Big rework; flop info now mostly in cells_sim.v
authorEddie Hung <eddie@fpgeh.com>
Sun, 29 Sep 2019 06:48:17 +0000 (23:48 -0700)
committerEddie Hung <eddie@fpgeh.com>
Sun, 29 Sep 2019 06:48:17 +0000 (23:48 -0700)
backends/aiger/xaiger.cc
frontends/aiger/aigerparse.cc
passes/techmap/abc9.cc
techlibs/xilinx/abc_map.v
techlibs/xilinx/abc_model.v
techlibs/xilinx/abc_unmap.v
techlibs/xilinx/abc_xc7.box
techlibs/xilinx/cells_sim.v
techlibs/xilinx/synth_xilinx.cc

index 4df97bd52bec666709a3d2b971ca82406b7beb84..5d41d49b9781631c5dbbc76da8866b236068049d 100644 (file)
@@ -81,11 +81,11 @@ struct XAigerWriter
 
        dict<SigBit, bool> init_map;
        pool<SigBit> input_bits, output_bits;
-       dict<SigBit, SigBit> not_map, ff_map, alias_map;
+       dict<SigBit, SigBit> not_map, /*ff_map,*/ alias_map;
        dict<SigBit, pair<SigBit, SigBit>> and_map;
        vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int>> ci_bits;
        vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int,int>> co_bits;
-       vector<std::pair<SigBit,int>> ff_bits;
+       dict<SigBit, int> ff_bits;
        dict<SigBit, float> arrival_times;
 
        vector<pair<int, int>> aig_gates;
@@ -218,13 +218,8 @@ struct XAigerWriter
                //       box ordering, but not individual AIG cells
                dict<SigBit, pool<IdString>> bit_drivers, bit_users;
                TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
-               struct flop_data_t {
-                       IdString d_port;
-                       IdString q_port;
-                       int q_arrival;
-               };
-               dict<IdString, flop_data_t> flop_data;
                bool abc_box_seen = false;
+               std::vector<Cell*> flop_boxes;
 
                for (auto cell : module->selected_cells()) {
                        if (cell->type == "$_NOT_")
@@ -269,6 +264,8 @@ struct XAigerWriter
                                unused_bits.erase(D);
                                undriven_bits.erase(Q);
                                alias_map[Q] = D;
+                               auto r = ff_bits.insert(std::make_pair(D, 0));
+                               log_assert(r.second);
                                continue;
                        }
 
@@ -278,59 +275,6 @@ struct XAigerWriter
 
                                toposort.node(cell->name);
 
-                               auto r = flop_data.insert(std::make_pair(cell->type, flop_data_t{IdString(), IdString(), 0}));
-                               if (r.second && inst_module->attributes.count("\\abc_flop")) {
-                                       IdString &abc_flop_d = r.first->second.d_port;
-                                       IdString &abc_flop_q = r.first->second.q_port;
-                                       for (auto port_name : inst_module->ports) {
-                                               auto wire = inst_module->wire(port_name);
-                                               log_assert(wire);
-                                               if (wire->attributes.count("\\abc_flop_d")) {
-                                                       if (abc_flop_d != IdString())
-                                                               log_error("More than one port has the 'abc_flop_d' attribute set on module '%s'.\n", log_id(cell->type));
-                                                       abc_flop_d = port_name;
-                                               }
-                                               if (wire->attributes.count("\\abc_flop_q")) {
-                                                       if (abc_flop_q != IdString())
-                                                               log_error("More than one port has the 'abc_flop_q' attribute set on module '%s'.\n", log_id(cell->type));
-                                                       abc_flop_q = port_name;
-
-                                                       auto it = wire->attributes.find("\\abc_arrival");
-                                                       if (it != wire->attributes.end()) {
-                                                               if (it->second.flags != 0)
-                                                                       log_error("Attribute 'abc_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(wire), log_id(cell->type));
-                                                                r.first->second.q_arrival = it->second.as_int();
-                                                       }
-                                               }
-                                       }
-                                       if (abc_flop_d == IdString())
-                                               log_error("'abc_flop_d' attribute not found on any ports on module '%s'.\n", log_id(cell->type));
-                                       if (abc_flop_q == IdString())
-                                               log_error("'abc_flop_q' attribute not found on any ports on module '%s'.\n", log_id(cell->type));
-                               }
-
-                               auto abc_flop_d = r.first->second.d_port;
-                               if (abc_flop_d != IdString()) {
-                                       SigBit d = cell->getPort(abc_flop_d);
-                                       SigBit I = sigmap(d);
-                                       if (I != d)
-                                               alias_map[d] = I;
-                                       unused_bits.erase(d);
-
-                                       auto abc_flop_q = r.first->second.q_port;
-                                       SigBit q = cell->getPort(abc_flop_q);
-                                       log_assert(q == sigmap(q));
-                                       undriven_bits.erase(q);
-                                       auto it = cell->attributes.find(ID(abc_mergeability));
-                                       log_assert(it != cell->attributes.end());
-                                       ff_bits.emplace_back(q, it->second.as_int());
-                                       cell->attributes.erase(it);
-
-                                       auto arrival = r.first->second.q_arrival;
-                                       if (arrival)
-                                               arrival_times[q] = arrival;
-                               }
-
                                for (const auto &conn : cell->connections()) {
                                        auto port_wire = inst_module->wire(conn.first);
                                        if (port_wire->port_input) {
@@ -345,6 +289,8 @@ struct XAigerWriter
                                                        bit_drivers[bit].insert(cell->name);
                                }
 
+                               if (inst_module->attributes.count("\\abc9_flop"))
+                                       flop_boxes.push_back(cell);
                                continue;
                        }
 
