ whether it's big enough to break out into a subroutine. */
+ unsigned int num_statements;
+
+ /* The number of states that use this pattern. */
+ unsigned int num_users;
+
+ /* The number of distinct success values that the pattern returns. */
+ unsigned int num_results;
+
+ /* This array has one element for each runtime parameter to the pattern.
+ PARAMS[I] gives the default value of parameter I, which is always
+ constant.
+
+ These default parameters are used in cases where we match the
+ pattern against some state S1, then add more parameters while
+ matching against some state S2. S1 is then left passing fewer
+ parameters than S2. The array gives us enough informatino to
+ construct a full parameter list for S1 (see update_parameters).
+
+ If we decide to create a subroutine for this pattern,
+ PARAMS[I].type determines the C type of parameter I. */
+ auto_vec <parameter, MAX_PATTERN_PARAMS> params;
+
+ /* All states that match this pattern must have the same number of
+ transitions. TRANSITIONS[I] describes the subpattern for transition
+ number I; it is null if transition I represents a successful return
+ from the pattern. */
+ auto_vec <merge_pattern_transition *, 1> transitions;
+
+ /* The routine associated with the pattern, or null if we haven't generated
+ one yet. */
+ pattern_routine *routine;
+};
+
+merge_pattern_info::merge_pattern_info (unsigned int num_transitions)
+ : param_test (0),
+ param_transition (0),
+ param_test_p (false),
+ param_transition_p (false),
+ complete_p (false),
+ num_statements (0),
+ num_users (0),
+ num_results (0),
+ routine (0)
+{
+ transitions.safe_grow_cleared (num_transitions);
+}
+
+/* Describes one way of matching a particular state to a particular
+ pattern. */
+struct merge_state_result
+{
+ merge_state_result (merge_pattern_info *, position *, merge_state_result *);
+
+ /* A pattern that matches the state. */
+ merge_pattern_info *pattern;
+
+ /* If we decide to use this match and create a subroutine for PATTERN,
+ the state should pass the rtx at position ROOT to the pattern's
+ rtx parameter. A null root means that the pattern doesn't need
+ an rtx parameter; all the rtxes it matches come from elsewhere. */
+ position *root;
+
+ /* The parameters that should be passed to PATTERN for this state.
+ If the array is shorter than PATTERN->params, the missing entries
+ should be taken from the corresponding element of PATTERN->params. */
+ auto_vec <parameter, MAX_PATTERN_PARAMS> params;
+
+ /* An earlier match for the same state, or null if none. Patterns
+ matched by earlier entries are smaller than PATTERN. */
+ merge_state_result *prev;
+};
+
+merge_state_result::merge_state_result (merge_pattern_info *pattern_in,
+ position *root_in,
+ merge_state_result *prev_in)
+ : pattern (pattern_in), root (root_in), prev (prev_in)
+{}
+
+/* Information about a state, used while trying to match it against
+ a pattern. */
+struct merge_state_info
+{
+ merge_state_info (state *);
+
+ /* The state itself. */
+ state *s;
+
+ /* Index I gives information about the target of transition I. */
+ merge_state_info *to_states;
+
+ /* The number of transitions in S. */
+ unsigned int num_transitions;
+
+ /* True if the state has been deleted in favor of a call to a
+ pattern routine. */
+ bool merged_p;
+
+ /* The previous state that might be a merge candidate for S, or null
+ if no previous states could be merged with S. */
+ merge_state_info *prev_same_test;
+
+ /* A list of pattern matches for this state. */
+ merge_state_result *res;
+};
+
+merge_state_info::merge_state_info (state *s_in)
+ : s (s_in),
+ to_states (0),
+ num_transitions (0),
+ merged_p (false),
+ prev_same_test (0),
+ res (0) {}
+
+/* True if PAT would be useful as a subroutine. */
+
+static bool
+useful_pattern_p (merge_pattern_info *pat)
+{
+ return pat->num_statements >= MIN_COMBINE_COST;
+}
+
+/* PAT2 is a subpattern of PAT1. Return true if PAT2 should be inlined
+ into PAT1's C routine. */
+
+static bool
+same_pattern_p (merge_pattern_info *pat1, merge_pattern_info *pat2)
+{
+ return pat1->num_users == pat2->num_users || !useful_pattern_p (pat2);
+}
+
+/* PAT was previously matched against SINFO based on tentative matches
+ for the target states of SINFO's state. Return true if the match
+ still holds; that is, if the target states of SINFO's state still
+ match the corresponding transitions of PAT. */
+
+static bool
+valid_result_p (merge_pattern_info *pat, merge_state_info *sinfo)
+{
+ for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
+ if (merge_pattern_transition *ptrans = pat->transitions[j])
+ {
+ merge_state_result *to_res = sinfo->to_states[j].res;
+ if (!to_res || to_res->pattern != ptrans->to)
+ return false;
+ }
+ return true;
+}
+
+/* Remove any matches that are no longer valid from the head of SINFO's
+ list of matches. */
+
+static void
+prune_invalid_results (merge_state_info *sinfo)
+{
+ while (sinfo->res && !valid_result_p (sinfo->res->pattern, sinfo))
+ {
+ sinfo->res = sinfo->res->prev;
+ gcc_assert (sinfo->res);
}
}
-/* Emit code for one action. The previous tests have succeeded;
- TEST is the last of the chain. In the normal case we simply
- perform a state change. For the `accept' tests we must do more work. */
+/* Return true if PAT represents the biggest posssible match for SINFO;
+ that is, if the next action of SINFO's state on return from PAT will
+ be something that cannot be merged with any other state. */
+
+static bool
+complete_result_p (merge_pattern_info *pat, merge_state_info *sinfo)
+{
+ for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
+ if (sinfo->to_states[j].res && !pat->transitions[j])
+ return false;
+ return true;
+}
+
+/* Update TO for any parameters that have been added to FROM since TO
+ was last set. The extra parameters in FROM will be constants or
+ instructions to duplicate earlier parameters. */
static void
-write_action (struct decision *p, struct decision_test *test,
- int depth, int uncond, struct decision *success,
- enum routine_type subroutine_type)
+update_parameters (vec <parameter> &to, const vec <parameter> &from)
{
- const char *indent;
- int want_close = 0;
+ for (unsigned int i = to.length (); i < from.length (); ++i)
+ to.quick_push (from[i]);
+}
- if (uncond)
- indent = " ";
- else if (test->type == DT_accept_op || test->type == DT_accept_insn)
+/* Return true if A and B can be tested by a single test. If the test
+ can be parameterised, store the parameter value for A in *PARAMA and
+ the parameter value for B in *PARAMB, otherwise leave PARAMA and
+ PARAMB alone. */
+
+static bool
+compatible_tests_p (const test &a, const test &b,
+ parameter *parama, parameter *paramb)
+{
+ if (a.kind != b.kind)
+ return false;
+ switch (a.kind)
{
- fputs (" {\n", stdout);
- indent = " ";
- want_close = 1;
+ case test::PREDICATE:
+ if (a.u.predicate.data != b.u.predicate.data)
+ return false;
+ *parama = parameter (parameter::MODE, false, a.u.predicate.mode);
+ *paramb = parameter (parameter::MODE, false, b.u.predicate.mode);
+ return true;
+
+ case test::SAVED_CONST_INT:
+ *parama = parameter (parameter::INT, false, a.u.integer.value);
+ *paramb = parameter (parameter::INT, false, b.u.integer.value);
+ return true;
+
+ default:
+ return a == b;
}
- else
- indent = " ";
+}
+
+/* PARAMS is an array of the parameters that a state is going to pass
+ to a pattern routine. It is still incomplete; index I has a kind of
+ parameter::UNSET if we don't yet know what the state will pass
+ as parameter I. Try to make parameter ID equal VALUE, returning
+ true on success. */
- if (test->type == DT_accept_op)
+static bool
+set_parameter (vec <parameter> ¶ms, unsigned int id,
+ const parameter &value)
+{
+ if (params[id].type == parameter::UNSET)
{
- printf ("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
+ if (force_unique_params_p)
+ for (unsigned int i = 0; i < params.length (); ++i)
+ if (params[i] == value)
+ return false;
+ params[id] = value;
+ return true;
+ }
+ return params[id] == value;
+}
+
+/* PARAMS2 is the "params" array for a pattern and PARAMS1 is the
+ set of parameters that a particular state is going to pass to
+ that pattern.
+
+ Try to extend PARAMS1 and PARAMS2 so that there is a parameter
+ that is equal to PARAM1 for the state and has a default value of
+ PARAM2. Parameters beginning at START were added as part of the
+ same match and so may be reused. */
+
+static bool
+add_parameter (vec <parameter> ¶ms1, vec <parameter> ¶ms2,
+ const parameter ¶m1, const parameter ¶m2,
+ unsigned int start, unsigned int *res)
+{
+ gcc_assert (params1.length () == params2.length ());
+ gcc_assert (!param1.is_param && !param2.is_param);
+
+ for (unsigned int i = start; i < params2.length (); ++i)
+ if (params1[i] == param1 && params2[i] == param2)
+ {
+ *res = i;
+ return true;
+ }
+
+ if (force_unique_params_p)
+ for (unsigned int i = 0; i < params2.length (); ++i)
+ if (params1[i] == param1 || params2[i] == param2)
+ return false;
+
+ if (params2.length () >= MAX_PATTERN_PARAMS)
+ return false;
- /* Only allow DT_accept_insn to follow. */
- if (test->next)
+ *res = params2.length ();
+ params1.quick_push (param1);
+ params2.quick_push (param2);
+ return true;
+}
+
+/* If *ROOTA is nonnull, return true if the same sequence of steps are
+ required to reach A from *ROOTA as to reach B from ROOTB. If *ROOTA
+ is null, update it if necessary in order to make the condition hold. */
+
+static bool
+merge_relative_positions (position **roota, position *a,
+ position *rootb, position *b)
+{
+ if (!relative_patterns_p)
+ {
+ if (a != b)
+ return false;
+ if (!*roota)
{
- test = test->next;
- gcc_assert (test->type == DT_accept_insn);
+ *roota = rootb;
+ return true;
}
+ return *roota == rootb;
+ }
+ /* If B does not belong to the same instruction as ROOTB, we don't
+ start with ROOTB but instead start with a call to peep2_next_insn.
+ In that case the sequences for B and A are identical iff B and A
+ are themselves identical. */
+ if (rootb->insn_id != b->insn_id)
+ return a == b;
+ while (rootb != b)
+ {
+ if (!a || b->type != a->type || b->arg != a->arg)
+ return false;
+ b = b->base;
+ a = a->base;
}
+ if (!*roota)
+ *roota = a;
+ return *roota == a;
+}
- /* Sanity check that we're now at the end of the list of tests. */
- gcc_assert (!test->next);
+/* A hasher of states that treats two states as "equal" if they might be
+ merged (but trying to be more discriminating than "return true"). */
+struct test_pattern_hasher : typed_noop_remove <merge_state_info>
+{
+ typedef merge_state_info *value_type;
+ typedef merge_state_info *compare_type;
+ static inline hashval_t hash (const value_type &);
+ static inline bool equal (const value_type &, const compare_type &);
+};
- if (test->type == DT_accept_insn)
- {
- switch (subroutine_type)
- {
- case RECOG:
- if (test->u.insn.num_clobbers_to_add != 0)
- printf ("%s*pnum_clobbers = %d;\n",
- indent, test->u.insn.num_clobbers_to_add);
- printf ("%sreturn %d; /* %s */\n", indent,
- test->u.insn.code_number,
- get_insn_name (test->u.insn.code_number));
- break;
+hashval_t
+test_pattern_hasher::hash (merge_state_info *const &sinfo)
+{
+ inchash::hash h;
+ decision *d = sinfo->s->singleton ();
+ h.add_int (d->test.pos_operand + 1);
+ if (!relative_patterns_p)
+ h.add_int (d->test.pos ? d->test.pos->id + 1 : 0);
+ h.add_int (d->test.kind);
+ h.add_int (sinfo->num_transitions);
+ return h.end ();
+}
- case SPLIT:
- printf ("%sreturn gen_split_%d (insn, operands);\n",
- indent, test->u.insn.code_number);
- break;
+bool
+test_pattern_hasher::equal (merge_state_info *const &sinfo1,
+ merge_state_info *const &sinfo2)
+{
+ decision *d1 = sinfo1->s->singleton ();
+ decision *d2 = sinfo2->s->singleton ();
+ gcc_assert (d1 && d2);
+
+ parameter new_param1, new_param2;
+ return (d1->test.pos_operand == d2->test.pos_operand
+ && (relative_patterns_p || d1->test.pos == d2->test.pos)
+ && compatible_tests_p (d1->test, d2->test, &new_param1, &new_param2)
+ && sinfo1->num_transitions == sinfo2->num_transitions);
+}
- case PEEPHOLE2:
- {
- int match_len = 0;
- struct position *pos;
+/* Try to make the state described by SINFO1 use the same pattern as the
+ state described by SINFO2. Return true on success.
- for (pos = p->position; pos; pos = pos->base)
- if (pos->type == POS_PEEP2_INSN)
- {
- match_len = pos->arg;
- break;
- }
- printf ("%s*_pmatch_len = %d;\n", indent, match_len);
- printf ("%stem = gen_peephole2_%d (insn, operands);\n",
- indent, test->u.insn.code_number);
- printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
+ SINFO1 and SINFO2 are known to have the same hash value. */
+
+static bool
+merge_patterns (merge_state_info *sinfo1, merge_state_info *sinfo2)
+{
+ merge_state_result *res2 = sinfo2->res;
+ merge_pattern_info *pat = res2->pattern;
+
+ /* Write to temporary arrays while matching, in case we have to abort
+ half way through. */
+ auto_vec <parameter, MAX_PATTERN_PARAMS> params1;
+ auto_vec <parameter, MAX_PATTERN_PARAMS> params2;
+ params1.quick_grow_cleared (pat->params.length ());
+ params2.splice (pat->params);
+ unsigned int start_param = params2.length ();
+
+ /* An array for recording changes to PAT->transitions[?].params.
