tree niter_type = TREE_TYPE (step);
tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
tree tmod;
- tree assumption = boolean_true_node, bound;
- tree type1 = (POINTER_TYPE_P (type)) ? sizetype : type;
+ mpz_t mmod;
+ tree assumption = boolean_true_node, bound, noloop;
+ bool ret = false, fv_comp_no_overflow;
+ tree type1 = type;
+ if (POINTER_TYPE_P (type))
+ type1 = sizetype;
if (TREE_CODE (mod) != INTEGER_CST)
return false;
mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
tmod = fold_convert (type1, mod);
+ mpz_init (mmod);
+ wi::to_mpz (mod, mmod, UNSIGNED);
+ mpz_neg (mmod, mmod);
+
/* If the induction variable does not overflow and the exit is taken,
- then the computation of the final value does not overflow. There
- are three cases:
- 1) The case if the new final value is equal to the current one.
- 2) Induction varaible has pointer type, as the code cannot rely
- on the object to that the pointer points being placed at the
- end of the address space (and more pragmatically,
- TYPE_{MIN,MAX}_VALUE is not defined for pointers).
- 3) EXIT_MUST_BE_TAKEN is true, note it implies that the induction
- variable does not overflow. */
- if (!integer_zerop (mod) && !POINTER_TYPE_P (type) && !exit_must_be_taken)
+ then the computation of the final value does not overflow. This is
+ also obviously the case if the new final value is equal to the
+ current one. Finally, we postulate this for pointer type variables,
+ as the code cannot rely on the object to that the pointer points being
+ placed at the end of the address space (and more pragmatically,
+ TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
+ if (integer_zerop (mod) || POINTER_TYPE_P (type))
+ fv_comp_no_overflow = true;
+ else if (!exit_must_be_taken)
+ fv_comp_no_overflow = false;
+ else
+ fv_comp_no_overflow =
+ (iv0->no_overflow && integer_nonzerop (iv0->step))
+ || (iv1->no_overflow && integer_nonzerop (iv1->step));
+
+ if (integer_nonzerop (iv0->step))
{
- if (integer_nonzerop (iv0->step))
+ /* The final value of the iv is iv1->base + MOD, assuming that this
+ computation does not overflow, and that
+ iv0->base <= iv1->base + MOD. */
+ if (!fv_comp_no_overflow)
{
- /* The final value of the iv is iv1->base + MOD, assuming
- that this computation does not overflow, and that
- iv0->base <= iv1->base + MOD. */
bound = fold_build2 (MINUS_EXPR, type1,
TYPE_MAX_VALUE (type1), tmod);
assumption = fold_build2 (LE_EXPR, boolean_type_node,
iv1->base, bound);
+ if (integer_zerop (assumption))
+ goto end;
}
+ if (mpz_cmp (mmod, bnds->below) < 0)
+ noloop = boolean_false_node;
+ else if (POINTER_TYPE_P (type))
+ noloop = fold_build2 (GT_EXPR, boolean_type_node,
+ iv0->base,
+ fold_build_pointer_plus (iv1->base, tmod));
else
+ noloop = fold_build2 (GT_EXPR, boolean_type_node,
+ iv0->base,
+ fold_build2 (PLUS_EXPR, type1,
+ iv1->base, tmod));
+ }
+ else
+ {
+ /* The final value of the iv is iv0->base - MOD, assuming that this
+ computation does not overflow, and that
+ iv0->base - MOD <= iv1->base. */
+ if (!fv_comp_no_overflow)
{
- /* The final value of the iv is iv0->base - MOD, assuming
- that this computation does not overflow, and that
- iv0->base - MOD <= iv1->base. */
bound = fold_build2 (PLUS_EXPR, type1,
TYPE_MIN_VALUE (type1), tmod);
assumption = fold_build2 (GE_EXPR, boolean_type_node,
iv0->base, bound);
+ if (integer_zerop (assumption))
+ goto end;
}
- if (integer_zerop (assumption))
- return false;
- else if (!integer_nonzerop (assumption))
- niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
- niter->assumptions, assumption);
+ if (mpz_cmp (mmod, bnds->below) < 0)
+ noloop = boolean_false_node;
+ else if (POINTER_TYPE_P (type))
+ noloop = fold_build2 (GT_EXPR, boolean_type_node,
+ fold_build_pointer_plus (iv0->base,
+ fold_build1 (NEGATE_EXPR,
+ type1, tmod)),
+ iv1->base);
+ else
+ noloop = fold_build2 (GT_EXPR, boolean_type_node,
+ fold_build2 (MINUS_EXPR, type1,
+ iv0->base, tmod),
+ iv1->base);
}
- /* Since we are transforming LT to NE and DELTA is constant, there
- is no need to compute may_be_zero because this loop must roll. */
-
+ if (!integer_nonzerop (assumption))
+ niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
+ niter->assumptions,
+ assumption);
+ if (!integer_zerop (noloop))
+ niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
+ niter->may_be_zero,
+ noloop);
bounds_add (bnds, wi::to_widest (mod), type);
*delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
- return true;
+
+ ret = true;
+end:
+ mpz_clear (mmod);
+ return ret;
}
/* Add assertions to NITER that ensure that the control variable of the loop