@@ -403,6 +349,45 @@ struct XAigerWriter
                }
 
                if (abc_box_seen) {
+                       dict<IdString, std::pair<IdString,int>> flop_q;
+                       for (auto cell : flop_boxes) {
+                               auto r = flop_q.insert(std::make_pair(cell->type, std::make_pair(IdString(), 0)));
+                               SigBit d;
+                               if (r.second) {
+                                       for (const auto &conn : cell->connections()) {
+                                               const SigSpec &rhs = conn.second;
+                                               if (!rhs.is_bit())
+                                                       continue;
+                                               if (!ff_bits.count(rhs))
+                                                       continue;
+                                               r.first->second.first = conn.first;
+                                               Module *inst_module = module->design->module(cell->type);
+                                               Wire *wire = inst_module->wire(conn.first);
+                                               log_assert(wire);
+                                               auto jt = wire->attributes.find("\\abc_arrival");
+                                               if (jt != wire->attributes.end()) {
+                                                       if (jt->second.flags != 0)
+                                                               log_error("Attribute 'abc_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(wire), log_id(cell->type));
+                                                       r.first->second.second = jt->second.as_int();
+                                               }
+                                               d = rhs;
+                                               log_assert(d == sigmap(d));
+                                               break;
+                                       }
+                               }
+                               else
+                                       d = cell->getPort(r.first->second.first);
+
+                               auto it = cell->attributes.find(ID(abc9_mergeability));
+                               log_assert(it != cell->attributes.end());
+                               ff_bits.at(d) = it->second.as_int();
+                               cell->attributes.erase(it);
+
+                               auto arrival = r.first->second.second;
+                               if (arrival)
+                                       arrival_times[d] = arrival;
+                       }
+
                        for (auto &it : bit_users)
                                if (bit_drivers.count(it.first))
                                        for (auto driver_cell : bit_drivers.at(it.first))
@@ -498,6 +483,29 @@ struct XAigerWriter
                                                }
                                        }
                                }
+
+                               if (box_module->get_bool_attribute("\\abc9_flop")) {
+                                       IdString port_name = "\\$currQ";
+                                       RTLIL::Wire* w = box_module->wire(port_name);
+                                       SigSpec rhs = cell->getPort(port_name);
+                                       log_assert(GetSize(w) == GetSize(rhs));
+
+                                       int offset = 0;
+                                       for (auto b : rhs.bits()) {
+                                               SigBit I = sigmap(b);
+                                               if (b == RTLIL::Sx)
+                                                       b = State::S0;
+                                               else if (I != b) {
+                                                       if (I == RTLIL::Sx)
+                                                               alias_map[b] = State::S0;
+                                                       else
+                                                               alias_map[b] = I;
+                                               }
+                                               co_bits.emplace_back(b, cell, port_name, offset++, 0);
+                                               unused_bits.erase(b);
+                                       }
+                               }
+
                                box_list.emplace_back(cell);
                        }
 
@@ -569,7 +577,7 @@ struct XAigerWriter
                }
 
                not_map.sort();
-               ff_map.sort();
+               //ff_map.sort();
                and_map.sort();
 
                aig_map[State::S0] = 0;
@@ -850,6 +858,28 @@ struct XAigerWriter
                                        }
                                }
 
+                               if (box_module->get_bool_attribute("\\abc9_flop")) {
+                                       log_assert(holes_cell);
+                                       IdString port_name = "\\$currQ";
+                                       Wire* w = box_module->wire(port_name);
+                                       SigSpec rhs = cell->getPort(port_name);
+                                       log_assert(GetSize(w) == GetSize(rhs));
+                                       SigSpec port_wire;
+                                       Wire *holes_wire;
+                                       for (int i = 0; i < GetSize(w); i++) {
+                                               box_inputs++;
+                                               holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
+                                               if (!holes_wire) {
+                                                       holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
+                                                       holes_wire->port_input = true;
+                                                       holes_wire->port_id = port_id++;
+                                                       holes_module->ports.push_back(holes_wire->name);
+                                               }
+                                               port_wire.append(holes_wire);
+                                       }
+                                       holes_cell->setPort(w->name, port_wire);
+                               }
+
                                write_h_buffer(box_inputs);
                                write_h_buffer(box_outputs);
                                write_h_buffer(box_module->attributes.at("\\abc_box_id").as_int());
@@ -861,6 +891,7 @@ struct XAigerWriter
                        log_debug("flopNum = %d\n", GetSize(ff_bits));
                        write_r_buffer(ff_bits.size());
                        for (const auto &i : ff_bits) {
+                               log_assert(i.second > 0);
                                write_r_buffer(i.second);
                                const SigBit &bit = i.first;
                                write_i_buffer(arrival_times.at(bit, 0));
index 7a467b91eaa69922249f9dcdc16e5f7d57ff28ba..439311230286c08554b72c770fd311f18970065e 100644 (file)
@@ -740,7 +740,7 @@ void AigerReader::post_process()
 
                bool is_flop = false;
                if (seen_boxes.insert(cell->type).second) {
-                       if (box_module->attributes.count("\\abc_flop")) {
+                       if (box_module->attributes.count("\\abc9_flop")) {
                                log_assert(flop_count < flopNum);
                                flops.insert(cell->type);
                                is_flop = true;
@@ -811,12 +811,18 @@ void AigerReader::post_process()
                                }
                                rhs.append(wire);
                        }
-
-                       if (!is_flop || port_name != "\\$pastQ")
-                               cell->setPort(port_name, rhs);
+                       cell->setPort(port_name, rhs);
                }
 
                if (is_flop) {
+                       Wire* port = box_module->wire("\\$currQ");
+                       log_assert(port);
+                       log_assert(co_count < outputs.size());
+                       Wire *wire = outputs[co_count++];
+                       log_assert(wire);
+                       log_assert(wire->port_output);
+                       wire->port_output = false;
+
                        RTLIL::Wire *d = outputs[outputs.size() - flopNum + flop_count];
                        log_assert(d);
                        log_assert(d->port_output);
@@ -827,9 +833,10 @@ void AigerReader::post_process()
                        log_assert(q->port_input);
                        q->port_input = false;
 
+                       auto ff = module->addCell(NEW_ID, "$__ABC_FF_");
+                       ff->setPort("\\D", d);
+                       ff->setPort("\\Q", q);
                        flop_count++;
-                       module->connect(q, d);
-                       cell->set_bool_attribute("\\abc_flop");
                        continue;
                }
        }
index 64841d8739b539967fbf7150a5296781a745b6ee..a5d8231397e9f927dc3445da1e9b1c53a698eb3b 100644 (file)
@@ -536,8 +536,10 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
                        cell_stats[mapped_cell->type]++;
 
                        RTLIL::Cell *existing_cell = nullptr;
-                       if (mapped_cell->type == ID($lut)) {
-                               if (GetSize(mapped_cell->getPort(ID::A)) == 1 && mapped_cell->getParam(ID(LUT)) == RTLIL::Const::from_string("01")) {
+                       if (mapped_cell->type.in(ID($lut), ID($__ABC_FF_))) {
+                               if (mapped_cell->type == ID($lut) &&
+                                               GetSize(mapped_cell->getPort(ID::A)) == 1 &&
+                                               mapped_cell->getParam(ID(LUT)) == RTLIL::Const::from_string("01")) {
                                        SigSpec my_a = module->wires_.at(remap_name(mapped_cell->getPort(ID::A).as_wire()->name));
                                        SigSpec my_y = module->wires_.at(remap_name(mapped_cell->getPort(ID::Y).as_wire()->name));
                                        module->connect(my_y, my_a);
@@ -564,7 +566,8 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
                                cell->attributes = mapped_cell->attributes;
                        }
 
-                       auto abc_flop = mapped_cell->attributes.count("\\abc_flop");
+                       RTLIL::Module* box_module = design->module(mapped_cell->type);
+                       auto abc_flop = box_module && box_module->attributes.count("\\abc9_flop");
                        for (auto &conn : mapped_cell->connections()) {
                                RTLIL::SigSpec newsig;
                                for (auto c : conn.second.chunks()) {
@@ -1073,29 +1076,18 @@ struct Abc9Pass : public Pass {
                        std::set<RTLIL::Cell*> expand_queue_up, next_expand_queue_up;
                        std::set<RTLIL::Cell*> expand_queue_down, next_expand_queue_down;
 