+ All changes involve replacing a constant parameter with some
+ PAT->params[N], where N is the second element of the pending_param. */
+ typedef std::pair <parameter *, unsigned int> pending_param;
+ auto_vec <pending_param, 32> pending_params;
+
+ decision *d1 = sinfo1->s->singleton ();
+ decision *d2 = sinfo2->s->singleton ();
+ gcc_assert (d1 && d2);
+
+ /* If D2 tests a position, SINFO1's root relative to D1 is the same
+ as SINFO2's root relative to D2. */
+ position *root1 = 0;
+ position *root2 = res2->root;
+ if (d2->test.pos_operand < 0
+ && d1->test.pos
+ && !merge_relative_positions (&root1, d1->test.pos,
+ root2, d2->test.pos))
+ return false;
+
+ /* Check whether the patterns have the same shape. */
+ unsigned int num_transitions = sinfo1->num_transitions;
+ gcc_assert (num_transitions == sinfo2->num_transitions);
+ for (unsigned int i = 0; i < num_transitions; ++i)
+ if (merge_pattern_transition *ptrans = pat->transitions[i])
+ {
+ merge_state_result *to1_res = sinfo1->to_states[i].res;
+ merge_state_result *to2_res = sinfo2->to_states[i].res;
+ merge_pattern_info *to_pat = ptrans->to;
+ gcc_assert (to2_res && to2_res->pattern == to_pat);
+ if (!to1_res || to1_res->pattern != to_pat)
+ return false;
+ if (to2_res->root
+ && !merge_relative_positions (&root1, to1_res->root,
+ root2, to2_res->root))
+ return false;
+ /* Match the parameters that TO1_RES passes to TO_PAT with the
+ parameters that PAT passes to TO_PAT. */
+ update_parameters (to1_res->params, to_pat->params);
+ for (unsigned int j = 0; j < to1_res->params.length (); ++j)
+ {
+ const parameter ¶m1 = to1_res->params[j];
+ const parameter ¶m2 = ptrans->params[j];
+ gcc_assert (!param1.is_param);
+ if (param2.is_param)
+ {
+ if (!set_parameter (params1, param2.value, param1))
+ return false;
+ }
+ else if (param1 != param2)
+ {
+ unsigned int id;
+ if (!add_parameter (params1, params2,
+ param1, param2, start_param, &id))
+ return false;
+ /* Record that PAT should now pass parameter ID to TO_PAT,
+ instead of the current contents of *PARAM2. We only
+ make the change if the rest of the match succeeds. */
+ pending_params.safe_push
+ (pending_param (&ptrans->params[j], id));
+ }
}
- break;
+ }
- default:
- gcc_unreachable ();
+ unsigned int param_test = pat->param_test;
+ unsigned int param_transition = pat->param_transition;
+ bool param_test_p = pat->param_test_p;
+ bool param_transition_p = pat->param_transition_p;
+
+ /* If the tests don't match exactly, try to parameterize them. */
+ parameter new_param1, new_param2;
+ if (!compatible_tests_p (d1->test, d2->test, &new_param1, &new_param2))
+ gcc_unreachable ();
+ if (new_param1.type != parameter::UNSET)
+ {
+ /* If the test has not already been parameterized, all existing
+ matches use constant NEW_PARAM2. */
+ if (param_test_p)
+ {
+ if (!set_parameter (params1, param_test, new_param1))
+ return false;
+ }
+ else if (new_param1 != new_param2)
+ {
+ if (!add_parameter (params1, params2, new_param1, new_param2,
+ start_param, ¶m_test))
+ return false;
+ param_test_p = true;
}
}
- else
+
+ /* Match the transitions. */
+ transition *trans1 = d1->first;
+ transition *trans2 = d2->first;
+ for (unsigned int i = 0; i < num_transitions; ++i)
{
- printf ("%sgoto L%d;\n", indent, success->number);
- success->need_label = 1;
+ if (param_transition_p || trans1->labels != trans2->labels)
+ {
+ /* We can only generalize a single transition with a single
+ label. */
+ if (num_transitions != 1
+ || trans1->labels.length () != 1
+ || trans2->labels.length () != 1)
+ return false;
+
+ /* Although we can match wide-int fields, in practice it leads
+ to some odd results for const_vectors. We end up
+ parameterizing the first N const_ints of the vector
+ and then (once we reach the maximum number of parameters)
+ we go on to match the other elements exactly. */
+ if (d1->test.kind == test::WIDE_INT_FIELD)
+ return false;
+
+ /* See whether the label has a generalizable type. */
+ parameter::type_enum param_type
+ = transition_parameter_type (d1->test.kind);
+ if (param_type == parameter::UNSET)
+ return false;
+
+ /* Match the labels using parameters. */
+ new_param1 = parameter (param_type, false, trans1->labels[0]);
+ if (param_transition_p)
+ {
+ if (!set_parameter (params1, param_transition, new_param1))
+ return false;
+ }
+ else
+ {
+ new_param2 = parameter (param_type, false, trans2->labels[0]);
+ if (!add_parameter (params1, params2, new_param1, new_param2,
+ start_param, ¶m_transition))
+ return false;
+ param_transition_p = true;
+ }
+ }
+ trans1 = trans1->next;
+ trans2 = trans2->next;
}
- if (want_close)
- fputs (" }\n", stdout);
+ /* Set any unset parameters to their default values. This occurs if some
+ other state needed something to be parameterized in order to match SINFO2,
+ but SINFO1 on its own does not. */
+ for (unsigned int i = 0; i < params1.length (); ++i)
+ if (params1[i].type == parameter::UNSET)
+ params1[i] = params2[i];
+
+ /* The match was successful. Commit all pending changes to PAT. */
+ update_parameters (pat->params, params2);
+ {
+ pending_param *pp;
+ unsigned int i;
+ FOR_EACH_VEC_ELT (pending_params, i, pp)
+ *pp->first = parameter (pp->first->type, true, pp->second);
+ }
+ pat->param_test = param_test;
+ pat->param_transition = param_transition;
+ pat->param_test_p = param_test_p;
+ pat->param_transition_p = param_transition_p;
+
+ /* Record the match of SINFO1. */
+ merge_state_result *new_res1 = new merge_state_result (pat, root1,
+ sinfo1->res);
+ new_res1->params.splice (params1);
+ sinfo1->res = new_res1;
+ return true;
}
-/* Return 1 if the test is always true and has no fallthru path. Return -1
- if the test does have a fallthru path, but requires that the condition be
- terminated. Otherwise return 0 for a normal test. */
-/* ??? is_unconditional is a stupid name for a tri-state function. */
+/* The number of states that were removed by calling pattern routines. */
+static unsigned int pattern_use_states;
-static int
-is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
+/* The number of states used while defining pattern routines. */
+static unsigned int pattern_def_states;
+
+/* Information used while constructing a use or definition of a pattern
+ routine. */
+struct create_pattern_info
+{
+ /* The routine itself. */
+ pattern_routine *routine;
+
+ /* The first unclaimed return value for this particular use or definition.
+ We walk the substates of uses and definitions in the same order
+ so each return value always refers to the same position within
+ the pattern. */
+ unsigned int next_result;
+};
+
+static void populate_pattern_routine (create_pattern_info *,
+ merge_state_info *, state *,
+ const vec <parameter> &);
+
+/* SINFO matches a pattern for which we've decided to create a C routine.
+ Return a decision that performs a call to the pattern routine,
+ but leave the caller to add the transitions to it. Initialize CPI
+ for this purpose. Also create a definition for the pattern routine,
+ if it doesn't already have one.
+
+ PARAMS are the parameters that SINFO passes to its pattern. */
+
+static decision *
+init_pattern_use (create_pattern_info *cpi, merge_state_info *sinfo,
+ const vec <parameter> ¶ms)
{
- if (t->type == DT_accept_op)
- return 1;
+ state *s = sinfo->s;
+ merge_state_result *res = sinfo->res;
+ merge_pattern_info *pat = res->pattern;
+ cpi->routine = pat->routine;
+ if (!cpi->routine)
+ {
+ /* We haven't defined the pattern routine yet, so create
+ a definition now. */
+ pattern_routine *routine = new pattern_routine;
+ pat->routine = routine;
+ cpi->routine = routine;
+ routine->s = new state;
+ routine->insn_p = false;
+ routine->pnum_clobbers_p = false;
+
+ /* Create an "idempotent" mapping of parameter I to parameter I.
+ Also record the C type of each parameter to the routine. */
+ auto_vec <parameter, MAX_PATTERN_PARAMS> def_params;
+ for (unsigned int i = 0; i < pat->params.length (); ++i)
+ {
+ def_params.quick_push (parameter (pat->params[i].type, true, i));
+ routine->param_types.quick_push (pat->params[i].type);
+ }
+
+ /* Any of the states that match the pattern could be used to
+ create the routine definition. We might as well use SINFO
+ since it's already to hand. This means that all positions
+ in the definition will be relative to RES->root. */
+ routine->pos = res->root;
+ cpi->next_result = 0;
+ populate_pattern_routine (cpi, sinfo, routine->s, def_params);
+ gcc_assert (cpi->next_result == pat->num_results);
+
+ /* Add the routine to the global list, after the subroutines
+ that it calls. */
+ routine->pattern_id = patterns.length ();
+ patterns.safe_push (routine);
+ }
+
+ /* Create a decision to call the routine, passing PARAMS to it. */
+ pattern_use *use = new pattern_use;
+ use->routine = pat->routine;
+ use->params.splice (params);
+ decision *d = new decision (test::pattern (res->root, use));
+
+ /* If the original decision could use an element of operands[] instead
+ of an rtx variable, try to transfer it to the new decision. */
+ if (s->first->test.pos && res->root == s->first->test.pos)
+ d->test.pos_operand = s->first->test.pos_operand;
+
+ cpi->next_result = 0;
+ return d;
+}
+
+/* Make S return the next unclaimed pattern routine result for CPI. */
+
+static void
+add_pattern_acceptance (create_pattern_info *cpi, state *s)
+{
+ acceptance_type acceptance;
+ acceptance.type = SUBPATTERN;
+ acceptance.partial_p = false;
+ acceptance.u.full.code = cpi->next_result;
+ add_decision (s, test::accept (acceptance), true, false);
+ cpi->next_result += 1;
+}
+
+/* Initialize new empty state NEWS so that it implements SINFO's pattern
+ (here referred to as "P"). P may be the top level of a pattern routine
+ or a subpattern that should be inlined into its parent pattern's routine
+ (as per same_pattern_p). The choice of SINFO for a top-level pattern is
+ arbitrary; it could be any of the states that use P. The choice for
+ subpatterns follows the choice for the parent pattern.
+
+ PARAMS gives the value of each parameter to P in terms of the parameters
+ to the top-level pattern. If P itself is the top level pattern, PARAMS[I]
+ is always "parameter (TYPE, true, I)". */
- if (t->type == DT_accept_insn)
+static void
+populate_pattern_routine (create_pattern_info *cpi, merge_state_info *sinfo,
+ state *news, const vec <parameter> ¶ms)
+{
+ pattern_def_states += 1;
+
+ decision *d = sinfo->s->singleton ();
+ merge_pattern_info *pat = sinfo->res->pattern;
+ pattern_routine *routine = cpi->routine;
+
+ /* Create a copy of D's test for the pattern routine and generalize it
+ as appropriate. */
+ decision *newd = new decision (d->test);
+ gcc_assert (newd->test.pos_operand >= 0
+ || !newd->test.pos
+ || common_position (newd->test.pos,
+ routine->pos) == routine->pos);
+ if (pat->param_test_p)
{
- switch (subroutine_type)
+ const parameter ¶m = params[pat->param_test];
+ switch (newd->test.kind)
{
- case RECOG:
- return (t->u.insn.num_clobbers_to_add == 0);
- case SPLIT:
- return 1;
- case PEEPHOLE2:
- return -1;
+ case test::PREDICATE:
+ newd->test.u.predicate.mode_is_param = param.is_param;
+ newd->test.u.predicate.mode = param.value;
+ break;
+
+ case test::SAVED_CONST_INT:
+ newd->test.u.integer.is_param = param.is_param;
+ newd->test.u.integer.value = param.value;
+ break;
+
default:
gcc_unreachable ();
+ break;
}
}
+ if (d->test.kind == test::C_TEST)
+ routine->insn_p = true;
+ else if (d->test.kind == test::HAVE_NUM_CLOBBERS)
+ routine->pnum_clobbers_p = true;
+ news->push_back (newd);
+
+ /* Fill in the transitions of NEWD. */
+ unsigned int i = 0;
+ for (transition *trans = d->first; trans; trans = trans->next)
+ {
+ /* Create a new state to act as the target of the new transition. */
+ state *to_news = new state;
+ if (merge_pattern_transition *ptrans = pat->transitions[i])
+ {
+ /* The pattern hasn't finished matching yet. Get the target
+ pattern and the corresponding target state of SINFO. */
+ merge_pattern_info *to_pat = ptrans->to;
+ merge_state_info *to = sinfo->to_states + i;
+ gcc_assert (to->res->pattern == to_pat);
+ gcc_assert (ptrans->params.length () == to_pat->params.length ());
+
+ /* Express the parameters to TO_PAT in terms of the parameters
+ to the top-level pattern. */
+ auto_vec <parameter, MAX_PATTERN_PARAMS> to_params;
+ for (unsigned int j = 0; j < ptrans->params.length (); ++j)
+ {
+ const parameter ¶m = ptrans->params[j];
+ to_params.quick_push (param.is_param
+ ? params[param.value]
+ : param);
+ }
- return 0;
-}
+ if (same_pattern_p (pat, to_pat))
+ /* TO_PAT is part of the current routine, so just recurse. */
+ populate_pattern_routine (cpi, to, to_news, to_params);
+ else
+ {
+ /* TO_PAT should be matched by calling a separate routine. */
+ create_pattern_info sub_cpi;
+ decision *subd = init_pattern_use (&sub_cpi, to, to_params);
+ routine->insn_p |= sub_cpi.routine->insn_p;
+ routine->pnum_clobbers_p |= sub_cpi.routine->pnum_clobbers_p;
-/* Emit code for one node -- the conditional and the accompanying action.
- Return true if there is no fallthru path. */
+ /* Add the pattern routine call to the new target state. */
+ to_news->push_back (subd);
-static int
-write_node (struct decision *p, int depth,
- enum routine_type subroutine_type)
-{
- struct decision_test *test, *last_test;
- int uncond;
-
- /* Scan the tests and simplify comparisons against small
- constants. */
- for (test = p->tests; test; test = test->next)
- {
- if (test->type == DT_code
- && test->u.code == CONST_INT
- && test->next
- && test->next->type == DT_elt_zero_wide_safe
- && -MAX_SAVED_CONST_INT <= test->next->u.intval
- && test->next->u.intval <= MAX_SAVED_CONST_INT)
+ /* Add a transition for each successful call result. */
+ for (unsigned int j = 0; j < to_pat->num_results; ++j)
+ {
+ state *res = new state;
+ add_pattern_acceptance (cpi, res);
+ subd->push_back (new transition (j, res, false));
+ }
+ }
+ }
+ else
+ /* This transition corresponds to a successful match. */
+ add_pattern_acceptance (cpi, to_news);
+
+ /* Create the transition itself, generalizing as necessary. */
+ transition *new_trans = new transition (trans->labels, to_news,
+ trans->optional);
+ if (pat->param_transition_p)
{
- test->type = DT_const_int;
- test->u.intval = test->next->u.intval;
- test->next = test->next->next;
+ const parameter ¶m = params[pat->param_transition];
+ new_trans->is_param = param.is_param;
+ new_trans->labels[0] = param.value;
}
+ newd->push_back (new_trans);
+ i += 1;
}
+}
+
+/* USE is a decision that calls a pattern routine and SINFO is part of the
+ original state tree that the call is supposed to replace. Add the
+ transitions for SINFO and its substates to USE. */
- last_test = test = p->tests;
- uncond = is_unconditional (test, subroutine_type);
- if (uncond == 0)
+static void
+populate_pattern_use (create_pattern_info *cpi, decision *use,
+ merge_state_info *sinfo)
+{
+ pattern_use_states += 1;
+ gcc_assert (!sinfo->merged_p);
+ sinfo->merged_p = true;
+ merge_state_result *res = sinfo->res;
+ merge_pattern_info *pat = res->pattern;
+ decision *d = sinfo->s->singleton ();
+ unsigned int i = 0;
+ for (transition *trans = d->first; trans; trans = trans->next)
{
- printf (" if (");
- write_cond (test, depth, subroutine_type);
+ if (pat->transitions[i])
+ /* The target state is also part of the pattern. */
+ populate_pattern_use (cpi, use, sinfo->to_states + i);
+ else
+ {
+ /* The transition corresponds to a successful return from the
+ pattern routine. */
+ use->push_back (new transition (cpi->next_result, trans->to, false));
+ cpi->next_result += 1;
+ }
+ i += 1;
+ }
+}
+
+/* We have decided to replace SINFO's state with a call to a pattern
+ routine. Make the change, creating a definition of the pattern routine
+ if it doesn't have one already. */
- while ((test = test->next) != NULL)
+static void
+use_pattern (merge_state_info *sinfo)
+{
+ merge_state_result *res = sinfo->res;
+ merge_pattern_info *pat = res->pattern;
+ state *s = sinfo->s;
+
+ /* The pattern may have acquired new parameters after it was matched
+ against SINFO. Update the parameters that SINFO passes accordingly. */
+ update_parameters (res->params, pat->params);
+
+ create_pattern_info cpi;
+ decision *d = init_pattern_use (&cpi, sinfo, res->params);
+ populate_pattern_use (&cpi, d, sinfo);
+ s->release ();
+ s->push_back (d);
+}
+
+/* Look through the state trees in STATES for common patterns and
+ split them into subroutines. */
+
+static void
+split_out_patterns (vec <merge_state_info> &states)
+{
+ unsigned int first_transition = states.length ();
+ hash_table <test_pattern_hasher> hashtab (128);
+ /* Stage 1: Create an order in which parent states come before their child
+ states and in which sibling states are at consecutive locations.
