--- /dev/null
+/* Loop Vectorization
+ Copyright (C) 2003, 2004 Free Software Foundation, Inc.
+ Contributed by Dorit Naishlos <dorit@il.ibm.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+02111-1307, USA. */
+
+/* Loop Vectorization Pass.
+
+ This pass tries to vectorize loops. This first implementation focuses on
+ simple inner-most loops, with no conditional control flow, and a set of
+ simple operations which vector form can be expressed using existing
+ tree codes (PLUS, MULT etc).
+
+ For example, the vectorizer transforms the following simple loop:
+
+ short a[N]; short b[N]; short c[N]; int i;
+
+ for (i=0; i<N; i++){
+ a[i] = b[i] + c[i];
+ }
+
+ as if it was manually vectorized by rewriting the source code into:
+
+ typedef int __attribute__((mode(V8HI))) v8hi;
+ short a[N]; short b[N]; short c[N]; int i;
+ v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
+ v8hi va, vb, vc;
+
+ for (i=0; i<N/8; i++){
+ vb = pb[i];
+ vc = pc[i];
+ va = vb + vc;
+ pa[i] = va;
+ }
+
+ The main entry to this pass is vectorize_loops(), in which
+ the vectorizer applies a set of analyses on a given set of loops,
+ followed by the actual vectorization transformation for the loops that
+ had successfully passed the analysis phase.
+
+ Throughout this pass we make a distinction between two types of
+ data: scalars (which are represented by SSA_NAMES), and memory references
+ ("data-refs"). These two types of data require different handling both
+ during analysis and transformation. The types of data-refs that the
+ vectorizer currently supports are ARRAY_REFS that are one dimensional
+ arrays which base is an array DECL (not a pointer), and INDIRECT_REFS
+ through pointers; both array and pointer accesses are required to have a
+ simple (consecutive) access pattern.
+
+ Analysis phase:
+ ===============
+ The driver for the analysis phase is vect_analyze_loop_nest().
+ It applies a set of analyses, some of which rely on the scalar evolution
+ analyzer (scev) developed by Sebastian Pop.
+
+ During the analysis phase the vectorizer records some information
+ per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
+ loop, as well as general information about the loop as a whole, which is
+ recorded in a "loop_vec_info" struct attached to each loop.
+
+ Transformation phase:
+ =====================
+ The loop transformation phase scans all the stmts in the loop, and
+ creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
+ the loop that needs to be vectorized. It insert the vector code sequence
+ just before the scalar stmt S, and records a pointer to the vector code
+ in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
+ attached to S). This pointer will be used for the vectorization of following
+ stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
+ otherwise, we rely on dead code elimination for removing it.
+
+ For example, say stmt S1 was vectorized into stmt VS1:
+
+ VS1: vb = px[i];
+ S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
+ S2: a = b;
+
+ To vectorize stmt S2, the vectorizer first finds the stmt that defines
+ the operand 'b' (S1), and gets the relevant vector def 'vb' from the
+ vector stmt VS1 pointed by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
+ resulting sequence would be:
+
+ VS1: vb = px[i];
+ S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
+ VS2: va = vb;
+ S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
+
+ Operands that are not SSA_NAMEs, are data-refs that appear in
+ load/store operations (like 'x[i]' in S1), and are handled differently.
+
+ Target modeling:
+ =================
+ Currently the only target specific information that is used is the
+ size of the vector (in bytes) - "UNITS_PER_SIMD_WORD". Targets that can
+ support different sizes of vectors, for now will need to specify one value
+ for "UNITS_PER_SIMD_WORD". More flexibility will be added in the future.
+
+ Since we only vectorize operations which vector form can be
+ expressed using existing tree codes, to verify that an operation is
+ supported, the vectorizer checks the relevant optab at the relevant
+ machine_mode (e.g, add_optab->handlers[(int) V8HImode].insn_code). If
+ the value found is CODE_FOR_nothing, then there's no target support, and
+ we can't vectorize the stmt.
+
+ For additional information on this project see:
+ http://gcc.gnu.org/projects/tree-ssa/vectorization.html
+*/
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "errors.h"
+#include "ggc.h"
+#include "tree.h"
+#include "target.h"
+
+#include "rtl.h"
+#include "basic-block.h"
+#include "diagnostic.h"
+#include "tree-flow.h"
+#include "tree-dump.h"
+#include "timevar.h"
+#include "cfgloop.h"
+#include "cfglayout.h"
+#include "expr.h"
+#include "optabs.h"
+#include "tree-chrec.h"
+#include "tree-data-ref.h"
+#include "tree-scalar-evolution.h"
+#include "tree-vectorizer.h"
+#include "tree-pass.h"
+
+/* Main analysis functions. */
+static loop_vec_info vect_analyze_loop (struct loop *);
+static loop_vec_info vect_analyze_loop_form (struct loop *);
+static bool vect_analyze_data_refs (loop_vec_info);
+static bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
+static bool vect_analyze_scalar_cycles (loop_vec_info);
+static bool vect_analyze_data_ref_accesses (loop_vec_info);
+static bool vect_analyze_data_refs_alignment (loop_vec_info);
+static void vect_compute_data_refs_alignment (loop_vec_info);
+static bool vect_analyze_operations (loop_vec_info);
+
+/* Main code transformation functions. */
+static void vect_transform_loop (loop_vec_info, struct loops *);
+static void vect_transform_loop_bound (loop_vec_info);
+static bool vect_transform_stmt (tree, block_stmt_iterator *);
+static bool vectorizable_load (tree, block_stmt_iterator *, tree *);
+static bool vectorizable_store (tree, block_stmt_iterator *, tree *);
+static bool vectorizable_operation (tree, block_stmt_iterator *, tree *);
+static bool vectorizable_assignment (tree, block_stmt_iterator *, tree *);
+static void vect_align_data_ref (tree);
+static void vect_enhance_data_refs_alignment (loop_vec_info);
+
+/* Utility functions for the analyses. */
+static bool vect_is_simple_use (tree , struct loop *, tree *);
+static bool exist_non_indexing_operands_for_use_p (tree, tree);
+static bool vect_is_simple_iv_evolution (unsigned, tree, tree *, tree *, bool);
+static void vect_mark_relevant (varray_type, tree);
+static bool vect_stmt_relevant_p (tree, loop_vec_info);
+static tree vect_get_loop_niters (struct loop *, HOST_WIDE_INT *);
+static void vect_compute_data_ref_alignment
+ (struct data_reference *, loop_vec_info);
+static bool vect_analyze_data_ref_access (struct data_reference *);
+static bool vect_get_first_index (tree, tree *);
+static bool vect_can_force_dr_alignment_p (tree, unsigned int);
+static tree vect_get_base_decl_and_bit_offset (tree, tree *);
+static struct data_reference * vect_analyze_pointer_ref_access (tree, tree, bool);
+
+/* Utility functions for the code transformation. */
+static tree vect_create_destination_var (tree, tree);
+static tree vect_create_data_ref (tree, block_stmt_iterator *);
+static tree vect_create_index_for_array_ref (tree, block_stmt_iterator *);
+static tree get_vectype_for_scalar_type (tree);
+static tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
+static tree vect_get_vec_def_for_operand (tree, tree);
+static tree vect_init_vector (tree, tree);
+static void vect_finish_stmt_generation
+ (tree stmt, tree vec_stmt, block_stmt_iterator *bsi);
+
+/* Utilities for creation and deletion of vec_info structs. */
+loop_vec_info new_loop_vec_info (struct loop *loop);
+void destroy_loop_vec_info (loop_vec_info);
+stmt_vec_info new_stmt_vec_info (tree stmt, struct loop *loop);
+
+static bool vect_debug_stats (struct loop *loop);
+static bool vect_debug_details (struct loop *loop);
+
+
+/* Function new_stmt_vec_info.