-                       typedef pair<bool, RTLIL::SigSpec> clkdomain_t;
-                       std::map<clkdomain_t, pool<RTLIL::IdString>> assigned_cells;
-                       std::map<RTLIL::Cell*, clkdomain_t> assigned_cells_reverse;
+                       std::map<SigSpec, pool<RTLIL::IdString>> assigned_cells;
+                       std::map<RTLIL::Cell*, SigSpec> assigned_cells_reverse;
 
                        std::map<RTLIL::Cell*, std::set<RTLIL::SigBit>> cell_to_bit, cell_to_bit_up, cell_to_bit_down;
                        std::map<RTLIL::SigBit, std::set<RTLIL::Cell*>> bit_to_cell, bit_to_cell_up, bit_to_cell_down;
 
-                       pool<IdString> seen_cells;
-                       struct flop_data_t {
-                               IdString clk_port;
-                               IdString en_port;
-                       };
-                       dict<IdString, flop_data_t> flop_data;
-                       typedef clkdomain_t endomain_t;
+                       typedef std::pair<IdString, SigSpec> endomain_t;
                        std::map<endomain_t, int> mergeability_class;
 
                        for (auto cell : all_cells) {
-                               clkdomain_t key;
-                               endomain_t key2;
-
                                for (auto &conn : cell->connections())
-                               for (auto bit : conn.second) {
-                                       bit = assign_map(bit);
+                               for (auto bit : assign_map(conn.second))
                                        if (bit.wire != nullptr) {
                                                cell_to_bit[cell].insert(bit);
                                                bit_to_cell[bit].insert(cell);
@@ -1108,72 +1100,68 @@ struct Abc9Pass : public Pass {
                                                        bit_to_cell_up[bit].insert(cell);
                                                }
                                        }
-                               }
-
-                               // TODO: Generate this outside
-                               decltype(flop_data)::iterator it;
-                               if (seen_cells.insert(cell->type).second) {
-                                       RTLIL::Module* inst_module = design->module(cell->type);
-                                       if (!inst_module)
-                                               continue;
-
-                                       if (!inst_module->attributes.count("\\abc_flop"))
-                                               continue;
-
-                                       IdString abc_flop_clk, abc_flop_en;
-                                       for (auto port_name : inst_module->ports) {
-                                               auto wire = inst_module->wire(port_name);
-                                               log_assert(wire);
-                                               if (wire->attributes.count("\\abc_flop_clk")) {
-                                                       if (abc_flop_clk != IdString())
-                                                               log_error("More than one port has the 'abc_flop_clk' attribute set on module '%s'.\n", log_id(cell->type));
-                                                       abc_flop_clk = port_name;
-                                               }
-                                               if (wire->attributes.count("\\abc_flop_en")) {
-                                                       if (abc_flop_en != IdString())
-                                                               log_error("More than one port has the 'abc_flop_en' attribute set on module '%s'.\n", log_id(cell->type));
-                                                       abc_flop_en = port_name;
-                                               }
-                                       }
 
-                                       if (abc_flop_clk == IdString())
-                                               log_error("'abc_flop_clk' attribute not found on any ports on module '%s'.\n", log_id(cell->type));
-                                       if (abc_flop_en == IdString())
-                                               log_error("'abc_flop_en' attribute not found on any ports on module '%s'.\n", log_id(cell->type));
+                               auto inst_module = design->module(cell->type);
+                               if (!inst_module || !inst_module->attributes.count("\\abc9_flop"))
+                                       continue;
 
-                                       it = flop_data.insert(std::make_pair(cell->type, flop_data_t{abc_flop_clk, abc_flop_en})).first;
-                               }
-                               else {
-                                       it = flop_data.find(cell->type);
-                                       if (it == flop_data.end())
-                                               continue;
+                               auto derived_name = inst_module->derive(design, cell->parameters);
+                               auto derived_module = design->module(derived_name);
+                               log_assert(derived_module);
+                               Pass::call_on_module(design, derived_module, "proc");
+                               SigMap derived_sigmap(derived_module);
+
+                               Wire *currQ = derived_module->wire("\\$currQ");
+                               if (currQ == NULL)
+                                       log_error("'\\$currQ' is not a wire present in module '%s'.\n", log_id(cell->type));
+                               log_assert(!currQ->port_output);
+                               if (!currQ->port_input) {
+                                       currQ->port_input = true;
+                                       derived_module->ports.push_back(currQ->name);
+                                       currQ->port_id = GetSize(derived_module->ports);
+#ifndef NDEBUG
+                                       derived_module->check();
+#endif
                                }
 
-                               const auto &data = it->second;
-
-                               auto jt = cell->parameters.find("\\CLK_POLARITY");
-                               if (jt == cell->parameters.end())
-                                       log_error("'CLK_POLARITY' is not a parameter on module '%s'.\n", log_id(cell->type));
-                               bool this_clk_pol = jt->second.as_bool();
-
-                               jt = cell->parameters.find("\\EN_POLARITY");
-                               if (jt == cell->parameters.end())
-                                       log_error("'EN_POLARITY' is not a parameter on module '%s'.\n", log_id(cell->type));
-                               bool this_en_pol = jt->second.as_bool();
+                               SigSpec pattern;
+                               SigSpec with;
+                               for (auto &conn : cell->connections()) {
+                                       Wire *first = derived_module->wire(conn.first);
+                                       log_assert(first);
+                                       SigSpec second = assign_map(conn.second);
+                                       log_assert(GetSize(first) == GetSize(second));
+                                       pattern.append(first);
+                                       with.append(second);
+                               }
 
-                               key = clkdomain_t(this_clk_pol, assign_map(cell->getPort(data.clk_port)));
+                               Wire *abc9_clock_wire = derived_module->wire("\\$abc9_clock");
+                               if (abc9_clock_wire == NULL)
+                                       log_error("'\\$abc9_clock' is not a wire present in module '%s'.\n", log_id(cell->type));
+                               SigSpec abc9_clock = derived_sigmap(abc9_clock_wire);
+                               abc9_clock.replace(pattern, with);
+                               for (const auto &c : abc9_clock.chunks())
+                                       log_assert(!c.wire || c.wire->module == mod);
+
+                               Wire *abc9_control_wire = derived_module->wire("\\$abc9_control");
+                               if (abc9_control_wire == NULL)
+                                       log_error("'\\$abc9_control' is not a wire present in module '%s'.\n", log_id(cell->type));
+                               SigSpec abc9_control = derived_sigmap(abc9_control_wire);
+                               abc9_control.replace(pattern, with);
+                               for (const auto &c : abc9_control.chunks())
+                                       log_assert(!c.wire || c.wire->module == mod);
 
                                unassigned_cells.erase(cell);
                                expand_queue.insert(cell);
                                expand_queue_up.insert(cell);
                                expand_queue_down.insert(cell);
 