+ Having consecutive sibling states allows merge_state_info to have
+ a single to_states pointer. */
+ for (unsigned int i = 0; i < states.length (); ++i)
+ for (decision *d = states[i].s->first; d; d = d->next)
+ for (transition *trans = d->first; trans; trans = trans->next)
{
- last_test = test;
- if (is_unconditional (test, subroutine_type))
- break;
+ states.safe_push (trans->to);
+ states[i].num_transitions += 1;
+ }
+ /* Stage 2: Now that the addresses are stable, set up the to_states
+ pointers. Look for states that might be merged and enter them
+ into the hash table. */
+ for (unsigned int i = 0; i < states.length (); ++i)
+ {
+ merge_state_info *sinfo = &states[i];
+ if (sinfo->num_transitions)
+ {
+ sinfo->to_states = &states[first_transition];
+ first_transition += sinfo->num_transitions;
+ }
+ /* For simplicity, we only try to merge states that have a single
+ decision. This is in any case the best we can do for peephole2,
+ since whether a peephole2 ACCEPT succeeds or not depends on the
+ specific peephole2 pattern (which is unique to each ACCEPT
+ and so couldn't be shared between states). */
+ if (decision *d = sinfo->s->singleton ())
+ /* ACCEPT states are unique, so don't even try to merge them. */
+ if (d->test.kind != test::ACCEPT
+ && (pattern_have_num_clobbers_p
+ || d->test.kind != test::HAVE_NUM_CLOBBERS)
+ && (pattern_c_test_p
+ || d->test.kind != test::C_TEST))
+ {
+ merge_state_info **slot = hashtab.find_slot (sinfo, INSERT);
+ sinfo->prev_same_test = *slot;
+ *slot = sinfo;
+ }
+ }
+ /* Stage 3: Walk backwards through the list of states and try to merge
+ them. This is a greedy, bottom-up match; parent nodes can only start
+ a new leaf pattern if they fail to match when combined with all child
+ nodes that have matching patterns.
+
+ For each state we keep a list of potential matches, with each
+ potential match being larger (and deeper) than the next match in
+ the list. The final element in the list is a leaf pattern that
+ matches just a single state.
+
+ Each candidate pattern created in this loop is unique -- it won't
+ have been seen by an earlier iteration. We try to match each pattern
+ with every state that appears earlier in STATES.
+
+ Because the patterns created in the loop are unique, any state
+ that already has a match must have a final potential match that
+ is different from any new leaf pattern. Therefore, when matching
+ leaf patterns, we need only consider states whose list of matches
+ is empty.
+
+ The non-leaf patterns that we try are as deep as possible
+ and are an extension of the state's previous best candidate match (PB).
+ We need only consider states whose current potential match is also PB;
+ any states that don't match as much as PB cannnot match the new pattern,
+ while any states that already match more than PB must be different from
+ the new pattern. */
+ for (unsigned int i2 = states.length (); i2-- > 0; )
+ {
+ merge_state_info *sinfo2 = &states[i2];
+
+ /* Enforce the bottom-upness of the match: remove matches with later
+ states if SINFO2's child states ended up finding a better match. */
+ prune_invalid_results (sinfo2);
+
+ /* Do nothing if the state doesn't match a later one and if there are
+ no earlier states it could match. */
+ if (!sinfo2->res && !sinfo2->prev_same_test)
+ continue;
+
+ merge_state_result *res2 = sinfo2->res;
+ decision *d2 = sinfo2->s->singleton ();
+ position *root2 = (d2->test.pos_operand < 0 ? d2->test.pos : 0);
+ unsigned int num_transitions = sinfo2->num_transitions;
+
+ /* If RES2 is null then SINFO2's test in isolation has not been seen
+ before. First try matching that on its own. */
+ if (!res2)
+ {
+ merge_pattern_info *new_pat
+ = new merge_pattern_info (num_transitions);
+ merge_state_result *new_res2
+ = new merge_state_result (new_pat, root2, res2);
+ sinfo2->res = new_res2;
+
+ new_pat->num_statements = !d2->test.single_outcome_p ();
+ new_pat->num_results = num_transitions;
+ bool matched_p = false;
+ /* Look for states that don't currently match anything but
+ can be made to match SINFO2 on its own. */
+ for (merge_state_info *sinfo1 = sinfo2->prev_same_test; sinfo1;
+ sinfo1 = sinfo1->prev_same_test)
+ if (!sinfo1->res && merge_patterns (sinfo1, sinfo2))
+ matched_p = true;
+ if (!matched_p)
+ {
+ /* No other states match. */
+ sinfo2->res = res2;
+ delete new_pat;
+ delete new_res2;
+ continue;
+ }
+ else
+ res2 = new_res2;
+ }
+
+ /* Keep the existing pattern if it's as good as anything we'd
+ create for SINFO2. */
+ if (complete_result_p (res2->pattern, sinfo2))
+ {
+ res2->pattern->num_users += 1;
+ continue;
+ }
+
+ /* Create a new pattern for SINFO2. */
+ merge_pattern_info *new_pat = new merge_pattern_info (num_transitions);
+ merge_state_result *new_res2
+ = new merge_state_result (new_pat, root2, res2);
+ sinfo2->res = new_res2;
+
+ /* Fill in details about the pattern. */
+ new_pat->num_statements = !d2->test.single_outcome_p ();
+ new_pat->num_results = 0;
+ for (unsigned int j = 0; j < num_transitions; ++j)
+ if (merge_state_result *to_res = sinfo2->to_states[j].res)
+ {
+ /* Count the target state as part of this pattern.
+ First update the root position so that it can reach
+ the target state's root. */
+ if (to_res->root)
+ {
+ if (new_res2->root)
+ new_res2->root = common_position (new_res2->root,
+ to_res->root);
+ else
+ new_res2->root = to_res->root;
+ }
+ merge_pattern_info *to_pat = to_res->pattern;
+ merge_pattern_transition *ptrans
+ = new merge_pattern_transition (to_pat);
+
+ /* TO_PAT may have acquired more parameters when matching
+ states earlier in STATES than TO_RES's, but the list is
+ now final. Make sure that TO_RES is up to date. */
+ update_parameters (to_res->params, to_pat->params);
+
+ /* Start out by assuming that every user of NEW_PAT will
+ want to pass the same (constant) parameters as TO_RES. */
+ update_parameters (ptrans->params, to_res->params);
+
+ new_pat->transitions[j] = ptrans;
+ new_pat->num_statements += to_pat->num_statements;
+ new_pat->num_results += to_pat->num_results;
+ }
+ else
+ /* The target state doesn't match anything and so is not part
+ of the pattern. */
+ new_pat->num_results += 1;
+
+ /* See if any earlier states that match RES2's pattern also match
+ NEW_PAT. */
+ bool matched_p = false;
+ for (merge_state_info *sinfo1 = sinfo2->prev_same_test; sinfo1;
+ sinfo1 = sinfo1->prev_same_test)
+ {
+ prune_invalid_results (sinfo1);
+ if (sinfo1->res
+ && sinfo1->res->pattern == res2->pattern
+ && merge_patterns (sinfo1, sinfo2))
+ matched_p = true;
+ }
+ if (!matched_p)
+ {
+ /* Nothing else matches NEW_PAT, so go back to the previous
+ pattern (possibly just a single-state one). */
+ sinfo2->res = res2;
+ delete new_pat;
+ delete new_res2;
+ }
+ /* Assume that SINFO2 will use RES. At this point we don't know
+ whether earlier states that match the same pattern will use
+ that match or a different one. */
+ sinfo2->res->pattern->num_users += 1;
+ }
+ /* Step 4: Finalize the choice of pattern for each state, ignoring
+ patterns that were only used once. Update each pattern's size
+ so that it doesn't include subpatterns that are going to be split
+ out into subroutines. */
+ for (unsigned int i = 0; i < states.length (); ++i)
+ {
+ merge_state_info *sinfo = &states[i];
+ merge_state_result *res = sinfo->res;
+ /* Wind past patterns that are only used by SINFO. */
+ while (res && res->pattern->num_users == 1)
+ {
+ res = res->prev;
+ sinfo->res = res;
+ if (res)
+ res->pattern->num_users += 1;
+ }
+ if (!res)
+ continue;
+
+ /* We have a shared pattern and are now committed to the match. */
+ merge_pattern_info *pat = res->pattern;
+ gcc_assert (valid_result_p (pat, sinfo));
+
+ if (!pat->complete_p)
+ {
+ /* Look for subpatterns that are going to be split out and remove
+ them from the number of statements. */
+ for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
+ if (merge_pattern_transition *ptrans = pat->transitions[j])
+ {
+ merge_pattern_info *to_pat = ptrans->to;
+ if (!same_pattern_p (pat, to_pat))
+ pat->num_statements -= to_pat->num_statements;
+ }
+ pat->complete_p = true;
+ }
+ }
+ /* Step 5: Split out the patterns. */
+ for (unsigned int i = 0; i < states.length (); ++i)
+ {
+ merge_state_info *sinfo = &states[i];
+ merge_state_result *res = sinfo->res;
+ if (!sinfo->merged_p && res && useful_pattern_p (res->pattern))
+ use_pattern (sinfo);
+ }
+ fprintf (stderr, "Shared %d out of %d states by creating %d new states,"
+ " saving %d\n",
+ pattern_use_states, states.length (), pattern_def_states,
+ pattern_use_states - pattern_def_states);
+}
+
+/* Information about a state tree that we're considering splitting into a
+ subroutine. */
+struct state_size
+{
+ /* The number of pseudo-statements in the state tree. */
+ unsigned int num_statements;
+
+ /* The approximate number of nested "if" and "switch" statements that
+ would be required if control could fall through to a later state. */
+ unsigned int depth;
+};
+
+/* Pairs a transition with information about its target state. */
+typedef std::pair <transition *, state_size> subroutine_candidate;
+
+/* Sort two subroutine_candidates so that the one with the largest
+ number of statements comes last. */
+
+static int
+subroutine_candidate_cmp (const void *a, const void *b)
+{
+ return int (((const subroutine_candidate *) a)->second.num_statements
+ - ((const subroutine_candidate *) b)->second.num_statements);
+}
+
+/* Turn S into a subroutine of type TYPE and add it to PROCS. Return a new
+ state that performs a subroutine call to S. */
+
+static state *
+create_subroutine (routine_type type, state *s, vec <state *> &procs)
+{
+ procs.safe_push (s);
+ acceptance_type acceptance;
+ acceptance.type = type;
+ acceptance.partial_p = true;
+ acceptance.u.subroutine_id = procs.length ();
+ state *news = new state;
+ add_decision (news, test::accept (acceptance), true, false);
+ return news;
+}
+
+/* Walk state tree S, of type TYPE, and look for subtrees that would be
+ better split into subroutines. Accumulate all such subroutines in PROCS.
+ Return the size of the new state tree (excluding subroutines). */
+
+static state_size
+find_subroutines (routine_type type, state *s, vec <state *> &procs)
+{
+ auto_vec <subroutine_candidate, 16> candidates;
+ state_size size;
+ size.num_statements = 0;
+ size.depth = 0;
+ for (decision *d = s->first; d; d = d->next)
+ {
+ if (!d->test.single_outcome_p ())
+ size.num_statements += 1;
+ for (transition *trans = d->first; trans; trans = trans->next)
+ {
+ /* Keep chains of simple decisions together if we know that no
+ change of position is required. We'll output this chain as a
+ single "if" statement, so it counts as a single nesting level. */
+ if (d->test.pos && d->if_statement_p ())
+ for (;;)
+ {
+ decision *newd = trans->to->singleton ();
+ if (!newd
+ || (newd->test.pos
+ && newd->test.pos_operand < 0
+ && newd->test.pos != d->test.pos)
+ || !newd->if_statement_p ())
+ break;
+ if (!newd->test.single_outcome_p ())
+ size.num_statements += 1;
+ trans = newd->singleton ();
+ if (newd->test.kind == test::SET_OP
+ || newd->test.kind == test::ACCEPT)
+ break;
+ }
+ /* The target of TRANS is a subroutine candidate. First recurse
+ on it to see how big it is after subroutines have been
+ split out. */
+ state_size to_size = find_subroutines (type, trans->to, procs);
+ if (d->next && to_size.depth > MAX_DEPTH)
+ /* Keeping the target state in the same routine would lead
+ to an excessive nesting of "if" and "switch" statements.
+ Split it out into a subroutine so that it can use
+ inverted tests that return early on failure. */
+ trans->to = create_subroutine (type, trans->to, procs);
+ else
+ {
+ size.num_statements += to_size.num_statements;
+ if (to_size.num_statements < MIN_NUM_STATEMENTS)
+ /* The target state is too small to be worth splitting.
+ Keep it in the same routine as S. */
+ size.depth = MAX (size.depth, to_size.depth);
+ else
+ /* Assume for now that we'll keep the target state in the
+ same routine as S, but record it as a subroutine candidate
+ if S grows too big. */
+ candidates.safe_push (subroutine_candidate (trans, to_size));
+ }
+ }
+ }
+ if (size.num_statements > MAX_NUM_STATEMENTS)
+ {
+ /* S is too big. Sort the subroutine candidates so that bigger ones
+ are nearer the end. */
+ candidates.qsort (subroutine_candidate_cmp);
+ while (!candidates.is_empty ()
+ && size.num_statements > MAX_NUM_STATEMENTS)
+ {
+ /* Peel off a candidate and force it into a subroutine. */
+ subroutine_candidate cand = candidates.pop ();
+ size.num_statements -= cand.second.num_statements;
+ cand.first->to = create_subroutine (type, cand.first->to, procs);
+ }
+ }
+ /* Update the depth for subroutine candidates that we decided not to
+ split out. */
+ for (unsigned int i = 0; i < candidates.length (); ++i)
+ size.depth = MAX (size.depth, candidates[i].second.depth);
+ size.depth += 1;
+ return size;
+}
+
+/* Return true if, for all X, PRED (X, MODE) implies that X has mode MODE. */
+
+static bool
+safe_predicate_mode (const struct pred_data *pred, machine_mode mode)
+{
+ /* Scalar integer constants have VOIDmode. */
+ if (GET_MODE_CLASS (mode) == MODE_INT
+ && (pred->codes[CONST_INT]
+ || pred->codes[CONST_DOUBLE]
+ || pred->codes[CONST_WIDE_INT]))
+ return false;
+
+ return !pred->special && mode != VOIDmode;
+}
+
+/* Fill CODES with the set of codes that could be matched by PRED. */
+
+static void
+get_predicate_codes (const struct pred_data *pred, int_set *codes)
+{
+ for (int i = 0; i < NUM_TRUE_RTX_CODE; ++i)
+ if (!pred || pred->codes[i])
+ codes->safe_push (i);
+}
+
+/* Return true if the first path through D1 tests the same thing as D2. */
+
+static bool
+has_same_test_p (decision *d1, decision *d2)
+{
+ do
+ {
+ if (d1->test == d2->test)
+ return true;
+ d1 = d1->first->to->first;
+ }
+ while (d1);
+ return false;
+}
+
+/* Return true if D1 and D2 cannot match the same rtx. All states reachable
+ from D2 have single decisions and all those decisions have single
+ transitions. */
+
+static bool
+mutually_exclusive_p (decision *d1, decision *d2)
+{
+ /* If one path through D1 fails to test the same thing as D2, assume
+ that D2's test could be true for D1 and look for a later, more useful,
+ test. This isn't as expensive as it looks in practice. */
+ while (!has_same_test_p (d1, d2))
+ {
+ d2 = d2->singleton ()->to->singleton ();
+ if (!d2)
+ return false;
+ }
+ if (d1->test == d2->test)
+ {
+ /* Look for any transitions from D1 that have the same labels as
+ the transition from D2. */
+ transition *trans2 = d2->singleton ();
+ for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
+ {
+ int_set::iterator i1 = trans1->labels.begin ();
+ int_set::iterator end1 = trans1->labels.end ();
+ int_set::iterator i2 = trans2->labels.begin ();
+ int_set::iterator end2 = trans2->labels.end ();
+ while (i1 != end1 && i2 != end2)
+ if (*i1 < *i2)
+ ++i1;
+ else if (*i2 < *i1)
+ ++i2;
+ else
+ {
+ /* TRANS1 has some labels in common with TRANS2. Assume
+ that D1 and D2 could match the same rtx if the target
+ of TRANS1 could match the same rtx as D2. */
+ for (decision *subd1 = trans1->to->first;
+ subd1; subd1 = subd1->next)
+ if (!mutually_exclusive_p (subd1, d2))
+ return false;
+ break;
+ }
+ }
+ return true;
+ }
+ for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
+ for (decision *subd1 = trans1->to->first; subd1; subd1 = subd1->next)
+ if (!mutually_exclusive_p (subd1, d2))
+ return false;
+ return true;
+}
+
+/* Try to merge S2's decision into D1, given that they have the same test.