+
+ Create and initialize a new stmt_vec_info struct for STMT. */
+
+stmt_vec_info
+new_stmt_vec_info (tree stmt, struct loop *loop)
+{
+ stmt_vec_info res;
+ res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
+
+ STMT_VINFO_TYPE (res) = undef_vec_info_type;
+ STMT_VINFO_STMT (res) = stmt;
+ STMT_VINFO_LOOP (res) = loop;
+ STMT_VINFO_RELEVANT_P (res) = 0;
+ STMT_VINFO_VECTYPE (res) = NULL;
+ STMT_VINFO_VEC_STMT (res) = NULL;
+ STMT_VINFO_DATA_REF (res) = NULL;
+ STMT_VINFO_MEMTAG (res) = NULL;
+
+ return res;
+}
+
+
+/* Function new_loop_vec_info.
+
+ Create and initialize a new loop_vec_info struct for LOOP, as well as
+ stmt_vec_info structs for all the stmts in LOOP. */
+
+loop_vec_info
+new_loop_vec_info (struct loop *loop)
+{
+ loop_vec_info res;
+ basic_block *bbs;
+ block_stmt_iterator si;
+ unsigned int i;
+
+ res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
+
+ bbs = get_loop_body (loop);
+
+ /* Create stmt_info for all stmts in the loop. */
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = bbs[i];
+ for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
+ {
+ tree stmt = bsi_stmt (si);
+ stmt_ann_t ann;
+
+ get_stmt_operands (stmt);
+ ann = stmt_ann (stmt);
+ set_stmt_info (ann, new_stmt_vec_info (stmt, loop));
+ }
+ }
+
+ LOOP_VINFO_LOOP (res) = loop;
+ LOOP_VINFO_BBS (res) = bbs;
+ LOOP_VINFO_EXIT_COND (res) = NULL;
+ LOOP_VINFO_NITERS (res) = -1;
+ LOOP_VINFO_VECTORIZABLE_P (res) = 0;
+ LOOP_VINFO_VECT_FACTOR (res) = 0;
+ VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_WRITES (res), 20,
+ "loop_write_datarefs");
+ VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_READS (res), 20,
+ "loop_read_datarefs");
+ return res;
+}
+
+
+/* Function destroy_loop_vec_info.
+
+ Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
+ stmts in the loop. */
+
+void
+destroy_loop_vec_info (loop_vec_info loop_vinfo)
+{
+ struct loop *loop;
+ basic_block *bbs;
+ int nbbs;
+ block_stmt_iterator si;
+ int j;
+
+ if (!loop_vinfo)
+ return;
+
+ loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+ bbs = LOOP_VINFO_BBS (loop_vinfo);
+ nbbs = loop->num_nodes;
+
+ for (j = 0; j < nbbs; j++)
+ {
+ basic_block bb = bbs[j];
+ for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
+ {
+ tree stmt = bsi_stmt (si);
+ stmt_ann_t ann = stmt_ann (stmt);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ free (stmt_info);
+ set_stmt_info (ann, NULL);
+ }
+ }
+
+ free (LOOP_VINFO_BBS (loop_vinfo));
+ varray_clear (LOOP_VINFO_DATAREF_WRITES (loop_vinfo));
+ varray_clear (LOOP_VINFO_DATAREF_READS (loop_vinfo));
+
+ free (loop_vinfo);
+}
+
+
+/* Function debug_loop_stats.
+
+ For vectorization statistics dumps. */
+
+static bool
+vect_debug_stats (struct loop *loop)
+{
+ basic_block bb;
+ block_stmt_iterator si;
+ tree node = NULL_TREE;
+
+ if (!dump_file || !(dump_flags & TDF_STATS))
+ return false;
+
+ if (!loop)
+ {
+ fprintf (dump_file, "\n");
+ return true;
+ }
+
+ if (!loop->header)
+ return false;
+
+ bb = loop->header;
+
+ for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
+ {
+ node = bsi_stmt (si);
+ if (node && EXPR_P (node) && EXPR_LOCUS (node))
+ break;
+ }
+
+ if (node && EXPR_P (node) && EXPR_LOCUS (node)
+ && EXPR_FILENAME (node) && EXPR_LINENO (node))
+ {
+ fprintf (dump_file, "\nloop at %s:%d: ",
+ EXPR_FILENAME (node), EXPR_LINENO (node));
+ return true;
+ }
+
+ return false;
+}
+
+
+/* Function debug_loop_details.
+
+ For vectorization debug dumps. */
+
+static bool
+vect_debug_details (struct loop *loop)
+{
+ basic_block bb;
+ block_stmt_iterator si;
+ tree node = NULL_TREE;
+
+ if (!dump_file || !(dump_flags & TDF_DETAILS))
+ return false;
+
+ if (!loop)
+ {
+ fprintf (dump_file, "\n");
+ return true;
+ }
+
+ if (!loop->header)
+ return false;
+
+ bb = loop->header;
+
+ for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
+ {
+ node = bsi_stmt (si);
+ if (node && EXPR_P (node) && EXPR_LOCUS (node))
+ break;
+ }
+
+ if (node && EXPR_P (node) && EXPR_LOCUS (node)
+ && EXPR_FILENAME (node) && EXPR_LINENO (node))
+ {
+ fprintf (dump_file, "\nloop at %s:%d: ",
+ EXPR_FILENAME (node), EXPR_LINENO (node));
+ return true;
+ }
+
+ return false;
+}
+
+
+/* THIS IS A COPY OF THE FUNCTION IN TREE-SSA-IVOPTS.C, MODIFIED
+ TO NOT USE FORCE_GIMPLE_OPERAND. When that function is accepted
+ into he mainline, This function can go away and be replaced by it.