-                               assigned_cells[key].insert(cell->name);
-                               assigned_cells_reverse[cell] = key;
+                               assigned_cells[abc9_clock].insert(cell->name);
+                               assigned_cells_reverse[cell] = abc9_clock;
 
-                               key2 = endomain_t(this_en_pol, assign_map(cell->getPort(data.en_port)));
-                               auto r = mergeability_class.emplace(key2, mergeability_class.size() + 1);
-                               auto YS_ATTRIBUTE(unused) r2 = cell->attributes.insert(std::make_pair(ID(abc_mergeability),  r.first->second));
+                               endomain_t key(cell->type, abc9_control);
+                               auto r = mergeability_class.emplace(key, mergeability_class.size() + 1);
+                               auto YS_ATTRIBUTE(unused) r2 = cell->attributes.insert(std::make_pair(ID(abc9_mergeability),  r.first->second));
                                log_assert(r2.second);
                        }
 
@@ -1182,7 +1170,7 @@ struct Abc9Pass : public Pass {
                                if (!expand_queue_up.empty())
                                {
                                        RTLIL::Cell *cell = *expand_queue_up.begin();
-                                       clkdomain_t key = assigned_cells_reverse.at(cell);
+                                       SigSpec key = assigned_cells_reverse.at(cell);
                                        expand_queue_up.erase(cell);
 
                                        for (auto bit : cell_to_bit_up[cell])
@@ -1199,7 +1187,7 @@ struct Abc9Pass : public Pass {
                                if (!expand_queue_down.empty())
                                {
                                        RTLIL::Cell *cell = *expand_queue_down.begin();
-                                       clkdomain_t key = assigned_cells_reverse.at(cell);
+                                       SigSpec key = assigned_cells_reverse.at(cell);
                                        expand_queue_down.erase(cell);
 
                                        for (auto bit : cell_to_bit_down[cell])
@@ -1222,7 +1210,7 @@ struct Abc9Pass : public Pass {
                        while (!expand_queue.empty())
                        {
                                RTLIL::Cell *cell = *expand_queue.begin();
-                               clkdomain_t key = assigned_cells_reverse.at(cell);
+                               SigSpec key = assigned_cells_reverse.at(cell);
                                expand_queue.erase(cell);
 
                                for (auto bit : cell_to_bit.at(cell)) {
@@ -1240,7 +1228,7 @@ struct Abc9Pass : public Pass {
                                        expand_queue.swap(next_expand_queue);
                        }
 
-                       clkdomain_t key(true, RTLIL::SigSpec());
+                       SigSpec key;
                        for (auto cell : unassigned_cells) {
                                assigned_cells[key].insert(cell->name);
                                assigned_cells_reverse[cell] = key;
@@ -1248,8 +1236,7 @@ struct Abc9Pass : public Pass {
 
                        log_header(design, "Summary of detected clock domains:\n");
                        for (auto &it : assigned_cells)
-                               log("  %d cells in clk=%s%s\n", GetSize(it.second),
-                                               std::get<0>(it.first) ? "" : "!", log_signal(std::get<1>(it.first)));
+                               log("  %d cells in clk=%s\n", GetSize(it.second), log_signal(it.first));
 
                        design->selection_stack.emplace_back(false);
                        for (auto &it : assigned_cells) {
index 9f96d16be254e8cf755a8014f72283d6e5cfaf2a..056f66bbb7c0b066cb00ab9eb517252ebd55fb78 100644 (file)
@@ -26,27 +26,23 @@ module FDRE (output reg Q, input C, CE, D, R);
   parameter [0:0] IS_D_INVERTED = 1'b0;
   parameter [0:0] IS_R_INVERTED = 1'b0;
   wire \$nextQ ;
-  \$__ABC_FDRE #(
+  FDRE #(
     .INIT(INIT),
     .IS_C_INVERTED(IS_C_INVERTED),
     .IS_D_INVERTED(IS_D_INVERTED),
-    .IS_R_INVERTED(IS_R_INVERTED),
-    .CLK_POLARITY(!IS_C_INVERTED),
-    .EN_POLARITY(1'b1)
+    .IS_R_INVERTED(IS_R_INVERTED)
   ) _TECHMAP_REPLACE_ (
-    .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .R(R)
+    .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .R(R)
   );
   \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
 endmodule
 module FDRE_1 (output reg Q, input C, CE, D, R);
   parameter [0:0] INIT = 1'b0;
   wire \$nextQ ;
-  \$__ABC_FDRE_1 #(
-      .INIT(|0),
-    .CLK_POLARITY(1'b0),
-    .EN_POLARITY(1'b1)
+  FDRE_1 #(
+    .INIT(|0),
   ) _TECHMAP_REPLACE_ (
-    .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .R(R)
+    .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .R(R)
   );
   \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
 endmodule
@@ -57,28 +53,24 @@ module FDCE (output reg Q, input C, CE, D, CLR);
   parameter [0:0] IS_D_INVERTED = 1'b0;
   parameter [0:0] IS_CLR_INVERTED = 1'b0;
   wire \$nextQ , \$currQ ;
-  \$__ABC_FDCE #(
+  FDCE #(
     .INIT(INIT),
     .IS_C_INVERTED(IS_C_INVERTED),
     .IS_D_INVERTED(IS_D_INVERTED),
-    .IS_CLR_INVERTED(IS_CLR_INVERTED),
-    .CLK_POLARITY(!IS_C_INVERTED),
-    .EN_POLARITY(1'b1)
+    .IS_CLR_INVERTED(IS_CLR_INVERTED)
   ) _TECHMAP_REPLACE_ (
-    .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .CLR(CLR)
+    .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .CLR(CLR)
   );
   \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
-  \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR), .Y(Q));
+  \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
 endmodule
 module FDCE_1 (output reg Q, input C, CE, D, CLR);
   parameter [0:0] INIT = 1'b0;
   wire \$nextQ , \$currQ ;
-  \$__ABC_FDCE_1 #(
-    .INIT(INIT),
-    .CLK_POLARITY(1'b0),
-    .EN_POLARITY(1'b1)
+  FDCE_1 #(
+    .INIT(INIT)
   ) _TECHMAP_REPLACE_ (
-    .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .CLR(CLR)
+    .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .CLR(CLR)
   );
   \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
   \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR), .Y(Q));
@@ -90,33 +82,56 @@ module FDPE (output reg Q, input C, CE, D, PRE);
   parameter [0:0] IS_D_INVERTED = 1'b0;
   parameter [0:0] IS_PRE_INVERTED = 1'b0;
   wire \$nextQ , \$currQ ;
-  \$__ABC_FDPE #(
+  FDPE #(
     .INIT(INIT),
     .IS_C_INVERTED(IS_C_INVERTED),
     .IS_D_INVERTED(IS_D_INVERTED),
     .IS_PRE_INVERTED(IS_PRE_INVERTED),
-    .CLK_POLARITY(!IS_C_INVERTED),
-    .EN_POLARITY(1'b1)
   ) _TECHMAP_REPLACE_ (
-    .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .PRE(PRE)
+    .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .PRE(PRE)
   );
   \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
-  \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE), .Y(Q));
+  \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
 endmodule
 module FDPE_1 (output reg Q, input C, CE, D, PRE);
   parameter [0:0] INIT = 1'b0;
   wire \$nextQ , \$currQ ;
-  \$__ABC_FDPE_1 #(
-    .INIT(INIT),
-    .CLK_POLARITY(1'b0),
-    .EN_POLARITY(1'b1)
+  FDPE_1 #(
+    .INIT(INIT)
   ) _TECHMAP_REPLACE_ (
-    .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .PRE(PRE)
+    .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .PRE(PRE)
   );
   \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
   \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE), .Y(Q));
 endmodule
 