+ Fail only if EXCLUDE is nonnull and the new transition would have the
+ same labels as *EXCLUDE. When returning true, set *NEXT_S1, *NEXT_S2
+ and *NEXT_EXCLUDE as for merge_into_state_1, or set *NEXT_S2 to null
+ if the merge is complete. */
+
+static bool
+merge_into_decision (decision *d1, state *s2, const int_set *exclude,
+ state **next_s1, state **next_s2,
+ const int_set **next_exclude)
+{
+ decision *d2 = s2->singleton ();
+ transition *trans2 = d2->singleton ();
+
+ /* Get a list of the transitions that intersect TRANS2. */
+ auto_vec <transition *, 32> intersecting;
+ for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
+ {
+ int_set::iterator i1 = trans1->labels.begin ();
+ int_set::iterator end1 = trans1->labels.end ();
+ int_set::iterator i2 = trans2->labels.begin ();
+ int_set::iterator end2 = trans2->labels.end ();
+ bool trans1_is_subset = true;
+ bool trans2_is_subset = true;
+ bool intersect_p = false;
+ while (i1 != end1 && i2 != end2)
+ if (*i1 < *i2)
+ {
+ trans1_is_subset = false;
+ ++i1;
+ }
+ else if (*i2 < *i1)
+ {
+ trans2_is_subset = false;
+ ++i2;
+ }
+ else
+ {
+ intersect_p = true;
+ ++i1;
+ ++i2;
+ }
+ if (i1 != end1)
+ trans1_is_subset = false;
+ if (i2 != end2)
+ trans2_is_subset = false;
+ if (trans1_is_subset && trans2_is_subset)
+ {
+ /* There's already a transition that matches exactly.
+ Merge the target states. */
+ trans1->optional &= trans2->optional;
+ *next_s1 = trans1->to;
+ *next_s2 = trans2->to;
+ *next_exclude = 0;
+ return true;
+ }
+ if (trans2_is_subset)
+ {
+ /* TRANS1 has all the labels that TRANS2 needs. Merge S2 into
+ the target of TRANS1, but (to avoid infinite recursion)
+ make sure that we don't end up creating another transition
+ like TRANS1. */
+ *next_s1 = trans1->to;
+ *next_s2 = s2;
+ *next_exclude = &trans1->labels;
+ return true;
+ }
+ if (intersect_p)
+ intersecting.safe_push (trans1);
+ }
+
+ if (intersecting.is_empty ())
+ {
+ /* No existing labels intersect the new ones. We can just add
+ TRANS2 itself. */
+ d1->push_back (d2->release ());
+ *next_s1 = 0;
+ *next_s2 = 0;
+ *next_exclude = 0;
+ return true;
+ }
+
+ /* Take the union of the labels in INTERSECTING and TRANS2. Store the
+ result in COMBINED and use NEXT as a temporary. */
+ int_set tmp1 = trans2->labels, tmp2;
+ int_set *combined = &tmp1, *next = &tmp2;
+ for (unsigned int i = 0; i < intersecting.length (); ++i)
+ {
+ transition *trans1 = intersecting[i];
+ next->truncate (0);
+ next->safe_grow (trans1->labels.length () + combined->length ());
+ int_set::iterator end
+ = std::set_union (trans1->labels.begin (), trans1->labels.end (),
+ combined->begin (), combined->end (),
+ next->begin ());
+ next->truncate (end - next->begin ());
+ std::swap (next, combined);
+ }
+
+ /* Stop now if we've been told not to create a transition with these
+ labels. */
+ if (exclude && *combined == *exclude)
+ return false;
+
+ /* Get the transition that should carry the new labels. */
+ transition *new_trans = intersecting[0];
+ if (intersecting.length () == 1)
+ {
+ /* We're merging with one existing transition whose labels are a
+ subset of those required. If both transitions are optional,
+ we can just expand the set of labels so that it's suitable
+ for both transitions. It isn't worth preserving the original
+ transitions since we know that they can't be merged; we would
+ need to backtrack to S2 if TRANS1->to fails. In contrast,
+ we might be able to merge the targets of the transitions
+ without any backtracking.
+
+ If instead the existing transition is not optional, ensure that
+ all target decisions are suitably protected. Some decisions
+ might already have a more specific requirement than NEW_TRANS,
+ in which case there's no point testing NEW_TRANS as well. E.g. this
+ would have happened if a test for an (eq ...) rtx had been
+ added to a decision that tested whether the code is suitable
+ for comparison_operator. The original comparison_operator
+ transition would have been non-optional and the (eq ...) test
+ would be performed by a second decision in the target of that
+ transition.
+
+ The remaining case -- keeping the original optional transition
+ when adding a non-optional TRANS2 -- is a wash. Preserving
+ the optional transition only helps if we later merge another
+ state S3 that is mutually exclusive with S2 and whose labels
+ belong to *COMBINED - TRANS1->labels. We can then test the
+ original NEW_TRANS and S3 in the same decision. We keep the
+ optional transition around for that case, but it occurs very
+ rarely. */
+ gcc_assert (new_trans->labels != *combined);
+ if (!new_trans->optional || !trans2->optional)
+ {
+ decision *start = 0;
+ for (decision *end = new_trans->to->first; end; end = end->next)
+ {
+ if (!start && end->test != d1->test)
+ /* END belongs to a range of decisions that need to be
+ protected by NEW_TRANS. */
+ start = end;
+ if (start && (!end->next || end->next->test == d1->test))
+ {
+ /* Protect [START, END] with NEW_TRANS. The decisions
+ move to NEW_S and NEW_D becomes part of NEW_TRANS->to. */
+ state *new_s = new state;
+ decision *new_d = new decision (d1->test);
+ new_d->push_back (new transition (new_trans->labels, new_s,
+ new_trans->optional));
+ state::range r (start, end);
+ new_trans->to->replace (r, new_d);
+ new_s->push_back (r);
+
+ /* Continue with an empty range. */
+ start = 0;
+
+ /* Continue from the decision after NEW_D. */
+ end = new_d;
+ }
+ }
+ }
+ new_trans->optional = true;
+ new_trans->labels = *combined;
+ }
+ else
+ {
+ /* We're merging more than one existing transition together.
+ Those transitions are successfully dividing the matching space
+ and so we want to preserve them, even if they're optional.
+
+ Create a new transition with the union set of labels and make
+ it go to a state that has the original transitions. */
+ decision *new_d = new decision (d1->test);
+ for (unsigned int i = 0; i < intersecting.length (); ++i)
+ new_d->push_back (d1->remove (intersecting[i]));
+
+ state *new_s = new state;
+ new_s->push_back (new_d);
+
+ new_trans = new transition (*combined, new_s, true);
+ d1->push_back (new_trans);
+ }
+
+ /* We now have an optional transition with labels *COMBINED. Decide
+ whether we can use it as TRANS2 or whether we need to merge S2
+ into the target of NEW_TRANS. */
+ gcc_assert (new_trans->optional);
+ if (new_trans->labels == trans2->labels)
+ {
+ /* NEW_TRANS matches TRANS2. Just merge the target states. */
+ new_trans->optional = trans2->optional;
+ *next_s1 = new_trans->to;
+ *next_s2 = trans2->to;
+ *next_exclude = 0;
+ }
+ else
+ {
+ /* Try to merge TRANS2 into the target of the overlapping transition,
+ but (to prevent infinite recursion or excessive redundancy) without
+ creating another transition of the same type. */
+ *next_s1 = new_trans->to;
+ *next_s2 = s2;
+ *next_exclude = &new_trans->labels;
+ }
+ return true;
+}
+
+/* Make progress in merging S2 into S1, given that each state in S2
+ has a single decision. If EXCLUDE is nonnull, avoid creating a new
+ transition with the same test as S2's decision and with the labels
+ in *EXCLUDE.
+
+ Return true if there is still work to do. When returning true,
+ set *NEXT_S1, *NEXT_S2 and *NEXT_EXCLUDE to the values that
+ S1, S2 and EXCLUDE should have next time round.
+
+ If S1 and S2 both match a particular rtx, give priority to S1. */
+
+static bool
+merge_into_state_1 (state *s1, state *s2, const int_set *exclude,
+ state **next_s1, state **next_s2,
+ const int_set **next_exclude)
+{
+ decision *d2 = s2->singleton ();
+ if (decision *d1 = s1->last)
+ {
+ if (d1->test.terminal_p ())
+ /* D1 is an unconditional return, so S2 can never match. This can
+ sometimes be a bug in the .md description, but might also happen
+ if genconditions forces some conditions to true for certain
+ configurations. */
+ return false;
+
+ /* Go backwards through the decisions in S1, stopping once we find one
+ that could match the same thing as S2. */
+ while (d1->prev && mutually_exclusive_p (d1, d2))
+ d1 = d1->prev;
+
+ /* Search forwards from that point, merging D2 into the first
+ decision we can. */
+ for (; d1; d1 = d1->next)
+ {
+ /* If S2 performs some optional tests before testing the same thing
+ as D1, those tests do not help to distinguish D1 and S2, so it's
+ better to drop them. Search through such optional decisions
+ until we find something that tests the same thing as D1. */
+ state *sub_s2 = s2;
+ for (;;)
+ {
+ decision *sub_d2 = sub_s2->singleton ();
+ if (d1->test == sub_d2->test)
+ {
+ /* Only apply EXCLUDE if we're testing the same thing
+ as D2. */
+ const int_set *sub_exclude = (d2 == sub_d2 ? exclude : 0);
+
+ /* Try to merge SUB_S2 into D1. This can only fail if
+ it would involve creating a new transition with
+ labels SUB_EXCLUDE. */
+ if (merge_into_decision (d1, sub_s2, sub_exclude,
+ next_s1, next_s2, next_exclude))
+ return *next_s2 != 0;
+
+ /* Can't merge with D1; try a later decision. */
+ break;
+ }
+ transition *sub_trans2 = sub_d2->singleton ();
+ if (!sub_trans2->optional)
+ /* Can't merge with D1; try a later decision. */
+ break;
+ sub_s2 = sub_trans2->to;
+ }
+ }
+ }
+
+ /* We can't merge D2 with any existing decision. Just add it to the end. */
+ s1->push_back (s2->release ());
+ return false;
+}
+
+/* Merge S2 into S1. If they both match a particular rtx, give
+ priority to S1. Each state in S2 has a single decision. */
+
+static void
+merge_into_state (state *s1, state *s2)
+{
+ const int_set *exclude = 0;
+ while (s2 && merge_into_state_1 (s1, s2, exclude, &s1, &s2, &exclude))
+ continue;
+}
+
+/* Pairs a pattern that needs to be matched with the rtx position at
+ which the pattern should occur. */
+struct pattern_pos {
+ pattern_pos () {}
+ pattern_pos (rtx, position *);
+
+ rtx pattern;
+ position *pos;
+};
+
+pattern_pos::pattern_pos (rtx pattern_in, position *pos_in)
+ : pattern (pattern_in), pos (pos_in)
+{}
+
+/* Compare entries according to their depth-first order. There shouldn't
+ be two entries at the same position. */
+
+bool
+operator < (const pattern_pos &e1, const pattern_pos &e2)
+{
+ int diff = compare_positions (e1.pos, e2.pos);
+ gcc_assert (diff != 0 || e1.pattern == e2.pattern);
+ return diff < 0;
+}
+
+/* Return the name of the predicate matched by MATCH_RTX. */
+
+static const char *
+predicate_name (rtx match_rtx)
+{
+ if (GET_CODE (match_rtx) == MATCH_SCRATCH)
+ return "scratch_operand";
+ else
+ return XSTR (match_rtx, 1);
+}
+
+/* Add new decisions to S that check whether the rtx at position POS
+ matches PATTERN. Return the state that is reached in that case.