+ Creates an induction variable with value BASE + STEP * iteration in
+ LOOP. It is expected that neither BASE nor STEP are shared with
+ other expressions (unless the sharing rules allow this). Use VAR
+ as a base var_decl for it (if NULL, a new temporary will be
+ created). The increment will occur at INCR_POS (after it if AFTER
+ is true, before it otherwise). The ssa versions of the variable
+ before and after increment will be stored in VAR_BEFORE and
+ VAR_AFTER (unless they are NULL). */
+
+static void
+vect_create_iv_simple (tree base, tree step, tree var, struct loop *loop,
+ block_stmt_iterator *incr_pos, bool after,
+ tree *var_before, tree *var_after)
+{
+ tree stmt, stmts, initial;
+ tree vb, va;
+ stmts = NULL;
+
+ if (!var)
+ {
+ var = create_tmp_var (TREE_TYPE (base), "ivtmp");
+ add_referenced_tmp_var (var);
+ }
+
+ vb = make_ssa_name (var, build_empty_stmt ());
+ if (var_before)
+ *var_before = vb;
+ va = make_ssa_name (var, build_empty_stmt ());
+ if (var_after)
+ *var_after = va;
+
+ stmt = build (MODIFY_EXPR, void_type_node, va,
+ build (PLUS_EXPR, TREE_TYPE (base), vb, step));
+ SSA_NAME_DEF_STMT (va) = stmt;
+ if (after)
+ bsi_insert_after (incr_pos, stmt, BSI_NEW_STMT);
+ else
+ bsi_insert_before (incr_pos, stmt, BSI_NEW_STMT);
+
+ /* Our base is always a GIMPLE variable, thus, we don't need to
+ force_gimple_operand it. */
+ initial = base;
+ if (stmts)
+ {
+ edge pe = loop_preheader_edge (loop);
+ bsi_insert_on_edge (pe, stmts);
+ }
+
+ stmt = create_phi_node (vb, loop->header);
+ SSA_NAME_DEF_STMT (vb) = stmt;
+ add_phi_arg (&stmt, initial, loop_preheader_edge (loop));
+ add_phi_arg (&stmt, va, loop_latch_edge (loop));
+}
+
+
+/* Function vect_get_base_decl_and_bit_offset
+
+ Get the decl from which the data reference REF is based,
+ and compute the OFFSET from it in bits on the way.
+ FORNOW: Handle only component-refs that consist of
+ VAR_DECLs (no ARRAY_REF or INDIRECT_REF). */
+
+static tree
+vect_get_base_decl_and_bit_offset (tree ref, tree *offset)
+{
+ tree decl;
+ if (TREE_CODE (ref) == VAR_DECL)
+ return ref;
+
+ if (TREE_CODE (ref) == COMPONENT_REF)
+ {
+ tree this_offset;
+ tree oprnd0 = TREE_OPERAND (ref, 0);
+ tree oprnd1 = TREE_OPERAND (ref, 1);
+
+ this_offset = bit_position (oprnd1);
+ if (!host_integerp (this_offset,1))
+ return NULL_TREE;
+
+ decl = vect_get_base_decl_and_bit_offset (oprnd0, offset);
+
+ if (decl)
+ {
+ *offset = int_const_binop (PLUS_EXPR, *offset, this_offset, 1);
+
+ if (!host_integerp (*offset,1) || TREE_OVERFLOW (*offset))
+ return NULL_TREE;
+
+ if (vect_debug_details (NULL))
+ {
+ print_generic_expr (dump_file, ref, TDF_SLIM);
+ fprintf (dump_file, " --> total offset for ref: ");
+ print_generic_expr (dump_file, *offset, TDF_SLIM);
+ }
+ }
+
+ return decl;
+ }
+
+ /* TODO: extend to handle more cases. */
+ return NULL_TREE;
+}
+
+
+/* Function vect_force_dr_alignment_p.
+
+ Returns whether the alignment of a DECL can be forced to be aligned
+ on ALIGNMENT bit boundary. */
+
+static bool
+vect_can_force_dr_alignment_p (tree decl, unsigned int alignment)
+{
+ if (TREE_CODE (decl) != VAR_DECL)
+ return false;
+
+ if (DECL_EXTERNAL (decl))
+ return false;
+
+ if (TREE_STATIC (decl))
+ return (alignment <= MAX_OFILE_ALIGNMENT);
+ else
+ return (alignment <= STACK_BOUNDARY);
+}
+
+
+/* Function vect_get_new_vect_var.
+
+ Returns a name for a new variable. The current naming scheme appends the
+ prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
+ the name of vectorizer generated variables, and appends that to NAME if
+ provided. */
+
+static tree
+vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
+{
+ const char *prefix;
+ int prefix_len;
+ tree new_vect_var;
+
+ if (var_kind == vect_simple_var)
+ prefix = "vect_";
+ else
+ prefix = "vect_p";
+
+ prefix_len = strlen (prefix);
+
+ if (name)
+ new_vect_var = create_tmp_var (type, concat (prefix, name, NULL));
+ else
+ new_vect_var = create_tmp_var (type, prefix);
+
+ return new_vect_var;
+}
+
+
+/* Function create_index_for_array_ref.
+
+ Create (and return) an index variable, along with it's update chain in the
+ loop. This variable will be used to access a memory location in a vector
+ operation.
+
+ Input:
+ STMT: The stmt that contains a memory data-ref.
+ BSI: The block_stmt_iterator where STMT is. Any new stmts created by this
+ function can be added here, or in the loop pre-header.
+
+ FORNOW: We are only handling array accesses with step 1. */
+
+static tree
+vect_create_index_for_array_ref (tree stmt, block_stmt_iterator *bsi)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ struct loop *loop = STMT_VINFO_LOOP (stmt_info);
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+ tree expr = DR_REF (dr);
+ tree access_fn;
+ tree init, step;
+ loop_vec_info loop_info = loop->aux;
+ int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_info);
+ tree vf;
+ tree array_first_index;
+ tree indx_before_incr, indx_after_incr;
+ int loopnum = loop->num;
+ bool ok;
+#ifdef ENABLE_CHECKING
+ varray_type access_fns = DR_ACCESS_FNS (dr);
+
+ /* FORNOW: handling only one dimensional arrays. */
+ if (VARRAY_ACTIVE_SIZE (access_fns) != 1)
+ abort ();
+
+ if (!vectorization_factor)
+ abort ();
+#endif
+
+ access_fn = DR_ACCESS_FN (dr, 0);
+ ok = vect_is_simple_iv_evolution (loopnum, access_fn, &init, &step, true)
+ && vect_get_first_index (expr, &array_first_index);
+
+#ifdef ENABLE_CHECKING
+ if (!ok)
+ abort ();
+
+ /* FORNOW: Handling only constant 'init'. */
+ if (TREE_CODE (init) != INTEGER_CST)
+ abort ();
+#endif
+
+ vf = build_int_cst (unsigned_type_node, vectorization_factor, 0);
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "int vf = %d",vectorization_factor);
+ fprintf (dump_file, ", vf:");
+ print_generic_expr (dump_file, vf, TDF_SLIM);
+ fprintf (dump_file, ", init:");
+ print_generic_expr (dump_file, init, TDF_SLIM);
+ fprintf (dump_file, ", array_first_index:");
+ print_generic_expr (dump_file, array_first_index, TDF_SLIM);
+ }
+
+ /* Calculate the 'init' of the new index.
+ init = (init - array_first_index) / vectorization_factor */
+ init = int_const_binop (TRUNC_DIV_EXPR,
+ int_const_binop (MINUS_EXPR, init, array_first_index, 1),
+ vf, 1);
+
+ /* Calculate the 'step' of the new index. FORNOW: always 1. */
+ step = size_one_node;
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "create iv for (");
+ print_generic_expr (dump_file, init, TDF_SLIM);
+ fprintf (dump_file, ", + ,");
+ print_generic_expr (dump_file, step, TDF_SLIM);
+ fprintf (dump_file, ")");
+ }
+
+ /* both init and step are guaranted to be gimple expressions,
+ so we can use vect_create_iv_simple. */
+ vect_create_iv_simple (init, step, NULL, loop, bsi, false,
+ &indx_before_incr, &indx_after_incr);
+
+ return indx_before_incr;
+}
+
+
+/* Function get_vectype_for_scalar_type.