+module FDSE (output reg Q, input C, CE, D, S);
+  parameter [0:0] INIT = 1'b0;
+  parameter [0:0] IS_C_INVERTED = 1'b0;
+  parameter [0:0] IS_D_INVERTED = 1'b0;
+  parameter [0:0] IS_S_INVERTED = 1'b0;
+  wire \$nextQ ;
+  FDSE #(
+    .INIT(INIT),
+    .IS_C_INVERTED(IS_C_INVERTED),
+    .IS_D_INVERTED(IS_D_INVERTED),
+    .IS_S_INVERTED(IS_S_INVERTED)
+  ) _TECHMAP_REPLACE_ (
+    .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .S(S)
+  );
+  \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
+endmodule
+module FDSE_1 (output reg Q, input C, CE, D, S);
+  parameter [0:0] INIT = 1'b0;
+  wire \$nextQ ;
+  FDSE_1 #(
+    .INIT(|0),
+  ) _TECHMAP_REPLACE_ (
+    .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .S(S)
+  );
+  \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
+endmodule
+
 module RAM32X1D (
   output DPO, SPO,
   input  D,
index d94ddb7e5d0026bae24944051fd02c3795abe559..a2914464d014935a5571f84b3a0340e639f8cbbb 100644 (file)
@@ -26,97 +26,9 @@ module \$__XILINX_MUXF78 (output O, input I0, I1, I2, I3, S0, S1);
                 : (S0 ? I1 : I0);
 endmodule
 
-module \$__ABC_FF_ (input C, D, output Q);
+module \$__ABC_FF_ (input D, output Q);
 endmodule
 
 (* abc_box_id = 1000 *)
 module \$__ABC_ASYNC (input A, S, output Y);
 endmodule
-
-(* abc_box_id=1001, lib_whitebox, abc_flop *)
-module \$__ABC_FDRE ((* abc_flop_q, abc_arrival=303 *) output Q,
-                     (* abc_flop_clk *) input C,
-                     (* abc_flop_en *)  input CE,
-                     (* abc_flop_d *)   input D,
-                     input R, \$pastQ );
-  parameter [0:0] INIT = 1'b0;
-  parameter [0:0] IS_C_INVERTED = 1'b0;
-  parameter [0:0] IS_D_INVERTED = 1'b0;
-  parameter [0:0] IS_R_INVERTED = 1'b0;
-  parameter CLK_POLARITY = !IS_C_INVERTED;
-  parameter EN_POLARITY = 1'b1;
-  assign Q = (R ^ IS_R_INVERTED) ? 1'b0 : (CE ? (D ^ IS_D_INVERTED) : \$pastQ );
-endmodule
-
-(* abc_box_id=1002, lib_whitebox, abc_flop *)
-module \$__ABC_FDRE_1 ((* abc_flop_q, abc_arrival=303 *) output Q,
-                       (* abc_flop_clk *) input C,
-                       (* abc_flop_en *)  input CE,
-                       (* abc_flop_d *)   input D,
-                       input R, \$pastQ );
-  parameter [0:0] INIT = 1'b0;
-  parameter CLK_POLARITY = 1'b0;
-  parameter EN_POLARITY = 1'b1;
-  assign Q = R ? 1'b0 : (CE ? D : \$pastQ );
-endmodule
-
-(* abc_box_id=1003, lib_whitebox, abc_flop *)
-module \$__ABC_FDCE ((* abc_flop_q, abc_arrival=303 *) output Q,
-                     (* abc_flop_clk *) input C,
-                     (* abc_flop_en *)  input CE,
-                     (* abc_flop_d *)   input D,
-                     input CLR, \$pastQ );
-  parameter [0:0] INIT = 1'b0;
-  parameter [0:0] IS_C_INVERTED = 1'b0;
-  parameter [0:0] IS_D_INVERTED = 1'b0;
-  parameter [0:0] IS_CLR_INVERTED = 1'b0;
-  parameter CLK_POLARITY = !IS_C_INVERTED;
-  parameter EN_POLARITY = 1'b1;
-  assign Q = (CE && !(CLR ^ IS_CLR_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ;
-endmodule
-
-(* abc_box_id=1004, lib_whitebox, abc_flop *)
-module \$__ABC_FDCE_1 ((* abc_flop_q, abc_arrival=303 *) output Q,
-                       (* abc_flop_clk *) input C,
-                       (* abc_flop_en *)  input CE,
-                       (* abc_flop_d *)   input D,
-                       input CLR, \$pastQ );
-  parameter [0:0] INIT = 1'b0;
-  parameter CLK_POLARITY = 1'b0;
-  parameter EN_POLARITY = 1'b1;
-  assign Q = (CE && !CLR) ? D : \$pastQ ;
-endmodule
-
-(* abc_box_id=1005, lib_whitebox, abc_flop *)
-module \$__ABC_FDPE ((* abc_flop_q, abc_arrival=303 *) output Q,
-                     (* abc_flop_clk *) input C,
-                     (* abc_flop_en *)  input CE,
-                     (* abc_flop_d *)   input D,
-                     input PRE, \$pastQ );
-  parameter [0:0] INIT = 1'b0;
-  parameter [0:0] IS_C_INVERTED = 1'b0;
-  parameter [0:0] IS_D_INVERTED = 1'b0;
-  parameter [0:0] IS_PRE_INVERTED = 1'b0;
-  parameter CLK_POLARITY = !IS_C_INVERTED;
-  parameter EN_POLARITY = 1'b1;
-  assign Q = (CE && !(PRE ^ IS_PRE_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ;
-endmodule
-
-(* abc_box_id=1006, lib_whitebox, abc_flop *)
-module \$__ABC_FDPE_1 ((* abc_flop_q, abc_arrival=303 *) output Q,
-                       (* abc_flop_clk *) input C,
-                       (* abc_flop_en *)  input CE,
-                       (* abc_flop_d *)   input D,
-                       input PRE, \$pastQ );
-  parameter [0:0] INIT = 1'b0; 
-  parameter CLK_POLARITY = 1'b0;
-  parameter EN_POLARITY = 1'b1;
-  assign Q = (CE && !PRE) ? D : \$pastQ ;
-endmodule
-
-(* abc_box_id=2000 *)
-module \$__ABC_LUT6 (input A, input [5:0] S, output Y);
-endmodule
-(* abc_box_id=2001 *)
-module \$__ABC_LUT7 (input A, input [6:0] S, output Y);
-endmodule
index c245717472dae10388d2117ea636e09d25a37d4a..bf8253adb4a685a06eb11979ce25a96f46437b79 100644 (file)
@@ -24,124 +24,6 @@ module \$__ABC_ASYNC (input A, S, output Y);
   assign Y = A;
 endmodule
 