+ TOP_PATTERN is the overall pattern, as passed to match_pattern_1. */
+
+static state *
+match_pattern_2 (state *s, rtx top_pattern, position *pos, rtx pattern)
+{
+ auto_vec <pattern_pos, 32> worklist;
+ auto_vec <pattern_pos, 32> pred_and_mode_tests;
+ auto_vec <pattern_pos, 32> dup_tests;
+
+ worklist.safe_push (pattern_pos (pattern, pos));
+ while (!worklist.is_empty ())
+ {
+ pattern_pos next = worklist.pop ();
+ pattern = next.pattern;
+ pos = next.pos;
+ unsigned int reverse_s = worklist.length ();
+
+ enum rtx_code code = GET_CODE (pattern);
+ switch (code)
+ {
+ case MATCH_OP_DUP:
+ case MATCH_DUP:
+ case MATCH_PAR_DUP:
+ /* Add a test that the rtx matches the earlier one, but only
+ after the structure and predicates have been checked. */
+ dup_tests.safe_push (pattern_pos (pattern, pos));
+
+ /* Use the same code check as the original operand. */
+ pattern = find_operand (top_pattern, XINT (pattern, 0), NULL_RTX);
+ /* Fall through. */
+
+ case MATCH_PARALLEL:
+ case MATCH_OPERAND:
+ case MATCH_SCRATCH:
+ case MATCH_OPERATOR:
+ {
+ const char *pred_name = predicate_name (pattern);
+ const struct pred_data *pred = 0;
+ if (pred_name[0] != 0)
+ {
+ pred = lookup_predicate (pred_name);
+ /* Only report errors once per rtx. */
+ if (code == GET_CODE (pattern))
+ {
+ if (!pred)
+ error_with_line (pattern_lineno,
+ "unknown predicate '%s'"
+ " in '%s' expression",
+ pred_name, GET_RTX_NAME (code));
+ else if (code == MATCH_PARALLEL
+ && pred->singleton != PARALLEL)
+ error_with_line (pattern_lineno,
+ "predicate '%s' used in match_parallel"
+ " does not allow only PARALLEL",
+ pred->name);
+ }
+ }
+
+ if (code == MATCH_PARALLEL || code == MATCH_PAR_DUP)
+ {
+ /* Check that we have a parallel with enough elements. */
+ s = add_decision (s, test::code (pos), PARALLEL, false);
+ int min_len = XVECLEN (pattern, 2);
+ s = add_decision (s, test::veclen_ge (pos, min_len),
+ true, false);
+ }
+ else
+ {
+ /* Check that the rtx has one of codes accepted by the
+ predicate. This is necessary when matching suboperands
+ of a MATCH_OPERATOR or MATCH_OP_DUP, since we can't
+ call XEXP (X, N) without checking that X has at least
+ N+1 operands. */
+ int_set codes;
+ get_predicate_codes (pred, &codes);
+ bool need_codes = (pred
+ && (code == MATCH_OPERATOR
+ || code == MATCH_OP_DUP));
+ s = add_decision (s, test::code (pos), codes, !need_codes);
+ }
+
+ /* Postpone the predicate check until we've checked the rest
+ of the rtx structure. */
+ if (code == GET_CODE (pattern))
+ pred_and_mode_tests.safe_push (pattern_pos (pattern, pos));
+
+ /* If we need to match suboperands, add them to the worklist. */
+ if (code == MATCH_OPERATOR || code == MATCH_PARALLEL)
+ {
+ position **subpos_ptr;
+ enum position_type pos_type;
+ int i;
+ if (code == MATCH_OPERATOR || code == MATCH_OP_DUP)
+ {
+ pos_type = POS_XEXP;
+ subpos_ptr = &pos->xexps;
+ i = (code == MATCH_OPERATOR ? 2 : 1);
+ }
+ else
+ {
+ pos_type = POS_XVECEXP0;
+ subpos_ptr = &pos->xvecexp0s;
+ i = 2;
+ }
+ for (int j = 0; j < XVECLEN (pattern, i); ++j)
+ {
+ position *subpos = next_position (subpos_ptr, pos,
+ pos_type, j);
+ worklist.safe_push (pattern_pos (XVECEXP (pattern, i, j),
+ subpos));
+ subpos_ptr = &subpos->next;
+ }
+ }
+ break;
+ }
+
+ default:
+ {
+ /* Check that the rtx has the right code. */
+ s = add_decision (s, test::code (pos), code, false);
+
+ /* Queue a test for the mode if one is specified. */
+ if (GET_MODE (pattern) != VOIDmode)
+ pred_and_mode_tests.safe_push (pattern_pos (pattern, pos));
+
+ /* Push subrtxes onto the worklist. Match nonrtx operands now. */
+ const char *fmt = GET_RTX_FORMAT (code);
+ position **subpos_ptr = &pos->xexps;
+ for (size_t i = 0; fmt[i]; ++i)
+ {
+ position *subpos = next_position (subpos_ptr, pos,
+ POS_XEXP, i);
+ switch (fmt[i])
+ {
+ case 'e': case 'u':
+ worklist.safe_push (pattern_pos (XEXP (pattern, i),
+ subpos));
+ break;
+
+ case 'E':
+ {
+ /* Make sure the vector has the right number of
+ elements. */
+ int length = XVECLEN (pattern, i);
+ s = add_decision (s, test::veclen (pos), length, false);
+
+ position **subpos2_ptr = &pos->xvecexp0s;
+ for (int j = 0; j < length; j++)
+ {
+ position *subpos2 = next_position (subpos2_ptr, pos,
+ POS_XVECEXP0, j);
+ rtx x = XVECEXP (pattern, i, j);
+ worklist.safe_push (pattern_pos (x, subpos2));
+ subpos2_ptr = &subpos2->next;
+ }
+ break;
+ }
+
+ case 'i':
+ /* Make sure that XINT (X, I) has the right value. */
+ s = add_decision (s, test::int_field (pos, i),
+ XINT (pattern, i), false);
+ break;
+
+ case 'w':
+ /* Make sure that XWINT (X, I) has the right value. */
+ s = add_decision (s, test::wide_int_field (pos, i),
+ XWINT (pattern, 0), false);
+ break;
+
+ case '0':
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ subpos_ptr = &subpos->next;
+ }
+ }
+ break;
+ }
+ /* Operands are pushed onto the worklist so that later indices are
+ nearer the top. That's what we want for SETs, since a SET_SRC
+ is a better discriminator than a SET_DEST. In other cases it's
+ usually better to match earlier indices first. This is especially
+ true of PARALLELs, where the first element tends to be the most
+ individual. It's also true for commutative operators, where the
+ canonicalization rules say that the more complex operand should
+ come first. */
+ if (code != SET && worklist.length () > reverse_s)
+ std::reverse (&worklist[0] + reverse_s,
+ &worklist[0] + worklist.length ());
+ }
+
+ /* Sort the predicate and mode tests so that they're in depth-first order.
+ The main goal of this is to put SET_SRC match_operands after SET_DEST
+ match_operands and after mode checks for the enclosing SET_SRC operators
+ (such as the mode of a PLUS in an addition instruction). The latter
+ two types of test can determine the mode exactly, whereas a SET_SRC
+ match_operand often has to cope with the possibility of the operand
+ being a modeless constant integer. E.g. something that matches
+ register_operand (x, SImode) never matches register_operand (x, DImode),
+ but a const_int that matches immediate_operand (x, SImode) also matches
+ immediate_operand (x, DImode). The register_operand cases can therefore
+ be distinguished by a switch on the mode, but the immediate_operand
+ cases can't. */
+ if (pred_and_mode_tests.length () > 1)
+ std::sort (&pred_and_mode_tests[0],
+ &pred_and_mode_tests[0] + pred_and_mode_tests.length ());
+
+ /* Add the mode and predicate tests. */
+ pattern_pos *e;
+ unsigned int i;
+ FOR_EACH_VEC_ELT (pred_and_mode_tests, i, e)
+ {
+ switch (GET_CODE (e->pattern))
+ {
+ case MATCH_PARALLEL:
+ case MATCH_OPERAND:
+ case MATCH_SCRATCH:
+ case MATCH_OPERATOR:
+ {
+ int opno = XINT (e->pattern, 0);
+ num_operands = MAX (num_operands, opno + 1);
+ const char *pred_name = predicate_name (e->pattern);
+ if (pred_name[0])
+ {
+ const struct pred_data *pred = lookup_predicate (pred_name);
+ /* Check the mode first, to distinguish things like SImode
+ and DImode register_operands, as described above. */
+ machine_mode mode = GET_MODE (e->pattern);
+ if (safe_predicate_mode (pred, mode))
+ s = add_decision (s, test::mode (e->pos), mode, true);
+
+ /* Assign to operands[] first, so that the rtx usually doesn't
+ need to be live across the call to the predicate.
+
+ This shouldn't cause a problem with dirtying the page,
+ since we fully expect to assign to operands[] at some point,
+ and since the caller usually writes to other parts of
+ recog_data anyway. */
+ s = add_decision (s, test::set_op (e->pos, opno), true, false);
+ s = add_decision (s, test::predicate (e->pos, pred, mode),
+ true, false);
+ }
+ else
+ /* Historically we've ignored the mode when there's no
+ predicate. Just set up operands[] unconditionally. */
+ s = add_decision (s, test::set_op (e->pos, opno), true, false);
+ break;
+ }
+
+ default:
+ s = add_decision (s, test::mode (e->pos),
+ GET_MODE (e->pattern), false);
+ break;
+ }
+ }
+
+ /* Finally add rtx_equal_p checks for duplicated operands. */
+ FOR_EACH_VEC_ELT (dup_tests, i, e)
+ s = add_decision (s, test::duplicate (e->pos, XINT (e->pattern, 0)),
+ true, false);
+ return s;
+}
+
+/* Add new decisions to S that make it return ACCEPTANCE if:
+
+ (1) the rtx doesn't match anything already matched by S
+ (2) the rtx matches TOP_PATTERN and
+ (3) C_TEST is true.
+
+ For peephole2, TOP_PATTERN is the DEFINE_PEEPHOLE2 itself, otherwise
+ it is the rtx pattern to match (PARALLEL, SET, etc.). */
+
+static void
+match_pattern_1 (state *s, rtx top_pattern, const char *c_test,
+ acceptance_type acceptance)
+{
+ if (GET_CODE (top_pattern) == DEFINE_PEEPHOLE2)
+ {
+ /* Match each individual instruction. */
+ position **subpos_ptr = &peep2_insn_pos_list;
+ int count = 0;
+ for (int i = 0; i < XVECLEN (top_pattern, 0); ++i)
+ {
+ rtx x = XVECEXP (top_pattern, 0, i);
+ /* Ignore scratch register requirements. */
+ if (GET_CODE (x) != MATCH_SCRATCH && GET_CODE (x) != MATCH_DUP)
+ {
+ position *subpos = next_position (subpos_ptr, &root_pos,
+ POS_PEEP2_INSN, count);
+ if (count > 0)
+ s = add_decision (s, test::peep2_count (count + 1),
+ true, false);
+ s = match_pattern_2 (s, top_pattern, subpos, x);
+ subpos_ptr = &subpos->next;
+ count += 1;
+ }
+ }
+ acceptance.u.full.u.match_len = count - 1;
+ }
+ else
+ {
+ /* Make the rtx itself. */
+ s = match_pattern_2 (s, top_pattern, &root_pos, top_pattern);
+
+ /* If the match is only valid when extra clobbers are added,
+ make sure we're able to pass that information to the caller. */
+ if (acceptance.type == RECOG && acceptance.u.full.u.num_clobbers)
+ s = add_decision (s, test::have_num_clobbers (), true, false);
+ }
+
+ /* Make sure that the C test is true. */
+ if (maybe_eval_c_test (c_test) != 1)
+ s = add_decision (s, test::c_test (c_test), true, false);
+
+ /* Accept the pattern. */
+ add_decision (s, test::accept (acceptance), true, false);
+}
+
+/* Like match_pattern_1, but (if merge_states_p) try to merge the
+ decisions with what's already in S, to reduce the amount of
+ backtracking. */
+
+static void
+match_pattern (state *s, rtx top_pattern, const char *c_test,
+ acceptance_type acceptance)
+{
+ if (merge_states_p)
+ {
+ state root;
+ /* Add the decisions to a fresh state and then merge the full tree
+ into the existing one. */
+ match_pattern_1 (&root, top_pattern, c_test, acceptance);
+ merge_into_state (s, &root);
+ }
+ else
+ match_pattern_1 (s, top_pattern, c_test, acceptance);
+}
+
+/* Begin the output file. */
+
+static void
+write_header (void)
+{
+ puts ("\
+/* Generated automatically by the program `genrecog' from the target\n\
+ machine description file. */\n\
+\n\
+#include \"config.h\"\n\
+#include \"system.h\"\n\
+#include \"coretypes.h\"\n\
+#include \"tm.h\"\n\
+#include \"rtl.h\"\n\
+#include \"tm_p.h\"\n\
+#include \"hashtab.h\"\n\
+#include \"hash-set.h\"\n\
+#include \"vec.h\"\n\
+#include \"machmode.h\"\n\
+#include \"hard-reg-set.h\"\n\
+#include \"input.h\"\n\
+#include \"function.h\"\n\
+#include \"insn-config.h\"\n\
+#include \"recog.h\"\n\
+#include \"output.h\"\n\
+#include \"flags.h\"\n\
+#include \"hard-reg-set.h\"\n\
+#include \"predict.h\"\n\
+#include \"basic-block.h\"\n\
+#include \"resource.h\"\n\
+#include \"diagnostic-core.h\"\n\
+#include \"reload.h\"\n\
+#include \"regs.h\"\n\
+#include \"tm-constrs.h\"\n\
+#include \"predict.h\"\n\
+\n");
+
+ puts ("\n\
+/* `recog' contains a decision tree that recognizes whether the rtx\n\
+ X0 is a valid instruction.\n\
+\n\
+ recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
+ returns a nonnegative number which is the insn code number for the\n\
+ pattern that matched. This is the same as the order in the machine\n\
+ description of the entry that matched. This number can be used as an\n\
+ index into `insn_data' and other tables.\n");
+ puts ("\
+ The third parameter to recog is an optional pointer to an int. If\n\
+ present, recog will accept a pattern if it matches except for missing\n\
+ CLOBBER expressions at the end. In that case, the value pointed to by\n\
+ the optional pointer will be set to the number of CLOBBERs that need\n\
+ to be added (it should be initialized to zero by the caller). If it");
+ puts ("\
+ is set nonzero, the caller should allocate a PARALLEL of the\n\
+ appropriate size, copy the initial entries, and call add_clobbers\n\
+ (found in insn-emit.c) to fill in the CLOBBERs.\n\
+");
+
+ puts ("\n\
+ The function split_insns returns 0 if the rtl could not\n\
+ be split or the split rtl as an INSN list if it can be.\n\
+\n\
+ The function peephole2_insns returns 0 if the rtl could not\n\
+ be matched. If there was a match, the new rtl is returned in an INSN list,\n\
+ and LAST_INSN will point to the last recognized insn in the old sequence.\n\
+*/\n\n");
+}
+
+/* Return the C type of a parameter with type TYPE. */
+
+static const char *
+parameter_type_string (parameter::type_enum type)
+{
+ switch (type)
+ {
+ case parameter::UNSET:
+ break;
+
+ case parameter::CODE:
+ return "rtx_code";
+
+ case parameter::MODE:
+ return "machine_mode";
+
+ case parameter::INT:
+ return "int";
+
+ case parameter::WIDE_INT:
+ return "HOST_WIDE_INT";
+ }
+ gcc_unreachable ();
+}
+
+/* Return true if ACCEPTANCE requires only a single C statement even in
+ a backtracking context. */
+
+static bool
+single_statement_p (const acceptance_type &acceptance)
+{
+ if (acceptance.partial_p)
+ /* We need to handle failures of the subroutine. */
+ return false;
+ switch (acceptance.type)
+ {
+ case SUBPATTERN:
+ case SPLIT:
+ return true;
+
+ case RECOG:
+ /* False if we need to assign to pnum_clobbers. */
+ return acceptance.u.full.u.num_clobbers == 0;
+
+ case PEEPHOLE2:
+ /* We need to assign to pmatch_len_ and handle null returns from the
+ peephole2 routine. */
+ return false;
+ }
+ gcc_unreachable ();
+}
+
+/* Return the C failure value for a routine of type TYPE. */
+
+static const char *
+get_failure_return (routine_type type)
+{
+ switch (type)
+ {
+ case SUBPATTERN:
+ case RECOG:
+ return "-1";
+
+ case SPLIT:
+ case PEEPHOLE2:
+ return "NULL_RTX";
+ }
+ gcc_unreachable ();
+}
+
+/* Indicates whether a block of code always returns or whether it can fall
+ through. */
+
+enum exit_state {
+ ES_RETURNED,
+ ES_FALLTHROUGH
+};
+
+/* Information used while writing out code. */
+
+struct output_state
+{
+ /* The type of routine that we're generating. */
+ routine_type type;
+
+ /* Maps position ids to xN variable numbers. The entry is only valid if
+ it is less than the length of VAR_TO_ID, but this holds for every position
+ tested by a state when writing out that state. */
+ auto_vec <unsigned int> id_to_var;
+
+ /* Maps xN variable numbers to position ids. */
+ auto_vec <unsigned int> var_to_id;
+
+ /* Index N is true if variable xN has already been set. */
+ auto_vec <bool> seen_vars;
+};
+
+/* Return true if D is a call to a pattern routine and if there is some X
+ such that the transition for pattern result N goes to a successful return
+ with code X+N. When returning true, set *BASE_OUT to this X and *COUNT_OUT
+ to the number of return values. (We know that every PATTERN decision has
+ a transition for every successful return.) */
+
+static bool
+terminal_pattern_p (decision *d, unsigned int *base_out,
+ unsigned int *count_out)
+{
+ if (d->test.kind != test::PATTERN)
+ return false;
+ unsigned int base = 0;
+ unsigned int count = 0;
+ for (transition *trans = d->first; trans; trans = trans->next)
+ {
+ if (trans->is_param || trans->labels.length () != 1)
+ return false;
+ decision *subd = trans->to->singleton ();
+ if (!subd || subd->test.kind != test::ACCEPT)
+ return false;
+ unsigned int this_base = (subd->test.u.acceptance.u.full.code
+ - trans->labels[0]);
+ if (trans == d->first)
+ base = this_base;
+ else if (base != this_base)
+ return false;
+ count += 1;
+ }
+ *base_out = base;
+ *count_out = count;
+ return true;
+}
+
+/* Return true if TEST doesn't test an rtx or if the rtx it tests is
+ already available in state OS. */
+
+static bool
+test_position_available_p (output_state *os, const test &test)
+{
+ return (!test.pos
+ || test.pos_operand >= 0
+ || os->seen_vars[os->id_to_var[test.pos->id]]);
+}
+
+/* Like printf, but print INDENT spaces at the beginning. */
+
+static void ATTRIBUTE_PRINTF_2
+printf_indent (unsigned int indent, const char *format, ...)