+
+ Returns the vector type corresponding to SCALAR_TYPE as supported
+ by the target. */
+
+static tree
+get_vectype_for_scalar_type (tree scalar_type)
+{
+ enum machine_mode inner_mode = TYPE_MODE (scalar_type);
+ int nbytes = GET_MODE_SIZE (inner_mode);
+ int nunits;
+
+ if (nbytes == 0)
+ return NULL_TREE;
+
+ /* FORNOW: Only a single vector size per target (UNITS_PER_SIMD_WORD)
+ is expected. */
+ nunits = UNITS_PER_SIMD_WORD / nbytes;
+
+ return build_vector_type (scalar_type, nunits);
+}
+
+
+/* Function vect_align_data_ref.
+
+ Handle mislignment of a memory accesses.
+
+ FORNOW: Can't handle misaligned accesses.
+ Make sure that the dataref is aligned. */
+
+static void
+vect_align_data_ref (tree stmt)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+
+ /* FORNOW: can't handle misaligned accesses;
+ all accesses expected to be aligned. */
+ if (!aligned_access_p (dr))
+ abort ();
+}
+
+
+/* Function vect_create_data_ref.
+
+ Create a memory reference expression for vector access, to be used in a
+ vector load/store stmt.
+
+ Input:
+ STMT: a stmt that references memory. expected to be of the form
+ MODIFY_EXPR <name, data-ref> or MODIFY_EXPR <data-ref, name>.
+ BSI: block_stmt_iterator where new stmts can be added.
+
+ Output:
+ 1. Declare a new ptr to vector_type, and have it point to the array base.
+ For example, for vector of type V8HI:
+ v8hi *p0;
+ p0 = (v8hi *)&a;
+ 2. Create a data-reference based on the new vector pointer p0, and using
+ a new index variable 'idx'. Return the expression '(*p0)[idx]'.
+
+ FORNOW: handle only aligned and consecutive accesses. */
+
+static tree
+vect_create_data_ref (tree stmt, block_stmt_iterator *bsi)
+{
+ tree new_base;
+ tree data_ref;
+ tree idx;
+ tree vec_stmt;
+ tree new_temp;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ tree vect_ptr_type;
+ tree vect_ptr;
+ tree addr_ref;
+ v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (stmt);
+ v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
+ vuse_optype vuses = STMT_VUSE_OPS (stmt);
+ int nvuses, nv_may_defs, nv_must_defs;
+ int i;
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+ tree array_type;
+ tree base_addr = NULL_TREE;
+ struct loop *loop = STMT_VINFO_LOOP (stmt_info);
+ edge pe;
+ tree tag;
+ tree addr_expr;
+ tree scalar_ptr_type;
+
+ /* FORNOW: make sure the data reference is aligned. */
+ vect_align_data_ref (stmt);
+
+ addr_ref = DR_BASE_NAME (dr);
+
+ array_type = build_array_type (vectype, 0);
+ TYPE_ALIGN (array_type) = TYPE_ALIGN (TREE_TYPE (addr_ref));
+ vect_ptr_type = build_pointer_type (array_type);
+ scalar_ptr_type = build_pointer_type (TREE_TYPE (addr_ref));
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "create array_ref of type: ");
+ print_generic_expr (dump_file, vectype, TDF_SLIM);
+ }
+
+ /*** create: vectype_array *p; ***/
+ vect_ptr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
+ get_name (addr_ref));
+ add_referenced_tmp_var (vect_ptr);
+
+#ifdef ENABLE_CHECKING
+ if (TREE_CODE (addr_ref) != VAR_DECL
+ && TREE_CODE (addr_ref) != COMPONENT_REF
+ && TREE_CODE (addr_ref) != SSA_NAME)
+ abort ();
+#endif
+
+ if (vect_debug_details (NULL))
+ {
+ if (TREE_CODE (addr_ref) == VAR_DECL)
+ fprintf (dump_file, "vectorizing an array ref: ");
+ else if (TREE_CODE (addr_ref) == SSA_NAME)
+ fprintf (dump_file, "vectorizing a pointer ref: ");
+ else if (TREE_CODE (addr_ref) == COMPONENT_REF)
+ fprintf (dump_file, "vectorizing a record ref: ");
+ print_generic_expr (dump_file, addr_ref, TDF_SLIM);
+ }
+
+ /* Get base address: */
+ if (TREE_CODE (addr_ref) == SSA_NAME)
+ base_addr = addr_ref;
+ else
+ base_addr = build_fold_addr_expr (addr_ref);
+
+ /* Handle aliasing: */
+ tag = STMT_VINFO_MEMTAG (stmt_info);
+#ifdef ENABLE_CHECKING
+ if (!tag)
+ abort ();
+#endif
+ get_var_ann (vect_ptr)->type_mem_tag = tag;
+
+ /* Mark for renaming all aliased variables
+ (i.e, the may-aliases of the type-mem-tag) */
+ nvuses = NUM_VUSES (vuses);
+ nv_may_defs = NUM_V_MAY_DEFS (v_may_defs);
+ nv_must_defs = NUM_V_MUST_DEFS (v_must_defs);
+ for (i = 0; i < nvuses; i++)
+ {
+ tree use = VUSE_OP (vuses, i);
+ if (TREE_CODE (use) == SSA_NAME)
+ bitmap_set_bit (vars_to_rename, var_ann (SSA_NAME_VAR (use))->uid);
+ }
+ for (i = 0; i < nv_may_defs; i++)
+ {
+ tree def = V_MAY_DEF_RESULT (v_may_defs, i);
+ if (TREE_CODE (def) == SSA_NAME)
+ bitmap_set_bit (vars_to_rename, var_ann (SSA_NAME_VAR (def))->uid);
+ }
+ for (i = 0; i < nv_must_defs; i++)
+ {
+ tree def = V_MUST_DEF_OP (v_must_defs, i);
+ if (TREE_CODE (def) == SSA_NAME)
+ bitmap_set_bit (vars_to_rename, var_ann (SSA_NAME_VAR (def))->uid);
+ }
+
+ pe = loop_preheader_edge (loop);
+
+ /*** create: p = (vectype *)&a; ***/
+
+ /* addr_expr = &a */
+ addr_expr = vect_get_new_vect_var (scalar_ptr_type, vect_pointer_var,
+ get_name (addr_ref));
+ add_referenced_tmp_var (addr_expr);
+ vec_stmt = build2 (MODIFY_EXPR, void_type_node, addr_expr, base_addr);
+ new_temp = make_ssa_name (addr_expr, vec_stmt);
+ TREE_OPERAND (vec_stmt, 0) = new_temp;
+ bsi_insert_on_edge (pe, vec_stmt);
+
+ /* vect_ptr = (vectype_array *)&a; */
+ vec_stmt = fold_convert (vect_ptr_type, new_temp);
+ vec_stmt = build2 (MODIFY_EXPR, void_type_node, vect_ptr, vec_stmt);
+ new_temp = make_ssa_name (vect_ptr, vec_stmt);
+ TREE_OPERAND (vec_stmt, 0) = new_temp;
+ bsi_insert_on_edge (pe, vec_stmt);
+
+ /*** create data ref: '(*p)[idx]' ***/
+
+ idx = vect_create_index_for_array_ref (stmt, bsi);
+
+ new_base = build_fold_indirect_ref (new_temp);
+ data_ref = build4 (ARRAY_REF, vectype, new_base, idx, NULL_TREE, NULL_TREE);
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "created new data-ref: ");
+ print_generic_expr (dump_file, data_ref, TDF_SLIM);
+ }
+
+ return data_ref;
+}
+
+
+/* Function vect_create_destination_var.
