$(eval $(call add_share_file,share/xilinx,techlibs/xilinx/arith_map.v))
$(eval $(call add_share_file,share/xilinx,techlibs/xilinx/ff_map.v))
$(eval $(call add_share_file,share/xilinx,techlibs/xilinx/lut_map.v))
-$(eval $(call add_share_file,share/xilinx,techlibs/xilinx/cells.box))
-$(eval $(call add_share_file,share/xilinx,techlibs/xilinx/cells_box.v))
-$(eval $(call add_share_file,share/xilinx,techlibs/xilinx/cells.lut))
+$(eval $(call add_share_file,share/xilinx,techlibs/xilinx/abc.box))
+$(eval $(call add_share_file,share/xilinx,techlibs/xilinx/abc.lut))
$(eval $(call add_gen_share_file,share/xilinx,techlibs/xilinx/brams_init_36.vh))
$(eval $(call add_gen_share_file,share/xilinx,techlibs/xilinx/brams_init_32.vh))
assign O5 = I0 ? s5_1[1] : s5_1[0];
endmodule
+(* abc_box_id = 3, lib_whitebox *)
module MUXCY(output O, input CI, DI, S);
assign O = S ? CI : DI;
endmodule
+(* abc_box_id = 1, lib_whitebox *)
module MUXF7(output O, input I0, I1, S);
assign O = S ? I1 : I0;
endmodule
+(* abc_box_id = 2, lib_whitebox *)
module MUXF8(output O, input I0, I1, S);
assign O = S ? I1 : I0;
endmodule
+(* abc_box_id = 4, lib_whitebox *)
module XORCY(output O, input CI, LI);
assign O = CI ^ LI;
endmodule
`endif
-module FDRE (output reg Q, input C, CE, D, R);
+module FDRE ((* abc_flop_q *) output reg Q, input C, CE, input D, R);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
endcase endgenerate
endmodule
-module FDSE (output reg Q, input C, CE, D, S);
+module FDSE ((* abc_flop_q *) output reg Q, input C, CE, D, S);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
endcase endgenerate
endmodule
-module FDCE (output reg Q, input C, CE, D, CLR);
+module FDCE ((* abc_flop_q *) output reg Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
endcase endgenerate
endmodule
-module FDPE (output reg Q, input C, CE, D, PRE);
+module FDPE ((* abc_flop_q *) output reg Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
endcase endgenerate
endmodule
-module FDRE_1 (output reg Q, input C, CE, D, R);
+module FDRE_1 ((* abc_flop_q *) output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
always @(negedge C) if (R) Q <= 1'b0; else if(CE) Q <= D;
endmodule
-module FDSE_1 (output reg Q, input C, CE, D, S);
+module FDSE_1 ((* abc_flop_q *) output reg Q, input C, CE, D, S);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
always @(negedge C) if (S) Q <= 1'b1; else if(CE) Q <= D;
endmodule
-module FDCE_1 (output reg Q, input C, CE, D, CLR);
+module FDCE_1 ((* abc_flop_q *) output reg Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D;
endmodule
-module FDPE_1 (output reg Q, input C, CE, D, PRE);
+module FDPE_1 ((* abc_flop_q *) output reg Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D;
endmodule
module RAM64X1D (
- output DPO, SPO,
+ (* abc_flop_q *) output DPO, SPO,
input D, WCLK, WE,
input A0, A1, A2, A3, A4, A5,
input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5
endmodule
module RAM128X1D (
- output DPO, SPO,
+ (* abc_flop_q *) output DPO, SPO,
input D, WCLK, WE,
input [6:0] A, DPRA
);
endmodule
module SRL16E (
- output Q,
+ (* abc_flop_q *) output Q,
input A0, A1, A2, A3, CE, CLK, D
);
parameter [15:0] INIT = 16'h0000;
endmodule
module SRLC32E (
- output Q,
+ (* abc_flop_q *) output Q,
output Q31,
input [4:0] A,
input CE, CLK, D
log(" opt -fast\n");
log("\n");
log(" map_cells:\n");
+ log(" pmux2shiftx\n");
log(" simplemap t:$dff t:$dffe (without '-nosrl' only)\n");
- log(" pmux2shiftx (without '-nosrl' only)\n");
log(" opt_expr -mux_undef (without '-nosrl' only)\n");
log(" shregmap -tech xilinx -minlen 3 (without '-nosrl' only)\n");
log(" techmap -map +/xilinx/cells_map.v\n");
if (check_label(active, run_from, run_to, "map_cells"))
{
+ // shregmap -tech xilinx can cope with $shiftx and $mux
+ // cells for identifying variable-length shift registers,
+ // so attempt to convert $pmux-es to the former
+ // Also: wide multiplexers inference benefits from this too
+ Pass::call(design, "pmux2shiftx");
+
if (!nosrl) {
// shregmap operates on bit-level flops, not word-level,
// so break those down here
Pass::call(design, "simplemap t:$dff t:$dffe");
- // shregmap -tech xilinx can cope with $shiftx and $mux
- // cells for identifiying variable-length shift registers,
- // so attempt to convert $pmux-es to the former
- Pass::call(design, "pmux2shiftx");
// pmux2shiftx can leave behind a $pmux with a single entry
// -- need this to clean that up before shregmap
Pass::call(design, "opt_expr -mux_undef");
{
Pass::call(design, "opt -full");
Pass::call(design, "techmap -map +/techmap.v -D _NO_POS_SR -map +/xilinx/ff_map.v");
- Pass::call(design, "read_verilog +/xilinx/cells_box.v");
if (abc == "abc9")
- Pass::call(design, abc + " -lut +/xilinx/cells.lut -box +/xilinx/cells.box" + string(retime ? " -dff" : ""));
+ Pass::call(design, abc + " -lut +/xilinx/abc.lut -box +/xilinx/abc.box" + string(retime ? " -dff" : ""));
else
Pass::call(design, abc + " -luts 2:2,3,6:5,10,20" + string(retime ? " -dff" : ""));
Pass::call(design, "clean");