-module \$__ABC_FDRE (output Q,
-                     input C,
-                     input CE,
-                     input D,
-                     input R, \$pastQ );
-  parameter [0:0] INIT = 1'b0;
-  parameter [0:0] IS_C_INVERTED = 1'b0;
-  parameter [0:0] IS_D_INVERTED = 1'b0;
-  parameter [0:0] IS_R_INVERTED = 1'b0;
-  parameter CLK_POLARITY = !IS_C_INVERTED;
-  parameter EN_POLARITY = 1'b1;
-
-  FDRE #(
-    .INIT(INIT),
-    .IS_C_INVERTED(IS_C_INVERTED),
-    .IS_D_INVERTED(IS_D_INVERTED),
-    .IS_R_INVERTED(IS_R_INVERTED),
-  ) _TECHMAP_REPLACE_ (
-    .D(D), .Q(Q), .C(C), .CE(CE), .R(R)
-  );
-endmodule
-
-module \$__ABC_FDRE_1 (output Q,
-                       input C,
-                       input CE,
-                       input D,
-                       input R, \$pastQ );
-  parameter [0:0] INIT = 1'b0;
-  parameter CLK_POLARITY = 1'b0;
-  parameter EN_POLARITY = 1'b1;
-  assign Q = R ? 1'b0 : (CE ? D : \$pastQ );
-
-  FDRE_1 #(
-    .INIT(INIT),
-  ) _TECHMAP_REPLACE_ (
-    .D(D), .Q(Q), .C(C), .CE(CE), .R(R)
-  );
-endmodule
-
-module \$__ABC_FDCE (output Q,
-                     input C,
-                     input CE,
-                     input D,
-                     input CLR, \$pastQ );
-  parameter [0:0] INIT = 1'b0;
-  parameter [0:0] IS_C_INVERTED = 1'b0;
-  parameter [0:0] IS_D_INVERTED = 1'b0;
-  parameter [0:0] IS_CLR_INVERTED = 1'b0;
-  parameter CLK_POLARITY = !IS_C_INVERTED;
-  parameter EN_POLARITY = 1'b1;
-
-  FDCE #(
-    .INIT(INIT),
-    .IS_C_INVERTED(IS_C_INVERTED),
-    .IS_D_INVERTED(IS_D_INVERTED),
-    .IS_CLR_INVERTED(IS_CLR_INVERTED),
-  ) _TECHMAP_REPLACE_ (
-    .D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR)
-  );
-endmodule
-
-module \$__ABC_FDCE_1 (output Q,
-                       input C,
-                       input CE,
-                       input D,
-                       input CLR, \$pastQ );
-  parameter [0:0] INIT = 1'b0;
-  parameter CLK_POLARITY = 1'b0;
-  parameter EN_POLARITY = 1'b1;
-
-  FDCE_1 #(
-    .INIT(INIT),
-  ) _TECHMAP_REPLACE_ (
-    .D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR)
-  );
-endmodule
-
-module \$__ABC_FDPE (output Q,
-                     input C,
-                     input CE,
-                     input D,
-                     input PRE, \$pastQ );
-  parameter [0:0] INIT = 1'b0;
-  parameter [0:0] IS_C_INVERTED = 1'b0;
-  parameter [0:0] IS_D_INVERTED = 1'b0;
-  parameter [0:0] IS_PRE_INVERTED = 1'b0;
-  parameter CLK_POLARITY = !IS_C_INVERTED;
-  parameter EN_POLARITY = 1'b1;
-
-  FDPE #(
-    .INIT(INIT),
-    .IS_C_INVERTED(IS_C_INVERTED),
-    .IS_D_INVERTED(IS_D_INVERTED),
-    .IS_PRE_INVERTED(IS_PRE_INVERTED),
-  ) _TECHMAP_REPLACE_ (
-    .D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE)
-  );
-endmodule
-
-module \$__ABC_FDPE_1 (output Q,
-                       input C,
-                       input CE,
-                       input D,
-                       input PRE, \$pastQ );
-  parameter [0:0] INIT = 1'b0;
-  parameter CLK_POLARITY = 1'b0;
-  parameter EN_POLARITY = 1'b1;
-
-  FDPE_1 #(
-    .INIT(INIT),
-  ) _TECHMAP_REPLACE_ (
-    .D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE)
-  );
-endmodule
-
-module \$__ABC_LUT6 (input A, input [5:0] S, output Y);
-  assign Y = A;
-endmodule
-module \$__ABC_LUT7 (input A, input [6:0] S, output Y);
-  assign Y = A;
+module \$__ABC_FF_ (input D, output Q);
+  assign Q = D;
 endmodule
index aebb8b9756e175f95b9ece96447e45554f5d7504..daaa4d16f9f113c7d05e6a577375a4233192293d 100644 (file)
@@ -52,36 +52,46 @@ $__ABC_ASYNC 1000 0 2 1
 # https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L237-L251
 # https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L265-L277
 
-# Inputs: C CE D R \$pastQ
+# Inputs: C CE D R \$currQ
 # Outputs: Q
 FDRE 1001 1 5 1
 0 151 0 446 0
 
-# Inputs: C CE D R \$pastQ
+# Inputs: C CE D R \$currQ
 # Outputs: Q
 FDRE_1 1002 1 5 1
 0 151 0 446 0
 
-# Inputs: C CE CLR D \$pastQ
+# Inputs: C CE CLR D \$currQ
 # Outputs: Q
 FDCE 1003 1 5 1
 0 151 806 0 0
 
-# Inputs: C CE CLR D \$pastQ
+# Inputs: C CE CLR D \$currQ
 # Outputs: Q
 FDCE_1 1004 1 5 1
 0 151 806 0 0
 
-# Inputs: C CE D PRE \$pastQ
+# Inputs: C CE D PRE \$currQ
 # Outputs: Q
 FDPE 1005 1 5 1
 0 151 0 806 0
 
-# Inputs: C CE D PRE \$pastQ
+# Inputs: C CE D PRE \$currQ
 # Outputs: Q
 FDPE_1 1006 1 5 1
 0 151 0 806 0
 
+# Inputs: C CE D S \$currQ
+# Outputs: Q
+FDSE 1007 1 5 1
+0 151 0 446 0
+
+# Inputs: C CE D S \$currQ
+# Outputs: Q
+FDSE_1 1008 1 5 1
+0 151 0 446 0
+
 # SLICEM/A6LUT
 # Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32}
 #   Necessary since RAMD* and SRL* have both combinatorial (i.e.
index ef4340d10661c15b48bb955b821564e33d4b4cf1..ee9d486840d4bf071703705c4494fffe253b170d 100644 (file)
@@ -240,6 +240,7 @@ endmodule
 
 // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L238-L250
 
+(* abc_box_id=1001, lib_whitebox, abc9_flop *)
 module FDRE (
   (* abc_arrival=303 *)
   output reg Q,
@@ -257,35 +258,72 @@ module FDRE (
   parameter [0:0] IS_D_INVERTED = 1'b0;
   parameter [0:0] IS_R_INVERTED = 1'b0;
   initial Q <= INIT;
+  wire \$currQ ;
+  reg \$nextQ ;
+  always @* if (R == !IS_R_INVERTED) \$nextQ = 1'b0; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
+`ifdef _ABC
+  // `abc9' requires that complex flops be split into a combinatorial
+  //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+  //   In order to achieve clock-enable behaviour, the current value
+  //   of the sequential output is required which Yosys will
+  //   connect to the special `\$currQ' wire.
+
+  // Special signal indicating clock domain
+  //   (used to partition the module so that `abc9' only performs
+  //    sequential synthesis (reachability analysis) correctly on
+  //    one domain at a time)
+  wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
+  // Special signal indicating control domain
+  //   (which, combined with this spell type, encodes to `abc9'
+  //    which flops may be merged together)
+  wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
+  always @* Q = \$nextQ ;
+`else
+  assign \$currQ = Q;
   generate case (|IS_C_INVERTED)
-    1'b0: always @(posedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
-    1'b1: always @(negedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
+    1'b0: always @(posedge C) Q <= \$nextQ ;
+    1'b1: always @(negedge C) Q <= \$nextQ ;
   endcase endgenerate
+`endif
 endmodule
 
-module FDSE (
+(* abc_box_id=1002, lib_whitebox, abc9_flop *)
+module FDRE_1 (
   (* abc_arrival=303 *)
   output reg Q,
   (* clkbuf_sink *)
-  (* invertible_pin = "IS_C_INVERTED" *)
   input C,
-  input CE,
-  (* invertible_pin = "IS_D_INVERTED" *)
-  input D,
-  (* invertible_pin = "IS_S_INVERTED" *)
-  input S
+  input CE, D, R
 );
-  parameter [0:0] INIT = 1'b1;
-  parameter [0:0] IS_C_INVERTED = 1'b0;
-  parameter [0:0] IS_D_INVERTED = 1'b0;
-  parameter [0:0] IS_S_INVERTED = 1'b0;
+  parameter [0:0] INIT = 1'b0;
   initial Q <= INIT;
-  generate case (|IS_C_INVERTED)
-    1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
-    1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
-  endcase endgenerate
+  wire \$currQ ;
+  reg \$nextQ ;
+  always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else \$nextQ = \$currQ ;
+`ifdef _ABC
+  // `abc9' requires that complex flops be split into a combinatorial
+  //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+  //   In order to achieve clock-enable behaviour, the current value
+  //   of the sequential output is required which Yosys will
+  //   connect to the special `\$currQ' wire.
+
+  // Special signal indicating clock domain
+  //   (used to partition the module so that `abc9' only performs
+  //    sequential synthesis (reachability analysis) correctly on
+  //    one domain at a time)
+  wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+  // Special signal indicating control domain
+  //   (which, combined with this spell type, encodes to `abc9'
+  //    which flops may be merged together)
+  wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
+  always @* Q = \$nextQ ;
+`else
+  assign \$currQ = Q;
+  always @(negedge C) Q <= \$nextQ ;
+`endif
 endmodule
 
+(* abc_box_id=1003, lib_whitebox, abc9_flop *)
 module FDCE (
   (* abc_arrival=303 *)
   output reg Q,
@@ -303,14 +341,78 @@ module FDCE (
   parameter [0:0] IS_D_INVERTED = 1'b0;
   parameter [0:0] IS_CLR_INVERTED = 1'b0;
   initial Q <= INIT;
+  wire \$currQ ;
+  reg \$nextQ ;
+  always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
+`ifdef _ABC
+  // `abc9' requires that complex flops be split into a combinatorial
+  //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+  //   In order to achieve clock-enable behaviour, the current value
+  //   of the sequential output is required which Yosys will
+  //   connect to the special `\$currQ' wire.
+  // Since this is an async flop, async behaviour is also dealt with
+  //   using the $_ABC_ASYNC box by abc_map.v
+
+  // Special signal indicating clock domain
+  //   (used to partition the module so that `abc9' only performs
+  //    sequential synthesis (reachability analysis) correctly on
+  //    one domain at a time)
+  wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
+  // Special signal indicating control domain
+  //   (which, combined with this spell type, encodes to `abc9'
+  //    which flops may be merged together)
+  wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
+  always @* Q = \$nextQ ;
+`else
+  assign \$currQ = Q;
   generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED})
-    2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
-    2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
-    2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
-    2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
+    2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
+    2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
+    2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
+    2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
   endcase endgenerate
+`endif
 endmodule
 
+(* abc_box_id=1004, lib_whitebox, abc9_flop *)
+module FDCE_1 (
+  (* abc_arrival=303 *)
+  output reg Q,
+  (* clkbuf_sink *)
+  input C,
+  input CE, D, CLR
+);
+  parameter [0:0] INIT = 1'b0;
+  initial Q <= INIT;
+  wire \$currQ ;
+  reg \$nextQ ;
+  always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
+`ifdef _ABC
+  // `abc9' requires that complex flops be split into a combinatorial
+  //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+  //   In order to achieve clock-enable behaviour, the current value
+  //   of the sequential output is required which Yosys will
+  //   connect to the special `\$currQ' wire.
+  // Since this is an async flop, async behaviour is also dealt with
+  //   using the $_ABC_ASYNC box by abc_map.v
+
+  // Special signal indicating clock domain
+  //   (used to partition the module so that `abc9' only performs
+  //    sequential synthesis (reachability analysis) correctly on
+  //    one domain at a time)
+  wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+  // Special signal indicating control domain
+  //   (which, combined with this spell type, encodes to `abc9'
+  //    which flops may be merged together)
+  wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
+  always @* Q = \$nextQ ;
+`else
+  assign \$currQ = Q;
+  always @(negedge C, posedge CLR) if (CLR == !IS_CLR_INVERTED) Q <= 1'b0; else Q <= \$nextQ ;
+`endif
+endmodule
+
+(* abc_box_id=1005, lib_whitebox, abc9_flop *)
 module FDPE (
   (* abc_arrival=303 *)
   output reg Q,
@@ -328,60 +430,158 @@ module FDPE (
   parameter [0:0] IS_D_INVERTED = 1'b0;
   parameter [0:0] IS_PRE_INVERTED = 1'b0;
   initial Q <= INIT;
+  wire \$currQ ;
+  reg \$nextQ ;
+  always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
+`ifdef _ABC
+  // `abc9' requires that complex flops be split into a combinatorial
+  //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+  //   In order to achieve clock-enable behaviour, the current value
+  //   of the sequential output is required which Yosys will
+  //   connect to the special `\$currQ' wire.
+  // Since this is an async flop, async behaviour is also dealt with
+  //   using the $_ABC_ASYNC box by abc_map.v
+
+  // Special signal indicating clock domain
+  //   (used to partition the module so that `abc9' only performs
+  //    sequential synthesis (reachability analysis) correctly on
+  //    one domain at a time)
+  wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
+  // Special signal indicating control domain
+  //   (which, combined with this spell type, encodes to `abc9'
+  //    which flops may be merged together)
+  wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
+  always @* Q = \$nextQ ;
+`else
+  assign \$currQ = Q;
   generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
-    2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
-    2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
-    2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
-    2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
+    2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
+    2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
+    2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
+    2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
   endcase endgenerate
+`endif
 endmodule
 