+
+ Create a new temporary of type VECTYPE. */
+
+static tree
+vect_create_destination_var (tree scalar_dest, tree vectype)
+{
+ tree vec_dest;
+ const char *new_name;
+
+#ifdef ENABLE_CHECKING
+ if (TREE_CODE (scalar_dest) != SSA_NAME)
+ abort ();
+#endif
+
+ new_name = get_name (scalar_dest);
+ if (!new_name)
+ new_name = "var_";
+ vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, new_name);
+ add_referenced_tmp_var (vec_dest);
+
+ return vec_dest;
+}
+
+
+/* Function vect_init_vector.
+
+ Insert a new stmt (INIT_STMT) that initializes a new vector variable with
+ the vector elements of VECTOR_VAR. Return the DEF of INIT_STMT. It will be
+ used in the vectorization of STMT. */
+
+static tree
+vect_init_vector (tree stmt, tree vector_var)
+{
+ stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
+ struct loop *loop = STMT_VINFO_LOOP (stmt_vinfo);
+ tree new_var;
+ tree init_stmt;
+ tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
+ tree vec_oprnd;
+ edge pe;
+ tree new_temp;
+
+ new_var = vect_get_new_vect_var (vectype, vect_simple_var, "cst_");
+ add_referenced_tmp_var (new_var);
+
+ init_stmt = build2 (MODIFY_EXPR, vectype, new_var, vector_var);
+ new_temp = make_ssa_name (new_var, init_stmt);
+ TREE_OPERAND (init_stmt, 0) = new_temp;
+
+ pe = loop_preheader_edge (loop);
+ bsi_insert_on_edge (pe, init_stmt);
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "created new init_stmt: ");
+ print_generic_expr (dump_file, init_stmt, TDF_SLIM);
+ }
+
+ vec_oprnd = TREE_OPERAND (init_stmt, 0);
+ return vec_oprnd;
+}
+
+
+/* Function vect_get_vec_def_for_operand.
+
+ OP is an operand in STMT. This function returns a (vector) def that will be
+ used in the vectorized stmt for STMT.
+
+ In the case that OP is an SSA_NAME which is defined in the loop, then
+ STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
+
+ In case OP is an invariant or constant, a new stmt that creates a vector def
+ needs to be introduced. */
+
+static tree
+vect_get_vec_def_for_operand (tree op, tree stmt)
+{
+ tree vec_oprnd;
+ tree vec_stmt;
+ tree def_stmt;
+ stmt_vec_info def_stmt_info = NULL;
+ stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
+ int nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
+ struct loop *loop = STMT_VINFO_LOOP (stmt_vinfo);
+ basic_block bb;
+ tree vec_inv;
+ tree t = NULL_TREE;
+ tree def;
+ int i;
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "vect_get_vec_def_for_operand: ");
+ print_generic_expr (dump_file, op, TDF_SLIM);
+ }
+
+ /** ===> Case 1: operand is a constant. **/
+
+ if (TREE_CODE (op) == INTEGER_CST || TREE_CODE (op) == REAL_CST)
+ {
+ /* Create 'vect_cst_ = {cst,cst,...,cst}' */
+
+ tree vec_cst;
+ stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
+ int nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
+ tree t = NULL_TREE;
+ int i;
+
+ /* Build a tree with vector elements. */
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "Create vector_cst. nunits = %d", nunits);
+
+ for (i = nunits - 1; i >= 0; --i)
+ {
+ t = tree_cons (NULL_TREE, op, t);
+ }
+ vec_cst = build_vector (vectype, t);
+ return vect_init_vector (stmt, vec_cst);
+ }
+
+#ifdef ENABLE_CHECKING
+ if (TREE_CODE (op) != SSA_NAME)
+ abort ();
+#endif
+
+ /** ===> Case 2: operand is an SSA_NAME - find the stmt that defines it. **/
+
+ def_stmt = SSA_NAME_DEF_STMT (op);
+ def_stmt_info = vinfo_for_stmt (def_stmt);
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "vect_get_vec_def_for_operand: def_stmt: ");
+ print_generic_expr (dump_file, def_stmt, TDF_SLIM);
+ }
+
+
+ /** ==> Case 2.1: operand is defined inside the loop. **/
+
+ if (def_stmt_info)
+ {
+ /* Get the def from the vectorized stmt. */
+
+ vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
+#ifdef ENABLE_CHECKING
+ if (!vec_stmt)
+ abort ();
+#endif
+ vec_oprnd = TREE_OPERAND (vec_stmt, 0);
+ return vec_oprnd;
+ }
+
+
+ /** ==> Case 2.2: operand is defined by the loop-header phi-node -
+ it is a reduction/induction. **/
+
+ bb = bb_for_stmt (def_stmt);
+ if (TREE_CODE (def_stmt) == PHI_NODE && flow_bb_inside_loop_p (loop, bb))
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "reduction/induction - unsupported.");
+ abort (); /* FORNOW no support for reduction/induction. */
+ }
+
+
+ /** ==> Case 2.3: operand is defined outside the loop -
+ it is a loop invariant. */
+
+ switch (TREE_CODE (def_stmt))
+ {
+ case PHI_NODE:
+ def = PHI_RESULT (def_stmt);
+ break;
+ case MODIFY_EXPR:
+ def = TREE_OPERAND (def_stmt, 0);
+ break;
+ case NOP_EXPR:
+ def = TREE_OPERAND (def_stmt, 0);
+#ifdef ENABLE_CHECKING
+ if (!IS_EMPTY_STMT (def_stmt))
+ abort ();
+#endif
+ def = op;
+ break;
+ default:
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "unsupported defining stmt: ");
+ print_generic_expr (dump_file, def_stmt, TDF_SLIM);
+ }
+ abort ();
+ }
+
+ /* Build a tree with vector elements. Create 'vec_inv = {inv,inv,..,inv}' */
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "Create vector_inv.");
+
+ for (i = nunits - 1; i >= 0; --i)
+ {
+ t = tree_cons (NULL_TREE, def, t);
+ }
+
+ vec_inv = build_constructor (vectype, t);
+ return vect_init_vector (stmt, vec_inv);
+}
+
+
+/* Function vect_finish_stmt_generation.
+
+ Insert a new stmt. */
+
+static void
+vect_finish_stmt_generation (tree stmt, tree vec_stmt, block_stmt_iterator *bsi)
+{
+ bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "add new stmt: ");
+ print_generic_expr (dump_file, vec_stmt, TDF_SLIM);
+ }
+
+ /* Make sure bsi points to the stmt that is being vectorized. */
+
+ /* Assumption: any stmts created for the vectorization of smtmt S are
+ inserted before S. BSI may point to S or some new stmt before it. */
+
+ while (stmt != bsi_stmt (*bsi) && !bsi_end_p (*bsi))
+ bsi_next (bsi);
+#ifdef ENABLE_CHECKING
+ if (stmt != bsi_stmt (*bsi))
+ abort ();
+#endif
+}
+
+
+/* Function vectorizable_assignment.