+{
+ va_list ap;
+ va_start (ap, format);
+ printf ("%*s", indent, "");
+ vprintf (format, ap);
+ va_end (ap);
+}
+
+/* Emit code to initialize the variable associated with POS, if it isn't
+ already valid in state OS. Indent each line by INDENT spaces. Update
+ OS with the new state. */
+
+static void
+change_state (output_state *os, position *pos, unsigned int indent)
+{
+ unsigned int var = os->id_to_var[pos->id];
+ gcc_assert (var < os->var_to_id.length () && os->var_to_id[var] == pos->id);
+ if (os->seen_vars[var])
+ return;
+ switch (pos->type)
+ {
+ case POS_PEEP2_INSN:
+ printf_indent (indent, "x%d = PATTERN (peep2_next_insn (%d));\n",
+ var, pos->arg);
+ break;
+
+ case POS_XEXP:
+ change_state (os, pos->base, indent);
+ printf_indent (indent, "x%d = XEXP (x%d, %d);\n",
+ var, os->id_to_var[pos->base->id], pos->arg);
+ break;
+
+ case POS_XVECEXP0:
+ change_state (os, pos->base, indent);
+ printf_indent (indent, "x%d = XVECEXP (x%d, 0, %d);\n",
+ var, os->id_to_var[pos->base->id], pos->arg);
+ break;
+ }
+ os->seen_vars[var] = true;
+}
+
+/* Print the enumerator constant for CODE -- the upcase version of
+ the name. */
+
+static void
+print_code (enum rtx_code code)
+{
+ const char *p;
+ for (p = GET_RTX_NAME (code); *p; p++)
+ putchar (TOUPPER (*p));
+}
+
+/* Emit a uint64_t as an integer constant expression. We need to take
+ special care to avoid "decimal constant is so large that it is unsigned"
+ warnings in the resulting code. */
+
+static void
+print_host_wide_int (uint64_t val)
+{
+ uint64_t min = uint64_t (1) << (HOST_BITS_PER_WIDE_INT - 1);
+ if (val == min)
+ printf ("(" HOST_WIDE_INT_PRINT_DEC_C " - 1)", val + 1);
+ else
+ printf (HOST_WIDE_INT_PRINT_DEC_C, val);
+}
+
+/* Print the C expression for actual parameter PARAM. */
+
+static void
+print_parameter_value (const parameter ¶m)
+{
+ if (param.is_param)
+ printf ("i%d", (int) param.value + 1);
+ else
+ switch (param.type)
+ {
+ case parameter::UNSET:
+ gcc_unreachable ();
+ break;
+
+ case parameter::CODE:
+ print_code ((enum rtx_code) param.value);
+ break;
+
+ case parameter::MODE:
+ printf ("%smode", GET_MODE_NAME ((machine_mode) param.value));
+ break;
+
+ case parameter::INT:
+ printf ("%d", (int) param.value);
+ break;
+
+ case parameter::WIDE_INT:
+ print_host_wide_int (param.value);
+ break;
+ }
+}
+
+/* Print the C expression for the rtx tested by TEST. */
+
+static void
+print_test_rtx (output_state *os, const test &test)
+{
+ if (test.pos_operand >= 0)
+ printf ("operands[%d]", test.pos_operand);
+ else
+ printf ("x%d", os->id_to_var[test.pos->id]);
+}
+
+/* Print the C expression for non-boolean test TEST. */
+
+static void
+print_nonbool_test (output_state *os, const test &test)
+{
+ switch (test.kind)
+ {
+ case test::CODE:
+ printf ("GET_CODE (");
+ print_test_rtx (os, test);
+ printf (")");
+ break;
+
+ case test::MODE:
+ printf ("GET_MODE (");
+ print_test_rtx (os, test);
+ printf (")");
+ break;
+
+ case test::VECLEN:
+ printf ("XVECLEN (");
+ print_test_rtx (os, test);
+ printf (", 0)");
+ break;
+
+ case test::INT_FIELD:
+ printf ("XINT (");
+ print_test_rtx (os, test);
+ printf (", %d)", test.u.opno);
+ break;
+
+ case test::WIDE_INT_FIELD:
+ printf ("XWINT (");
+ print_test_rtx (os, test);
+ printf (", %d)", test.u.opno);
+ break;
+
+ case test::PATTERN:
+ {
+ pattern_routine *routine = test.u.pattern->routine;
+ printf ("pattern%d (", routine->pattern_id);
+ const char *sep = "";
+ if (test.pos)
+ {
+ print_test_rtx (os, test);
+ sep = ", ";
+ }
+ if (routine->insn_p)
+ {
+ printf ("%sinsn", sep);
+ sep = ", ";
+ }
+ if (routine->pnum_clobbers_p)
+ {
+ printf ("%spnum_clobbers", sep);
+ sep = ", ";
+ }
+ for (unsigned int i = 0; i < test.u.pattern->params.length (); ++i)
+ {
+ fputs (sep, stdout);
+ print_parameter_value (test.u.pattern->params[i]);
+ sep = ", ";
+ }
+ printf (")");
+ break;
+ }
+
+ case test::PEEP2_COUNT:
+ case test::VECLEN_GE:
+ case test::SAVED_CONST_INT:
+ case test::DUPLICATE:
+ case test::PREDICATE:
+ case test::SET_OP:
+ case test::HAVE_NUM_CLOBBERS:
+ case test::C_TEST:
+ case test::ACCEPT:
+ gcc_unreachable ();
+ }
+}
+
+/* IS_PARAM and LABEL are taken from a transition whose source
+ decision performs TEST. Print the C code for the label. */
+
+static void
+print_label_value (const test &test, bool is_param, uint64_t value)
+{
+ print_parameter_value (parameter (transition_parameter_type (test.kind),
+ is_param, value));
+}
+
+/* If IS_PARAM, print code to compare TEST with the C variable i<VALUE+1>.
+ If !IS_PARAM, print code to compare TEST with the C constant VALUE.
+ Test for inequality if INVERT_P, otherwise test for equality. */
+
+static void
+print_test (output_state *os, const test &test, bool is_param, uint64_t value,
+ bool invert_p)
+{
+ switch (test.kind)
+ {
+ /* Handle the non-boolean TESTs. */
+ case test::CODE:
+ case test::MODE:
+ case test::VECLEN:
+ case test::INT_FIELD:
+ case test::WIDE_INT_FIELD:
+ case test::PATTERN:
+ print_nonbool_test (os, test);
+ printf (" %s ", invert_p ? "!=" : "==");
+ print_label_value (test, is_param, value);
+ break;
+
+ case test::SAVED_CONST_INT:
+ gcc_assert (!is_param && value == 1);
+ print_test_rtx (os, test);
+ printf (" %s const_int_rtx[MAX_SAVED_CONST_INT + ",
+ invert_p ? "!=" : "==");
+ print_parameter_value (parameter (parameter::INT,
+ test.u.integer.is_param,
+ test.u.integer.value));
+ printf ("]");
+ break;
+
+ case test::PEEP2_COUNT:
+ gcc_assert (!is_param && value == 1);
+ printf ("peep2_current_count %s %d", invert_p ? "<" : ">=",
+ test.u.min_len);
+ break;
+
+ case test::VECLEN_GE:
+ gcc_assert (!is_param && value == 1);
+ printf ("XVECLEN (");
+ print_test_rtx (os, test);
+ printf (", 0) %s %d", invert_p ? "<" : ">=", test.u.min_len);
+ break;
+
+ case test::PREDICATE:
+ gcc_assert (!is_param && value == 1);
+ printf ("%s%s (", invert_p ? "!" : "", test.u.predicate.data->name);
+ print_test_rtx (os, test);
+ printf (", ");
+ print_parameter_value (parameter (parameter::MODE,
+ test.u.predicate.mode_is_param,
+ test.u.predicate.mode));
+ printf (")");
+ break;
+
+ case test::DUPLICATE:
+ gcc_assert (!is_param && value == 1);
+ printf ("%srtx_equal_p (", invert_p ? "!" : "");
+ print_test_rtx (os, test);
+ printf (", operands[%d])", test.u.opno);
+ break;
+
+ case test::HAVE_NUM_CLOBBERS:
+ gcc_assert (!is_param && value == 1);
+ printf ("pnum_clobbers %s NULL", invert_p ? "==" : "!=");
+ break;
+
+ case test::C_TEST:
+ gcc_assert (!is_param && value == 1);
+ if (invert_p)
+ printf ("!");
+ print_c_condition (test.u.string);
+ break;
+
+ case test::ACCEPT:
+ case test::SET_OP:
+ gcc_unreachable ();
+ }
+}
+
+static exit_state print_decision (output_state *, decision *,
+ unsigned int, bool);
+
+/* Print code to perform S, indent each line by INDENT spaces.
+ IS_FINAL is true if there are no fallback decisions to test on failure;
+ if the state fails then the entire routine fails. */
+
+static exit_state
+print_state (output_state *os, state *s, unsigned int indent, bool is_final)
+{
+ exit_state es = ES_FALLTHROUGH;
+ for (decision *d = s->first; d; d = d->next)
+ es = print_decision (os, d, indent, is_final && !d->next);
+ if (es != ES_RETURNED && is_final)
+ {
+ printf_indent (indent, "return %s;\n", get_failure_return (os->type));
+ es = ES_RETURNED;
+ }
+ return es;
+}
+
+/* Print the code for subroutine call ACCEPTANCE (for which partial_p
+ is known to be true). Return the C condition that indicates a successful
+ match. */
+
+static const char *
+print_subroutine_call (const acceptance_type &acceptance)
+{
+ switch (acceptance.type)
+ {
+ case SUBPATTERN:
+ gcc_unreachable ();
+
+ case RECOG:
+ printf ("recog_%d (x1, insn, pnum_clobbers)",
+ acceptance.u.subroutine_id);
+ return ">= 0";
+
+ case SPLIT:
+ printf ("split_%d (x1, insn)", acceptance.u.subroutine_id);
+ return "!= NULL_RTX";
+
+ case PEEPHOLE2:
+ printf ("peephole2_%d (x1, insn, pmatch_len_)",
+ acceptance.u.subroutine_id);
+ return "!= NULL_RTX";
+ }
+ gcc_unreachable ();
+}
+
+/* Print code for the successful match described by ACCEPTANCE.
+ INDENT and IS_FINAL are as for print_state. */
+
+static exit_state
+print_acceptance (const acceptance_type &acceptance, unsigned int indent,
+ bool is_final)
+{
+ if (acceptance.partial_p)
+ {
+ /* Defer the rest of the match to a subroutine. */
+ if (is_final)
+ {
+ printf_indent (indent, "return ");
+ print_subroutine_call (acceptance);
+ printf (";\n");
+ return ES_RETURNED;
+ }
+ else
+ {
+ printf_indent (indent, "res = ");
+ const char *res_test = print_subroutine_call (acceptance);
+ printf (";\n");
+ printf_indent (indent, "if (res %s)\n", res_test);
+ printf_indent (indent + 2, "return res;\n");
+ return ES_FALLTHROUGH;
+ }
+ }
+ switch (acceptance.type)
+ {
+ case SUBPATTERN:
+ printf_indent (indent, "return %d;\n", acceptance.u.full.code);
+ return ES_RETURNED;
+
+ case RECOG:
+ if (acceptance.u.full.u.num_clobbers != 0)
+ printf_indent (indent, "*pnum_clobbers = %d;\n",
+ acceptance.u.full.u.num_clobbers);
+ printf_indent (indent, "return %d; /* %s */\n", acceptance.u.full.code,
+ get_insn_name (acceptance.u.full.code));
+ return ES_RETURNED;
+
+ case SPLIT:
+ printf_indent (indent, "return gen_split_%d (insn, operands);\n",
+ acceptance.u.full.code);
+ return ES_RETURNED;
+
+ case PEEPHOLE2:
+ printf_indent (indent, "*pmatch_len_ = %d;\n",
+ acceptance.u.full.u.match_len);
+ if (is_final)
+ {
+ printf_indent (indent, "return gen_peephole2_%d (insn, operands);\n",
+ acceptance.u.full.code);
+ return ES_RETURNED;
+ }
+ else
+ {
+ printf_indent (indent, "res = gen_peephole2_%d (insn, operands);\n",
+ acceptance.u.full.code);
+ printf_indent (indent, "if (res != NULL_RTX)\n");
+ printf_indent (indent + 2, "return res;\n");
+ return ES_FALLTHROUGH;
+ }
+ }
+ gcc_unreachable ();
+}
+
+/* Print code to perform D. INDENT and IS_FINAL are as for print_state. */
+
+static exit_state
+print_decision (output_state *os, decision *d, unsigned int indent,
+ bool is_final)
+{
+ uint64_t label;
+ unsigned int base, count;
+
+ /* Make sure the rtx under test is available either in operands[] or
+ in an xN variable. */
+ if (d->test.pos && d->test.pos_operand < 0)
+ change_state (os, d->test.pos, indent);
+
+ /* Look for cases where a pattern routine P1 calls another pattern routine
+ P2 and where P1 returns X + BASE whenever P2 returns X. If IS_FINAL
+ is true and BASE is zero we can simply use:
+
+ return patternN (...);
+
+ Otherwise we can use:
+
+ res = patternN (...);
+ if (res >= 0)
+ return res + BASE;
+
+ However, if BASE is nonzero and patternN only returns 0 or -1,
+ the usual "return BASE;" is better than "return res + BASE;".
+ If BASE is zero, "return res;" should be better than "return 0;",
+ since no assignment to the return register is required. */
+ if (os->type == SUBPATTERN
+ && terminal_pattern_p (d, &base, &count)
+ && (base == 0 || count > 1))
+ {
+ if (is_final && base == 0)
+ {
+ printf_indent (indent, "return ");
+ print_nonbool_test (os, d->test);
+ printf ("; /* [-1, %d] */\n", count - 1);
+ return ES_RETURNED;
+ }
+ else
+ {
+ printf_indent (indent, "res = ");
+ print_nonbool_test (os, d->test);
+ printf (";\n");
+ printf_indent (indent, "if (res >= 0)\n");
+ printf_indent (indent + 2, "return res");
+ if (base != 0)
+ printf (" + %d", base);
+ printf ("; /* [%d, %d] */\n", base, base + count - 1);
+ return ES_FALLTHROUGH;
+ }
+ }
+ else if (d->test.kind == test::ACCEPT)
+ return print_acceptance (d->test.u.acceptance, indent, is_final);
+ else if (d->test.kind == test::SET_OP)
+ {
+ printf_indent (indent, "operands[%d] = ", d->test.u.opno);
+ print_test_rtx (os, d->test);
+ printf (";\n");
+ return print_state (os, d->singleton ()->to, indent, is_final);
+ }
+ /* Handle decisions with a single transition and a single transition
+ label. */
+ else if (d->if_statement_p (&label))
+ {
+ transition *trans = d->singleton ();
+ if (mark_optional_transitions_p && trans->optional)
+ printf_indent (indent, "/* OPTIONAL IF */\n");
+
+ /* Print the condition associated with TRANS. Invert it if IS_FINAL,
+ so that we return immediately on failure and fall through on
+ success. */
+ printf_indent (indent, "if (");
+ print_test (os, d->test, trans->is_param, label, is_final);
+
+ /* Look for following states that would be handled by this code
+ on recursion. If they don't need any preparatory statements,
+ include them in the current "if" statement rather than creating
+ a new one. */
+ for (;;)
+ {
+ d = trans->to->singleton ();
+ if (!d
+ || d->test.kind == test::ACCEPT
+ || d->test.kind == test::SET_OP
+ || !d->if_statement_p (&label)
+ || !test_position_available_p (os, d->test))
+ break;
+ trans = d->first;
+ printf ("\n");
+ if (mark_optional_transitions_p && trans->optional)
+ printf_indent (indent + 4, "/* OPTIONAL IF */\n");
+ printf_indent (indent + 4, "%s ", is_final ? "||" : "&&");
+ print_test (os, d->test, trans->is_param, label, is_final);
+ }
+ printf (")\n");
+
+ /* Print the conditional code with INDENT + 2 and the fallthrough
+ code with indent INDENT. */
+ state *to = trans->to;
+ if (is_final)
+ {
+ /* We inverted the condition above, so return failure in the
+ "if" body and fall through to the target of the transition. */
+ printf_indent (indent + 2, "return %s;\n",
+ get_failure_return (os->type));
+ return print_state (os, to, indent, is_final);
+ }
+ else if (to->singleton ()
+ && to->first->test.kind == test::ACCEPT
+ && single_statement_p (to->first->test.u.acceptance))
+ {
+ /* The target of the transition is a simple "return" statement.