-module FDRE_1 (
-  (* abc_arrival=303 *)
-  output reg Q,
-  (* clkbuf_sink *)
-  input C,
-  input CE, D, R
-);
-  parameter [0:0] INIT = 1'b0;
-  initial Q <= INIT;
-  always @(negedge C) if (R) Q <= 1'b0; else if(CE) Q <= D;
-endmodule
-
-module FDSE_1 (
+(* abc_box_id=1006, lib_whitebox, abc9_flop *)
+module FDPE_1 (
   (* abc_arrival=303 *)
   output reg Q,
   (* clkbuf_sink *)
   input C,
-  input CE, D, S
+  input CE, D, PRE
 );
   parameter [0:0] INIT = 1'b1;
   initial Q <= INIT;
-  always @(negedge C) if (S) Q <= 1'b1; else if(CE) Q <= D;
+  wire \$currQ ;
+  reg \$nextQ ;
+  always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
+`ifdef _ABC
+  // `abc9' requires that complex flops be split into a combinatorial
+  //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+  //   In order to achieve clock-enable behaviour, the current value
+  //   of the sequential output is required which Yosys will
+  //   connect to the special `\$currQ' wire.
+  // Since this is an async flop, async behaviour is also dealt with
+  //   using the $_ABC_ASYNC box by abc_map.v
+
+  // Special signal indicating clock domain
+  //   (used to partition the module so that `abc9' only performs
+  //    sequential synthesis (reachability analysis) correctly on
+  //    one domain at a time)
+  wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+  // Special signal indicating control domain
+  //   (which, combined with this spell type, encodes to `abc9'
+  //    which flops may be merged together)
+  wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
+  always @* Q = \$nextQ ;
+`else
+  assign \$currQ = Q;
+  always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ;
+`endif
 endmodule
 
-module FDCE_1 (
+(* abc_box_id=1007, lib_whitebox, abc9_flop *)
+module FDSE (
   (* abc_arrival=303 *)
   output reg Q,
   (* clkbuf_sink *)
+  (* invertible_pin = "IS_C_INVERTED" *)
   input C,
-  input CE, D, CLR
+  input CE,
+  (* invertible_pin = "IS_D_INVERTED" *)
+  input D,
+  (* invertible_pin = "IS_S_INVERTED" *)
+  input S
 );
-  parameter [0:0] INIT = 1'b0;
+  parameter [0:0] INIT = 1'b1;
+  parameter [0:0] IS_C_INVERTED = 1'b0;
+  parameter [0:0] IS_D_INVERTED = 1'b0;
+  parameter [0:0] IS_S_INVERTED = 1'b0;
   initial Q <= INIT;
-  always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D;
+  wire \$currQ ;
+  reg \$nextQ ;
+  always @* if (S == !IS_S_INVERTED) \$nextQ = 1'b1; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
+`ifdef _ABC
+  // `abc9' requires that complex flops be split into a combinatorial
+  //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+  //   In order to achieve clock-enable behaviour, the current value
+  //   of the sequential output is required which Yosys will
+  //   connect to the special `\$currQ' wire.
+
+  // Special signal indicating clock domain
+  //   (used to partition the module so that `abc9' only performs
+  //    sequential synthesis (reachability analysis) correctly on
+  //    one domain at a time)
+  wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
+  // Special signal indicating control domain
+  //   (which, combined with this spell type, encodes to `abc9'
+  //    which flops may be merged together)
+  wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
+  always @* Q = \$nextQ ;
+`else
+  assign \$currQ = Q;
+  generate case (|IS_C_INVERTED)
+    1'b0: always @(posedge C) Q <= \$nextQ ;
+    1'b1: always @(negedge C) Q <= \$nextQ ;
+  endcase endgenerate
+`endif
 endmodule
 
-module FDPE_1 (
+(* abc_box_id=1008, lib_whitebox, abc9_flop *)
+module FDSE_1 (
   (* abc_arrival=303 *)
   output reg Q,
   (* clkbuf_sink *)
   input C,
-  input CE, D, PRE
+  input CE, D, S
 );
   parameter [0:0] INIT = 1'b1;
   initial Q <= INIT;
-  always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D;
+  wire \$currQ ;
+  reg \$nextQ ;
+  always @* if (S) \$nextQ = 1'b1; else if (CE) \$nextQ = D; else \$nextQ = \$currQ ;
+`ifdef _ABC
+  // `abc9' requires that complex flops be split into a combinatorial
+  //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+  //   In order to achieve clock-enable behaviour, the current value
+  //   of the sequential output is required which Yosys will
+  //   connect to the special `\$currQ' wire.
+
+  // Special signal indicating clock domain
+  //   (used to partition the module so that `abc9' only performs
+  //    sequential synthesis (reachability analysis) correctly on
+  //    one domain at a time)
+  wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+  // Special signal indicating control domain
+  //   (which, combined with this spell type, encodes to `abc9'
+  //    which flops may be merged together)
+  wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
+  always @* Q = \$nextQ ;
+`else
+  assign \$currQ = Q;
+  always @(negedge C) Q <= \$nextQ ;
+`endif
 endmodule
 
 module RAM32X1D (
index 888b5ed7b71490b3b25fab9af51b0e0972723852..f5143ca82e1bdcfd6842ae1abab06c7b8a513c42 100644 (file)
@@ -276,9 +276,9 @@ struct SynthXilinxPass : public ScriptPass
 
                if (check_label("begin")) {
                        if (vpr)
-                               run("read_verilog -lib -D_EXPLICIT_CARRY +/xilinx/cells_sim.v");
+                               run("read_verilog -lib -D_ABC -D_EXPLICIT_CARRY +/xilinx/cells_sim.v");
                        else
-                               run("read_verilog -lib +/xilinx/cells_sim.v");
+                               run("read_verilog -lib -D_ABC +/xilinx/cells_sim.v");
 
                        if (help_mode)
                                run("read_verilog -lib +/xilinx/{family}_cells_xtra.v");