+
+ Check if STMT performs an assignment (copy) that can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_assignment (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
+{
+ tree vec_dest;
+ tree scalar_dest;
+ tree op;
+ tree vec_oprnd;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ struct loop *loop = STMT_VINFO_LOOP (stmt_info);
+ tree new_temp;
+
+ /* Is vectorizable assignment? */
+
+ if (TREE_CODE (stmt) != MODIFY_EXPR)
+ return false;
+
+ scalar_dest = TREE_OPERAND (stmt, 0);
+ if (TREE_CODE (scalar_dest) != SSA_NAME)
+ return false;
+
+ op = TREE_OPERAND (stmt, 1);
+ if (!vect_is_simple_use (op, loop, NULL))
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "use not simple.");
+ return false;
+ }
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
+ return true;
+ }
+
+ /** Trasform. **/
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "transform assignment.");
+
+ /* Handle def. */
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+
+ /* Handle use. */
+ op = TREE_OPERAND (stmt, 1);
+ vec_oprnd = vect_get_vec_def_for_operand (op, stmt);
+
+ /* Arguments are ready. create the new vector stmt. */
+ *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, vec_oprnd);
+ new_temp = make_ssa_name (vec_dest, *vec_stmt);
+ TREE_OPERAND (*vec_stmt, 0) = new_temp;
+ vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
+
+ return true;
+}
+
+
+/* Function vectorizable_operation.
+
+ Check if STMT performs a binary or unary operation that can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_operation (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
+{
+ tree vec_dest;
+ tree scalar_dest;
+ tree operation;
+ tree op0, op1 = NULL;
+ tree vec_oprnd0, vec_oprnd1=NULL;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ struct loop *loop = STMT_VINFO_LOOP (stmt_info);
+ int i;
+ enum tree_code code;
+ enum machine_mode vec_mode;
+ tree new_temp;
+ int op_type;
+ tree op;
+ optab optab;
+
+ /* Is STMT a vectorizable binary/unary operation? */
+ if (TREE_CODE (stmt) != MODIFY_EXPR)
+ return false;
+
+ if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
+ return false;
+
+ operation = TREE_OPERAND (stmt, 1);
+ code = TREE_CODE (operation);
+ optab = optab_for_tree_code (code, vectype);
+
+ /* Support only unary or binary operations. */
+ op_type = TREE_CODE_LENGTH (code);
+ if (op_type != unary_op && op_type != binary_op)
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "num. args = %d (not unary/binary op).", op_type);
+ return false;
+ }
+
+ for (i = 0; i < op_type; i++)
+ {
+ op = TREE_OPERAND (operation, i);
+ if (!vect_is_simple_use (op, loop, NULL))
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "use not simple.");
+ return false;
+ }
+ }
+
+ /* Supportable by target? */
+ if (!optab)
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "no optab.");
+ return false;
+ }
+ vec_mode = TYPE_MODE (vectype);
+ if (optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing)
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "op not supported by target.");
+ return false;
+ }
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
+ return true;
+ }
+
+ /** Trasform. **/
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "transform binary/unary operation.");
+
+ /* Handle def. */
+ scalar_dest = TREE_OPERAND (stmt, 0);
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+
+ /* Handle uses. */
+ op0 = TREE_OPERAND (operation, 0);
+ vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt);
+
+ if (op_type == binary_op)
+ {
+ op1 = TREE_OPERAND (operation, 1);
+ vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt);
+ }
+
+ /* Arguments are ready. create the new vector stmt. */
+
+ if (op_type == binary_op)
+ *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
+ build2 (code, vectype, vec_oprnd0, vec_oprnd1));
+ else
+ *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
+ build1 (code, vectype, vec_oprnd0));
+ new_temp = make_ssa_name (vec_dest, *vec_stmt);
+ TREE_OPERAND (*vec_stmt, 0) = new_temp;
+ vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
+
+ return true;
+}
+
+
+/* Function vectorizable_store.
+
+ Check if STMT defines a non scalar data-ref (array/pointer/structure) that
+ can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_store (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
+{
+ tree scalar_dest;
+ tree data_ref;
+ tree op;
+ tree vec_oprnd1;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ struct loop *loop = STMT_VINFO_LOOP (stmt_info);
+ enum machine_mode vec_mode;
+
+ /* Is vectorizable store? */
+
+ if (TREE_CODE (stmt) != MODIFY_EXPR)
+ return false;
+
+ scalar_dest = TREE_OPERAND (stmt, 0);
+ if (TREE_CODE (scalar_dest) != ARRAY_REF
+ && TREE_CODE (scalar_dest) != INDIRECT_REF)
+ return false;
+
+ op = TREE_OPERAND (stmt, 1);
+ if (!vect_is_simple_use (op, loop, NULL))
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "use not simple.");
+ return false;
+ }
+
+ vec_mode = TYPE_MODE (vectype);
+ /* FORNOW. In some cases can vectorize even if data-type not supported
+ (e.g. - array initialization with 0). */
+ if (mov_optab->handlers[(int)vec_mode].insn_code == CODE_FOR_nothing)
+ return false;
+
+ if (!STMT_VINFO_DATA_REF (stmt_info))
+ return false;
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
+ return true;
+ }
+
+ /** Trasform. **/
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "transform store");
+
+ /* Handle use - get the vectorized def from the defining stmt. */
+ vec_oprnd1 = vect_get_vec_def_for_operand (op, stmt);
+
+ /* Handle def. */
+ data_ref = vect_create_data_ref (stmt, bsi);
+
+ /* Arguments are ready. create the new vector stmt. */
+ *vec_stmt = build2 (MODIFY_EXPR, vectype, data_ref, vec_oprnd1);
+ vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
+
+ return true;
+}
+
+
+/* vectorizable_load.
+
+ Check if STMT reads a non scalar data-ref (array/pointer/structure) that
+ can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_load (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
+{
+ tree scalar_dest;
+ tree vec_dest = NULL;
+ tree data_ref = NULL;
+ tree op;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ tree new_temp;
+ enum machine_mode vec_mode;
+
+ /* Is vectorizable load? */
+
+ if (TREE_CODE (stmt) != MODIFY_EXPR)
+ return false;
+
+ scalar_dest = TREE_OPERAND (stmt, 0);
+ if (TREE_CODE (scalar_dest) != SSA_NAME)
+ return false;
+
+ op = TREE_OPERAND (stmt, 1);
+ if (TREE_CODE (op) != ARRAY_REF && TREE_CODE (op) != INDIRECT_REF)
+ return false;
+
+ if (!STMT_VINFO_DATA_REF (stmt_info))
+ return false;
+
+ vec_mode = TYPE_MODE (vectype);
+ /* FORNOW. In some cases can vectorize even if data-type not supported
+ (e.g. - data copies). */
+ if (mov_optab->handlers[(int)vec_mode].insn_code == CODE_FOR_nothing)
+ return false;
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
+ return true;
+ }
+
+ /** Trasform. **/
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "transform load.");
+
+ /* Handle def. */
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+
+ /* Handle use. */
+ op = TREE_OPERAND (stmt, 1);
+ data_ref = vect_create_data_ref (stmt, bsi);
+
+ /* Arguments are ready. create the new vector stmt. */
+ *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
+ new_temp = make_ssa_name (vec_dest, *vec_stmt);
+ TREE_OPERAND (*vec_stmt, 0) = new_temp;
+ vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
+
+ return true;
+}
+
+
+/* Function vect_transform_stmt.