+ It doesn't need any braces and doesn't fall through. */
+ if (print_acceptance (to->first->test.u.acceptance,
+ indent + 2, true) != ES_RETURNED)
+ gcc_unreachable ();
+ return ES_FALLTHROUGH;
+ }
+ else
+ {
+ /* The general case. Output code for the target of the transition
+ in braces. This will not invalidate any of the xN variables
+ that are already valid, but we mustn't rely on any that are
+ set by the "if" body. */
+ auto_vec <bool, 32> old_seen;
+ old_seen.safe_splice (os->seen_vars);
+
+ printf_indent (indent + 2, "{\n");
+ print_state (os, trans->to, indent + 4, is_final);
+ printf_indent (indent + 2, "}\n");
+
+ os->seen_vars.truncate (0);
+ os->seen_vars.splice (old_seen);
+ return ES_FALLTHROUGH;
+ }
+ }
+ else
+ {
+ /* Output the decision as a switch statement. */
+ printf_indent (indent, "switch (");
+ print_nonbool_test (os, d->test);
+ printf (")\n");
+
+ /* Each case statement starts with the same set of valid variables.
+ These are also the only variables will be valid on fallthrough. */
+ auto_vec <bool, 32> old_seen;
+ old_seen.safe_splice (os->seen_vars);
+
+ printf_indent (indent + 2, "{\n");
+ for (transition *trans = d->first; trans; trans = trans->next)
+ {
+ gcc_assert (!trans->is_param);
+ if (mark_optional_transitions_p && trans->optional)
+ printf_indent (indent + 2, "/* OPTIONAL CASE */\n");
+ for (int_set::iterator j = trans->labels.begin ();
+ j != trans->labels.end (); ++j)
+ {
+ printf_indent (indent + 2, "case ");
+ print_label_value (d->test, trans->is_param, *j);
+ printf (":\n");
+ }
+ if (print_state (os, trans->to, indent + 4, is_final))
+ {
+ /* The state can fall through. Add an explicit break. */
+ gcc_assert (!is_final);
+ printf_indent (indent + 4, "break;\n");
+ }
+ printf ("\n");
- printf ("\n && ");
- write_cond (test, depth, subroutine_type);
+ /* Restore the original set of valid variables. */
+ os->seen_vars.truncate (0);
+ os->seen_vars.splice (old_seen);
}
-
- printf (")\n");
+ /* Add a default case. */
+ printf_indent (indent + 2, "default:\n");
+ if (is_final)
+ printf_indent (indent + 4, "return %s;\n",
+ get_failure_return (os->type));
+ else
+ printf_indent (indent + 4, "break;\n");
+ printf_indent (indent + 2, "}\n");
+ return is_final ? ES_RETURNED : ES_FALLTHROUGH;
}
+}
- write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
+/* Make sure that OS has a position variable for POS. ROOT_P is true if
+ POS is the root position for the routine. */
- return uncond > 0;
+static void
+assign_position_var (output_state *os, position *pos, bool root_p)
+{
+ unsigned int idx = os->id_to_var[pos->id];
+ if (idx < os->var_to_id.length () && os->var_to_id[idx] == pos->id)
+ return;
+ if (!root_p && pos->type != POS_PEEP2_INSN)
+ assign_position_var (os, pos->base, false);
+ os->id_to_var[pos->id] = os->var_to_id.length ();
+ os->var_to_id.safe_push (pos->id);
}
-/* Emit code for all of the sibling nodes of HEAD. */
+/* Make sure that OS has the position variables required by S. */
static void
-write_tree_1 (struct decision_head *head, int depth,
- enum routine_type subroutine_type)
+assign_position_vars (output_state *os, state *s)
{
- struct decision *p, *next;
- int uncond = 0;
-
- for (p = head->first; p ; p = next)
+ for (decision *d = s->first; d; d = d->next)
{
- /* The label for the first element was printed in write_tree. */
- if (p != head->first && p->need_label)
- OUTPUT_LABEL (" ", p->number);
-
- /* Attempt to write a switch statement for a whole sequence. */
- next = write_switch (p, depth);
- if (p != next)
- uncond = 0;
- else
- {
- /* Failed -- fall back and write one node. */
- uncond = write_node (p, depth, subroutine_type);
- next = p->next;
- }
+ /* Positions associated with operands can be read from the
+ operands[] array. */
+ if (d->test.pos && d->test.pos_operand < 0)
+ assign_position_var (os, d->test.pos, false);
+ for (transition *trans = d->first; trans; trans = trans->next)
+ assign_position_vars (os, trans->to);
}
-
- /* Finished with this chain. Close a fallthru path by branching
- to the afterward node. */
- if (! uncond)
- write_afterward (head->last, head->last->afterward, " ");
}
-/* Write out the decision tree starting at HEAD. PREVPOS is the
- position at the node that branched to this node. */
+/* Print the open brace and variable definitions for a routine that
+ implements S. ROOT is the deepest rtx from which S can access all
+ relevant parts of the first instruction it matches. Initialize OS
+ so that every relevant position has an rtx variable xN and so that
+ only ROOT's variable has a valid value. */
static void
-write_tree (struct decision_head *head, struct position *prevpos,
- enum routine_type type, int initial)
+print_subroutine_start (output_state *os, state *s, position *root)
{
- struct decision *p = head->first;
-
- putchar ('\n');
- if (p->need_label)
- OUTPUT_LABEL (" ", p->number);
-
- if (! initial && p->subroutine_number > 0)
+ printf ("{\n rtx * const operands ATTRIBUTE_UNUSED"
+ " = &recog_data.operand[0];\n");
+ os->var_to_id.truncate (0);
+ os->seen_vars.truncate (0);
+ if (root)
{
- static const char * const name_prefix[] = {
- "recog", "split", "peephole2"
- };
+ /* Create a fake entry for position 0 so that an id_to_var of 0
+ is always invalid. This also makes the xN variables naturally
+ 1-based rather than 0-based. */
+ os->var_to_id.safe_push (num_positions);
- static const char * const call_suffix[] = {
- ", pnum_clobbers", "", ", _pmatch_len"
- };
+ /* Associate ROOT with x1. */
+ assign_position_var (os, root, true);
- /* This node has been broken out into a separate subroutine.
- Call it, test the result, and branch accordingly. */
+ /* Assign xN variables to all other relevant positions. */
+ assign_position_vars (os, s);
- if (p->afterward)
+ /* Output the variable declarations (except for ROOT's, which is
+ passed in as a parameter). */
+ unsigned int num_vars = os->var_to_id.length ();
+ if (num_vars > 2)
{
- printf (" tem = %s_%d (x0, insn%s);\n",
- name_prefix[type], p->subroutine_number, call_suffix[type]);
- if (IS_SPLIT (type))
- printf (" if (tem != 0)\n return tem;\n");
- else
- printf (" if (tem >= 0)\n return tem;\n");
-
- change_state (p->position, p->afterward->position, " ");
- printf (" goto L%d;\n", p->afterward->number);
- }
- else
- {
- printf (" return %s_%d (x0, insn%s);\n",
- name_prefix[type], p->subroutine_number, call_suffix[type]);
+ for (unsigned int i = 2; i < num_vars; ++i)
+ /* Print 8 rtx variables to a line. */
+ printf ("%s x%d",
+ i == 2 ? " rtx" : (i - 2) % 8 == 0 ? ";\n rtx" : ",", i);
+ printf (";\n");
}
- }
- else
- {
- change_state (prevpos, p->position, " ");
- write_tree_1 (head, p->position->depth, type);
- for (p = head->first; p; p = p->next)
- if (p->success.first)
- write_tree (&p->success, p->position, type, 0);
+ /* Say that x1 is valid and the rest aren't. */
+ os->seen_vars.safe_grow_cleared (num_vars);
+ os->seen_vars[1] = true;
}
+ if (os->type == SUBPATTERN || os->type == RECOG)
+ printf (" int res ATTRIBUTE_UNUSED;\n");
+ else
+ printf (" rtx res ATTRIBUTE_UNUSED;\n");
}
-/* Write out a subroutine of type TYPE to do comparisons starting at
- node TREE. */
+/* Output the definition of pattern routine ROUTINE. */
static void
-write_subroutine (struct decision_head *head, enum routine_type type)
+print_pattern (output_state *os, pattern_routine *routine)
{
- int subfunction = head->first ? head->first->subroutine_number : 0;
- const char *s_or_e;
- char extension[32];
- int i;
- const char *insn_param;
-
- s_or_e = subfunction ? "static " : "";
+ printf ("\nstatic int\npattern%d (", routine->pattern_id);
+ const char *sep = "";
+ /* Add the top-level rtx parameter, if any. */
+ if (routine->pos)
+ {
+ printf ("%srtx x1", sep);
+ sep = ", ";
+ }
+ /* Add the optional parameters. */
+ if (routine->insn_p)
+ {
+ /* We can't easily tell whether a C condition actually reads INSN,
+ so add an ATTRIBUTE_UNUSED just in case. */
+ printf ("%srtx_insn *insn ATTRIBUTE_UNUSED", sep);
+ sep = ", ";
+ }
+ if (routine->pnum_clobbers_p)
+ {
+ printf ("%sint *pnum_clobbers", sep);
+ sep = ", ";
+ }
+ /* Add the "i" parameters. */
+ for (unsigned int i = 0; i < routine->param_types.length (); ++i)
+ {
+ printf ("%s%s i%d", sep,
+ parameter_type_string (routine->param_types[i]), i + 1);
+ sep = ", ";
+ }
+ printf (")\n");
+ os->type = SUBPATTERN;
+ print_subroutine_start (os, routine->s, routine->pos);
+ print_state (os, routine->s, 2, true);
+ printf ("}\n");
+}
- if (subfunction)
- sprintf (extension, "_%d", subfunction);
- else if (type == RECOG)
- extension[0] = '\0';
- else
- strcpy (extension, "_insns");
+/* Output a routine of type TYPE that implements S. PROC_ID is the
+ number of the subroutine associated with S, or 0 if S is the main
+ routine. */
+static void
+print_subroutine (output_state *os, state *s, int proc_id)
+{
/* For now, the top-level functions take a plain "rtx", and perform a
checked cast to "rtx_insn *" for use throughout the rest of the
function and the code it calls. */
- insn_param = subfunction ? "rtx_insn *insn" : "rtx uncast_insn";
-
- switch (type)
+ const char *insn_param
+ = proc_id > 0 ? "rtx_insn *insn" : "rtx uncast_insn";
+ printf ("\n");
+ switch (os->type)
{
+ case SUBPATTERN:
+ gcc_unreachable ();
+
case RECOG:
- printf ("%sint\n\
-recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\t%s ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n",
- s_or_e, extension, insn_param);
+ if (proc_id)
+ printf ("static int\nrecog_%d", proc_id);
+ else
+ printf ("int\nrecog");
+ printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
+ "\t%s ATTRIBUTE_UNUSED,\n"
+ "\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", insn_param);
break;
+
case SPLIT:
- printf ("%srtx\n\
-split%s (rtx x0 ATTRIBUTE_UNUSED, %s ATTRIBUTE_UNUSED)\n",
- s_or_e, extension, insn_param);
+ if (proc_id)
+ printf ("static rtx\nsplit_%d", proc_id);
+ else
+ printf ("rtx\nsplit_insns");
+ printf (" (rtx x1 ATTRIBUTE_UNUSED, %s ATTRIBUTE_UNUSED)\n",
+ insn_param);
break;
+
case PEEPHOLE2:
- printf ("%srtx\n\
-peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\t%s ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
- s_or_e, extension, insn_param);
+ if (proc_id)
+ printf ("static rtx\npeephole2_%d", proc_id);
+ else
+ printf ("rtx\npeephole2_insns");
+ printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
+ "\t%s ATTRIBUTE_UNUSED,\n"
+ "\tint *pmatch_len_ ATTRIBUTE_UNUSED)\n", insn_param);
break;
}
-
- printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
- for (i = 1; i <= max_depth; i++)
- printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
-
- printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
-
- if (!subfunction)
- printf (" recog_data.insn = NULL_RTX;\n");
-
- /* For now add the downcast to rtx_insn *, at the top of each top-level
- function. */
- if (!subfunction)
+ print_subroutine_start (os, s, &root_pos);
+ if (proc_id == 0)
{
+ printf (" recog_data.insn = NULL_RTX;\n");
printf (" rtx_insn *insn ATTRIBUTE_UNUSED;\n");
printf (" insn = safe_as_a <rtx_insn *> (uncast_insn);\n");
}
-
- if (head->first)
- write_tree (head, &root_pos, type, 1);
- else
- printf (" goto ret0;\n");
-
- printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
+ print_state (os, s, 2, true);
+ printf ("}\n");
}
-/* In break_out_subroutines, we discovered the boundaries for the
- subroutines, but did not write them out. Do so now. */
+/* Print out a routine of type TYPE that performs ROOT. */
static void
-write_subroutines (struct decision_head *head, enum routine_type type)
+print_subroutine_group (output_state *os, routine_type type, state *root)
{
- struct decision *p;
-
- for (p = head->first; p ; p = p->next)
- if (p->success.first)
- write_subroutines (&p->success, type);
-
- if (head->first->subroutine_number > 0)
- write_subroutine (head, type);
+ os->type = type;
+ if (use_subroutines_p)
+ {
+ /* Split ROOT up into smaller pieces, both for readability and to
+ help the compiler. */
+ auto_vec <state *> subroutines;
+ find_subroutines (type, root, subroutines);
+
+ /* Output the subroutines (but not ROOT itself). */
+ unsigned int i;
+ state *s;
+ FOR_EACH_VEC_ELT (subroutines, i, s)
+ print_subroutine (os, s, i + 1);
+ }
+ /* Output the main routine. */
+ print_subroutine (os, root, 0);
}
-/* Begin the output file. */
+/* Return the rtx pattern specified by the list of rtxes in a
+ define_insn or define_split. */
-static void
-write_header (void)
+static rtx
+add_implicit_parallel (rtvec vec)
{
- puts ("\
-/* Generated automatically by the program `genrecog' from the target\n\
- machine description file. */\n\
-\n\
-#include \"config.h\"\n\
-#include \"system.h\"\n\
-#include \"coretypes.h\"\n\
-#include \"tm.h\"\n\
-#include \"rtl.h\"\n\
-#include \"tm_p.h\"\n\
-#include \"hashtab.h\"\n\
-#include \"hash-set.h\"\n\
-#include \"vec.h\"\n\
-#include \"machmode.h\"\n\
-#include \"hard-reg-set.h\"\n\
-#include \"input.h\"\n\
-#include \"function.h\"\n\
-#include \"insn-config.h\"\n\
-#include \"recog.h\"\n\
-#include \"output.h\"\n\
-#include \"flags.h\"\n\
-#include \"hard-reg-set.h\"\n\
-#include \"predict.h\"\n\
-#include \"basic-block.h\"\n\
-#include \"resource.h\"\n\
-#include \"diagnostic-core.h\"\n\
-#include \"reload.h\"\n\
-#include \"regs.h\"\n\
-#include \"tm-constrs.h\"\n\
-#include \"predict.h\"\n\
-\n");
-
- puts ("\n\
-/* `recog' contains a decision tree that recognizes whether the rtx\n\
- X0 is a valid instruction.\n\
-\n\
- recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
- returns a nonnegative number which is the insn code number for the\n\
- pattern that matched. This is the same as the order in the machine\n\
- description of the entry that matched. This number can be used as an\n\
- index into `insn_data' and other tables.\n");
- puts ("\
- The third argument to recog is an optional pointer to an int. If\n\
- present, recog will accept a pattern if it matches except for missing\n\
- CLOBBER expressions at the end. In that case, the value pointed to by\n\
- the optional pointer will be set to the number of CLOBBERs that need\n\
- to be added (it should be initialized to zero by the caller). If it");
- puts ("\
- is set nonzero, the caller should allocate a PARALLEL of the\n\
- appropriate size, copy the initial entries, and call add_clobbers\n\
- (found in insn-emit.c) to fill in the CLOBBERs.\n\
-");
-
- puts ("\n\
- The function split_insns returns 0 if the rtl could not\n\
- be split or the split rtl as an INSN list if it can be.\n\
-\n\
- The function peephole2_insns returns 0 if the rtl could not\n\
- be matched. If there was a match, the new rtl is returned in an INSN list,\n\
- and LAST_INSN will point to the last recognized insn in the old sequence.\n\
-*/\n\n");
-}
-
-\f
-/* Construct and return a sequence of decisions
- that will recognize INSN.