+
+ Create a vectorized stmt to replace STMT, and insert it at BSI. */
+
+static bool
+vect_transform_stmt (tree stmt, block_stmt_iterator *bsi)
+{
+ bool is_store = false;
+ tree vec_stmt = NULL_TREE;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+
+ switch (STMT_VINFO_TYPE (stmt_info))
+ {
+ case op_vec_info_type:
+ if (!vectorizable_operation (stmt, bsi, &vec_stmt))
+ abort ();
+ break;
+
+ case assignment_vec_info_type:
+ if (!vectorizable_assignment (stmt, bsi, &vec_stmt))
+ abort ();
+ break;
+
+ case load_vec_info_type:
+ if (!vectorizable_load (stmt, bsi, &vec_stmt))
+ abort ();
+ break;
+
+ case store_vec_info_type:
+ if (!vectorizable_store (stmt, bsi, &vec_stmt))
+ abort ();
+ is_store = true;
+ break;
+ default:
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "stmt not supported.");
+ abort ();
+ }
+
+ STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
+
+ return is_store;
+}
+
+
+/* Function vect_transform_loop_bound.
+
+ Create a new exit condition for the loop. */
+
+static void
+vect_transform_loop_bound (loop_vec_info loop_vinfo)
+{
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ edge exit_edge = loop->exit_edges[0];
+ block_stmt_iterator loop_exit_bsi = bsi_last (exit_edge->src);
+ tree indx_before_incr, indx_after_incr;
+ tree orig_cond_expr;
+ HOST_WIDE_INT old_N = 0;
+ int vf;
+ tree cond_stmt;
+ tree new_loop_bound;
+ tree cond;
+ tree lb_type;
+
+#ifdef ENABLE_CHECKING
+ if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
+ abort ();
+#endif
+ old_N = LOOP_VINFO_NITERS (loop_vinfo);
+ vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+
+#ifdef ENABLE_CHECKING
+ /* FORNOW:
+ assuming number-of-iterations divides by the vectorization factor. */
+ if (old_N % vf)
+ abort ();
+#endif
+
+ orig_cond_expr = LOOP_VINFO_EXIT_COND (loop_vinfo);
+#ifdef ENABLE_CHECKING
+ if (!orig_cond_expr)
+ abort ();
+#endif
+ if (orig_cond_expr != bsi_stmt (loop_exit_bsi))
+ abort ();
+
+ /* both init and step are guaranted to be gimple expressions,
+ so we can use vect_create_iv_simple. */
+ vect_create_iv_simple (integer_zero_node, integer_one_node, NULL_TREE, loop,
+ &loop_exit_bsi, false, &indx_before_incr, &indx_after_incr);
+
+ /* bsi_insert is using BSI_NEW_STMT. We need to bump it back
+ to point to the exit condition. */
+ bsi_next (&loop_exit_bsi);
+ if (bsi_stmt (loop_exit_bsi) != orig_cond_expr)
+ abort ();
+
+ /* new loop exit test: */
+ lb_type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (orig_cond_expr, 0), 1));
+ new_loop_bound = build_int_cst (lb_type, old_N/vf, 0);
+
+ if (exit_edge->flags & EDGE_TRUE_VALUE) /* 'then' edge exits the loop. */
+ cond = build2 (GE_EXPR, boolean_type_node, indx_after_incr, new_loop_bound);
+ else /* 'then' edge loops back. */
+ cond = build2 (LT_EXPR, boolean_type_node, indx_after_incr, new_loop_bound);
+
+ cond_stmt = build3 (COND_EXPR, TREE_TYPE (orig_cond_expr), cond,
+ TREE_OPERAND (orig_cond_expr, 1), TREE_OPERAND (orig_cond_expr, 2));
+
+ bsi_insert_before (&loop_exit_bsi, cond_stmt, BSI_SAME_STMT);
+
+ /* remove old loop exit test: */
+ bsi_remove (&loop_exit_bsi);
+
+ if (vect_debug_details (NULL))
+ print_generic_expr (dump_file, cond_stmt, TDF_SLIM);
+}
+
+
+/* Function vect_transform_loop.
+
+ The analysis phase has determined that the loop is vectorizable.
+ Vectorize the loop - created vectorized stmts to replace the scalar
+ stmts in the loop, and update the loop exit condition. */
+
+static void
+vect_transform_loop (loop_vec_info loop_vinfo,
+ struct loops *loops ATTRIBUTE_UNUSED)
+{
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
+ int nbbs = loop->num_nodes;
+ block_stmt_iterator si;
+ int i;
+#ifdef ENABLE_CHECKING
+ int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+#endif
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "\n<<vec_transform_loop>>\n");
+
+ /* 1) Make sure the loop header has exactly two entries
+ 2) Make sure we have a preheader basic block. */
+
+ if (!loop->header->pred->pred_next
+ || loop->header->pred->pred_next->pred_next)
+ abort ();
+
+ loop_split_edge_with (loop_preheader_edge (loop), NULL);
+
+
+ /* FORNOW: the vectorizer supports only loops which body consist
+ of one basic block (header + empty latch). When the vectorizer will
+ support more involved loop forms, the order by which the BBs are
+ traversed need to be reconsidered. */
+
+ for (i = 0; i < nbbs; i++)
+ {
+ basic_block bb = bbs[i];
+
+ for (si = bsi_start (bb); !bsi_end_p (si);)
+ {
+ tree stmt = bsi_stmt (si);
+ stmt_vec_info stmt_info;
+ bool is_store;
+#ifdef ENABLE_CHECKING
+ tree vectype;
+#endif
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "------>vectorizing statement: ");
+ print_generic_expr (dump_file, stmt, TDF_SLIM);
+ }
+ stmt_info = vinfo_for_stmt (stmt);
+#ifdef ENABLE_CHECKING
+ if (!stmt_info)
+ abort ();
+#endif
+ if (!STMT_VINFO_RELEVANT_P (stmt_info))
+ {
+ bsi_next (&si);
+ continue;
+ }
+#ifdef ENABLE_CHECKING
+ /* FORNOW: Verify that all stmts operate on the same number of
+ units and no inner unrolling is necessary. */
+ vectype = STMT_VINFO_VECTYPE (stmt_info);
+ if (GET_MODE_NUNITS (TYPE_MODE (vectype)) != vectorization_factor)
+ abort ();
+#endif
+ /* -------- vectorize statement ------------ */
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "transform statement.");
+
+ is_store = vect_transform_stmt (stmt, &si);
+ if (is_store)
+ {
+ /* free the attached stmt_vec_info and remove the stmt. */
+ stmt_ann_t ann = stmt_ann (stmt);
+ free (stmt_info);
+ set_stmt_info (ann, NULL);
+ bsi_remove (&si);
+ continue;
+ }
+
+ bsi_next (&si);
+ } /* stmts in BB */
+ } /* BBs in loop */
+
+ vect_transform_loop_bound (loop_vinfo);
+
+ if (vect_debug_details (loop))
+ fprintf (dump_file,"Success! loop vectorized.");
+ if (vect_debug_stats (loop))
+ fprintf (dump_file, "LOOP VECTORIZED.");
+}
+
+
+/* Function vect_is_simple_use.