-
- TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
-
-static struct decision_head
-make_insn_sequence (rtx insn, enum routine_type type)
-{
- rtx x;
- const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
- int truth = maybe_eval_c_test (c_test);
- struct decision *last;
- struct decision_test *test, **place;
- struct decision_head head;
- struct position *c_test_pos, **pos_ptr;
-
- /* We should never see an insn whose C test is false at compile time. */
- gcc_assert (truth);
-
- c_test_pos = &root_pos;
- if (type == PEEPHOLE2)
- {
- int i, j;
-
- /* peephole2 gets special treatment:
- - X always gets an outer parallel even if it's only one entry
- - we remove all traces of outer-level match_scratch and match_dup
- expressions here. */
- x = rtx_alloc (PARALLEL);
- PUT_MODE (x, VOIDmode);
- XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
- pos_ptr = &peep2_insn_pos_list;
- for (i = j = 0; i < XVECLEN (insn, 0); i++)
- {
- rtx tmp = XVECEXP (insn, 0, i);
- if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
- {
- c_test_pos = next_position (pos_ptr, &root_pos,
- POS_PEEP2_INSN, j);
- XVECEXP (x, 0, j) = tmp;
- j++;
- pos_ptr = &c_test_pos->next;
- }
- }
- XVECLEN (x, 0) = j;
- }
- else if (XVECLEN (insn, type == RECOG) == 1)
- x = XVECEXP (insn, type == RECOG, 0);
+ if (GET_NUM_ELEM (vec) == 1)
+ return RTVEC_ELT (vec, 0);
else
{
- x = rtx_alloc (PARALLEL);
- XVEC (x, 0) = XVEC (insn, type == RECOG);
- PUT_MODE (x, VOIDmode);
+ rtx pattern = rtx_alloc (PARALLEL);
+ XVEC (pattern, 0) = vec;
+ return pattern;
}
+}
- validate_pattern (x, insn, NULL_RTX, 0);
-
- memset (&head, 0, sizeof (head));
- last = add_to_sequence (x, &head, &root_pos, type, 1);
-
- /* Find the end of the test chain on the last node. */
- for (test = last->tests; test->next; test = test->next)
- continue;
- place = &test->next;
-
- /* Skip the C test if it's known to be true at compile time. */
- if (truth == -1)
- {
- /* Need a new node if we have another test to add. */
- if (test->type == DT_accept_op)
- {
- last = new_decision (c_test_pos, &last->success);
- place = &last->tests;
- }
- test = new_decision_test (DT_c_test, &place);
- test->u.c_test = c_test;
- }
+/* Return true if *PATTERN_PTR is a PARALLEL in which at least one trailing
+ rtx can be added automatically by add_clobbers. If so, update
+ *ACCEPTANCE_PTR so that its num_clobbers field contains the number
+ of such trailing rtxes and update *PATTERN_PTR so that it contains
+ the pattern without those rtxes. */
- test = new_decision_test (DT_accept_insn, &place);
- test->u.insn.code_number = next_insn_code;
- test->u.insn.lineno = pattern_lineno;
- test->u.insn.num_clobbers_to_add = 0;
+static bool
+remove_clobbers (acceptance_type *acceptance_ptr, rtx *pattern_ptr)
+{
+ int i;
+ rtx new_pattern;
- switch (type)
+ /* Find the last non-clobber in the parallel. */
+ rtx pattern = *pattern_ptr;
+ for (i = XVECLEN (pattern, 0); i > 0; i--)
{
- case RECOG:
- /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
- with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
- If so, set up to recognize the pattern without these CLOBBERs. */
-
- if (GET_CODE (x) == PARALLEL)
- {
- int i;
-
- /* Find the last non-clobber in the parallel. */
- for (i = XVECLEN (x, 0); i > 0; i--)
- {
- rtx y = XVECEXP (x, 0, i - 1);
- if (GET_CODE (y) != CLOBBER
- || (!REG_P (XEXP (y, 0))
- && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
- break;
- }
-
- if (i != XVECLEN (x, 0))
- {
- rtx new_rtx;
- struct decision_head clobber_head;
-
- /* Build a similar insn without the clobbers. */
- if (i == 1)
- new_rtx = XVECEXP (x, 0, 0);
- else
- {
- int j;
-
- new_rtx = rtx_alloc (PARALLEL);
- XVEC (new_rtx, 0) = rtvec_alloc (i);
- for (j = i - 1; j >= 0; j--)
- XVECEXP (new_rtx, 0, j) = XVECEXP (x, 0, j);
- }
-
- /* Recognize it. */
- memset (&clobber_head, 0, sizeof (clobber_head));
- last = add_to_sequence (new_rtx, &clobber_head, &root_pos,
- type, 1);
-
- /* Find the end of the test chain on the last node. */
- for (test = last->tests; test->next; test = test->next)
- continue;
-
- /* We definitely have a new test to add -- create a new
- node if needed. */
- place = &test->next;
- if (test->type == DT_accept_op)
- {
- last = new_decision (&root_pos, &last->success);
- place = &last->tests;
- }
-
- /* Skip the C test if it's known to be true at compile
- time. */
- if (truth == -1)
- {
- test = new_decision_test (DT_c_test, &place);
- test->u.c_test = c_test;
- }
-
- test = new_decision_test (DT_accept_insn, &place);
- test->u.insn.code_number = next_insn_code;
- test->u.insn.lineno = pattern_lineno;
- test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
-
- merge_trees (&head, &clobber_head);
- }
- }
- break;
-
- case SPLIT:
- /* Define the subroutine we will call below and emit in genemit. */
- printf ("extern rtx gen_split_%d (rtx_insn *, rtx *);\n", next_insn_code);
- break;
-
- case PEEPHOLE2:
- /* Define the subroutine we will call below and emit in genemit. */
- printf ("extern rtx gen_peephole2_%d (rtx_insn *, rtx *);\n",
- next_insn_code);
- break;
+ rtx x = XVECEXP (pattern, 0, i - 1);
+ if (GET_CODE (x) != CLOBBER
+ || (!REG_P (XEXP (x, 0))
+ && GET_CODE (XEXP (x, 0)) != MATCH_SCRATCH))
+ break;
}
- return head;
-}
+ if (i == XVECLEN (pattern, 0))
+ return false;
-static void
-process_tree (struct decision_head *head, enum routine_type subroutine_type)
-{
- if (head->first == NULL)
- {
- /* We can elide peephole2_insns, but not recog or split_insns. */
- if (subroutine_type == PEEPHOLE2)
- return;
- }
+ /* Build a similar insn without the clobbers. */
+ if (i == 1)
+ new_pattern = XVECEXP (pattern, 0, 0);
else
{
- factor_tests (head);
-
- next_subroutine_number = 0;
- break_out_subroutines (head, 1);
- find_afterward (head, NULL);
-
- /* We run this after find_afterward, because find_afterward needs
- the redundant DT_mode tests on predicates to determine whether
- two tests can both be true or not. */
- simplify_tests (head);
-
- write_subroutines (head, subroutine_type);
+ new_pattern = rtx_alloc (PARALLEL);
+ XVEC (new_pattern, 0) = rtvec_alloc (i);
+ for (int j = 0; j < i; ++j)
+ XVECEXP (new_pattern, 0, j) = XVECEXP (pattern, 0, j);
}
- write_subroutine (head, subroutine_type);
+ /* Recognize it. */
+ acceptance_ptr->u.full.u.num_clobbers = XVECLEN (pattern, 0) - i;
+ *pattern_ptr = new_pattern;
+ return true;
}
-\f
-extern int main (int, char **);
int
main (int argc, char **argv)
{
rtx desc;
- struct decision_head recog_tree, split_tree, peephole2_tree, h;
+ state insn_root, split_root, peephole2_root;
progname = "genrecog";
- memset (&recog_tree, 0, sizeof recog_tree);
- memset (&split_tree, 0, sizeof split_tree);
- memset (&peephole2_tree, 0, sizeof peephole2_tree);
-
if (!init_rtx_reader_args (argc, argv))
return (FATAL_EXIT_CODE);
if (desc == NULL)
break;
+ rtx pattern;
+
+ acceptance_type acceptance;
+ acceptance.partial_p = false;
+ acceptance.u.full.code = next_insn_code;
+
switch (GET_CODE (desc))
{
case DEFINE_INSN:
- h = make_insn_sequence (desc, RECOG);
- merge_trees (&recog_tree, &h);
- break;
+ {
+ /* Match the instruction in the original .md form. */
+ pattern = add_implicit_parallel (XVEC (desc, 1));
+ acceptance.type = RECOG;
+ acceptance.u.full.u.num_clobbers = 0;
+ match_pattern (&insn_root, pattern, XSTR (desc, 2), acceptance);
+
+ /* If the pattern is a PARALLEL with trailing CLOBBERs,
+ allow recog_for_combine to match without the clobbers. */
+ if (GET_CODE (pattern) == PARALLEL
+ && remove_clobbers (&acceptance, &pattern))
+ match_pattern (&insn_root, pattern, XSTR (desc, 2), acceptance);
+ break;
+ }
case DEFINE_SPLIT:
- h = make_insn_sequence (desc, SPLIT);
- merge_trees (&split_tree, &h);
+ acceptance.type = SPLIT;
+ pattern = add_implicit_parallel (XVEC (desc, 0));
+ match_pattern (&split_root, pattern, XSTR (desc, 1), acceptance);
+
+ /* Declare the gen_split routine that we'll call if the
+ pattern matches. The definition comes from insn-emit.c. */
+ printf ("extern rtx gen_split_%d (rtx_insn *, rtx *);\n",
+ next_insn_code);
break;
case DEFINE_PEEPHOLE2:
- h = make_insn_sequence (desc, PEEPHOLE2);
- merge_trees (&peephole2_tree, &h);
+ acceptance.type = PEEPHOLE2;
+ match_pattern (&peephole2_root, desc, XSTR (desc, 1), acceptance);
+
+ /* Declare the gen_peephole2 routine that we'll call if the
+ pattern matches. The definition comes from insn-emit.c. */
+ printf ("extern rtx gen_peephole2_%d (rtx_insn *, rtx *);\n",
+ next_insn_code);
+ break;
default:
/* do nothing */;
puts ("\n\n");
- process_tree (&recog_tree, RECOG);
- process_tree (&split_tree, SPLIT);
- process_tree (&peephole2_tree, PEEPHOLE2);
-
- fflush (stdout);
- return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
-}
-\f
-static void
-debug_decision_2 (struct decision_test *test)
-{
- switch (test->type)
- {
- case DT_num_insns:
- fprintf (stderr, "num_insns=%d", test->u.num_insns);
- break;
- case DT_mode:
- fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
- break;
- case DT_code:
- fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
- break;
- case DT_veclen:
- fprintf (stderr, "veclen=%d", test->u.veclen);
- break;
- case DT_elt_zero_int:
- fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
- break;
- case DT_elt_one_int:
- fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
- break;
- case DT_elt_zero_wide:
- fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
- break;
- case DT_elt_zero_wide_safe:
- fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
- break;
- case DT_veclen_ge:
- fprintf (stderr, "veclen>=%d", test->u.veclen);
- break;
- case DT_dup:
- fprintf (stderr, "dup=%d", test->u.dup);
- break;
- case DT_pred:
- fprintf (stderr, "pred=(%s,%s)",
- test->u.pred.name, GET_MODE_NAME (test->u.pred.mode));
- break;
- case DT_c_test:
- {
- char sub[16+4];
- strncpy (sub, test->u.c_test, sizeof (sub));
- memcpy (sub+16, "...", 4);
- fprintf (stderr, "c_test=\"%s\"", sub);
- }
- break;
- case DT_accept_op:
- fprintf (stderr, "A_op=%d", test->u.opno);
- break;
- case DT_accept_insn:
- fprintf (stderr, "A_insn=(%d,%d)",
- test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
- break;
-
- default:
- gcc_unreachable ();
- }
-}
-
-static void
-debug_decision_1 (struct decision *d, int indent)
-{
- int i;
- struct decision_test *test;
-
- if (d == NULL)
- {
- for (i = 0; i < indent; ++i)
- putc (' ', stderr);
- fputs ("(nil)\n", stderr);
- return;
- }
-
- for (i = 0; i < indent; ++i)
- putc (' ', stderr);
-
- putc ('{', stderr);
- test = d->tests;
- if (test)
- {
- debug_decision_2 (test);
- while ((test = test->next) != NULL)
- {
- fputs (" + ", stderr);
- debug_decision_2 (test);
- }
- }
- fprintf (stderr, "} %d n %d a %d\n", d->number,
- (d->next ? d->next->number : -1),
- (d->afterward ? d->afterward->number : -1));
-}
+ /* Optimize each routine in turn. */
+ optimize_subroutine_group ("recog", &insn_root);
+ optimize_subroutine_group ("split_insns", &split_root);
+ optimize_subroutine_group ("peephole2_insns", &peephole2_root);
-static void
-debug_decision_0 (struct decision *d, int indent, int maxdepth)
-{
- struct decision *n;
- int i;
+ output_state os;
+ os.id_to_var.safe_grow_cleared (num_positions);
- if (maxdepth < 0)
- return;
- if (d == NULL)
+ if (use_pattern_routines_p)
{
- for (i = 0; i < indent; ++i)
- putc (' ', stderr);
- fputs ("(nil)\n", stderr);
- return;
+ /* Look for common patterns and split them out into subroutines. */
+ auto_vec <merge_state_info> states;
+ states.safe_push (&insn_root);
+ states.safe_push (&split_root);
+ states.safe_push (&peephole2_root);
+ split_out_patterns (states);
+
+ /* Print out the routines that we just created. */
+ unsigned int i;
+ pattern_routine *routine;
+ FOR_EACH_VEC_ELT (patterns, i, routine)
+ print_pattern (&os, routine);
}
- debug_decision_1 (d, indent);
- for (n = d->success.first; n ; n = n->next)
- debug_decision_0 (n, indent + 2, maxdepth - 1);
-}
-
-DEBUG_FUNCTION void
-debug_decision (struct decision *d)
-{
- debug_decision_0 (d, 0, 1000000);
-}
+ /* Print out the matching routines. */
+ print_subroutine_group (&os, RECOG, &insn_root);
+ print_subroutine_group (&os, SPLIT, &split_root);
+ print_subroutine_group (&os, PEEPHOLE2, &peephole2_root);
-DEBUG_FUNCTION void
-debug_decision_list (struct decision *d)
-{
- while (d)
- {
- debug_decision_0 (d, 0, 0);
- d = d->next;
- }
+ fflush (stdout);
+ return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
}