+
+ Input:
+ LOOP - the loop that is being vectorized.
+ OPERAND - operand of a stmt in LOOP.
+ DEF - the defining stmt in case OPERAND is an SSA_NAME.
+
+ Returns whether a stmt with OPERAND can be vectorized.
+ Supportable operands are constants, loop invariants, and operands that are
+ defined by the current iteration of the loop. Unsupportable opernads are
+ those that are defined by a previous iteration of the loop (as is the case
+ in reduction/induction computations). */
+
+static bool
+vect_is_simple_use (tree operand, struct loop *loop, tree *def)
+{
+ tree def_stmt;
+ basic_block bb;
+
+ if (def)
+ *def = NULL_TREE;
+
+ if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
+ return true;
+
+ if (TREE_CODE (operand) != SSA_NAME)
+ return false;
+
+ def_stmt = SSA_NAME_DEF_STMT (operand);
+ if (def_stmt == NULL_TREE )
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "no def_stmt.");
+ return false;
+ }
+
+ /* empty stmt is expected only in case of a function argument.
+ (Otherwise - we expect a phi_node or a modify_expr). */
+ if (IS_EMPTY_STMT (def_stmt))
+ {
+ tree arg = TREE_OPERAND (def_stmt, 0);
+ if (TREE_CODE (arg) == INTEGER_CST || TREE_CODE (arg) == REAL_CST)
+ return true;
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "Unexpected empty stmt: ");
+ print_generic_expr (dump_file, def_stmt, TDF_SLIM);
+ }
+ return false;
+ }
+
+ /* phi_node inside the loop indicates an induction/reduction pattern.
+ This is not supported yet. */
+ bb = bb_for_stmt (def_stmt);
+ if (TREE_CODE (def_stmt) == PHI_NODE && flow_bb_inside_loop_p (loop, bb))
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "reduction/induction - unsupported.");
+ return false; /* FORNOW: not supported yet. */
+ }
+
+ /* Expecting a modify_expr or a phi_node. */
+ if (TREE_CODE (def_stmt) == MODIFY_EXPR
+ || TREE_CODE (def_stmt) == PHI_NODE)
+ {
+ if (def)
+ *def = def_stmt;
+ return true;
+ }
+
+ return false;
+}
+
+
+/* Function vect_analyze_operations.
+
+ Scan the loop stmts and make sure they are all vectorizable. */
+
+static bool
+vect_analyze_operations (loop_vec_info loop_vinfo)
+{
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
+ int nbbs = loop->num_nodes;
+ block_stmt_iterator si;
+ int vectorization_factor = 0;
+ int i;
+ bool ok;
+ tree scalar_type;
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "\n<<vect_analyze_operations>>\n");
+
+ for (i = 0; i < nbbs; i++)
+ {
+ basic_block bb = bbs[i];
+
+ for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
+ {
+ tree stmt = bsi_stmt (si);
+ int nunits;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype;
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "==> examining statement: ");
+ print_generic_expr (dump_file, stmt, TDF_SLIM);
+ }
+#ifdef ENABLE_CHECKING
+ if (!stmt_info)
+ abort ();
+#endif
+ /* skip stmts which do not need to be vectorized.
+ this is expected to include:
+ - the COND_EXPR which is the loop exit condition
+ - any LABEL_EXPRs in the loop
+ - computations that are used only for array indexing or loop
+ control */
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info))
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "irrelevant.");
+ continue;
+ }
+
+ if (VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (stmt))))
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ {
+ fprintf (dump_file, "not vectorized: vector stmt in loop:");
+ print_generic_expr (dump_file, stmt, TDF_SLIM);
+ }
+ return false;
+ }
+
+ if (STMT_VINFO_DATA_REF (stmt_info))
+ scalar_type = TREE_TYPE (DR_REF (STMT_VINFO_DATA_REF (stmt_info)));
+ else if (TREE_CODE (stmt) == MODIFY_EXPR)
+ scalar_type = TREE_TYPE (TREE_OPERAND (stmt, 0));
+ else
+ scalar_type = TREE_TYPE (stmt);
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "get vectype for scalar type: ");
+ print_generic_expr (dump_file, scalar_type, TDF_SLIM);
+ }
+
+ vectype = get_vectype_for_scalar_type (scalar_type);
+ if (!vectype)
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ {
+ fprintf (dump_file, "not vectorized: unsupported data-type ");
+ print_generic_expr (dump_file, scalar_type, TDF_SLIM);
+ }
+ return false;
+ }
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "vectype: ");
+ print_generic_expr (dump_file, vectype, TDF_SLIM);
+ }
+ STMT_VINFO_VECTYPE (stmt_info) = vectype;
+
+ ok = (vectorizable_operation (stmt, NULL, NULL)
+ || vectorizable_assignment (stmt, NULL, NULL)
+ || vectorizable_load (stmt, NULL, NULL)
+ || vectorizable_store (stmt, NULL, NULL));
+
+ if (!ok)
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ {
+ fprintf (dump_file, "not vectorized: stmt not supported: ");
+ print_generic_expr (dump_file, stmt, TDF_SLIM);
+ }
+ return false;
+ }
+
+ nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "nunits = %d", nunits);
+
+ if (vectorization_factor)
+ {
+ /* FORNOW: don't allow mixed units.
+ This restriction will be relaxed in the future. */
+ if (nunits != vectorization_factor)
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ fprintf (dump_file, "not vectorized: mixed data-types");
+ return false;
+ }
+ }
+ else
+ vectorization_factor = nunits;
+ }
+ }
+
+ /* TODO: Analyze cost. Decide if worth while to vectorize. */
+ if (!vectorization_factor)
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ fprintf (dump_file, "not vectorized: unsupported data-type");
+ return false;
+ }
+ LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
+
+ /* FORNOW: handle only cases where the loop bound divides by the
+ vectorization factor. */
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file,
+ "vectorization_factor = %d, niters = " HOST_WIDE_INT_PRINT_DEC,
+ vectorization_factor, LOOP_VINFO_NITERS (loop_vinfo));
+
+ if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ fprintf (dump_file, "not vectorized: Unknown loop bound.");
+ return false;
+ }
+
+ if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
+ && LOOP_VINFO_NITERS (loop_vinfo) % vectorization_factor != 0)
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ fprintf (dump_file, "not vectorized: loop bound doesn't divided by %d.",
+ vectorization_factor);
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Function exist_non_indexing_operands_for_use_p
+
+ USE is one of the uses attached to STMT. Check if USE is
+ used in STMT for anything other than indexing an array. */
+
+static bool
+exist_non_indexing_operands_for_use_p (tree use, tree stmt)
+{
+ tree operand;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+
+ /* USE corresponds to some operand in STMT. If there is no data
+ reference in STMT, then any operand that corresponds to USE
+ is not indexing an array. */
+ if (!STMT_VINFO_DATA_REF (stmt_info))
+ return true;
+
+ /* STMT has a data_ref. FORNOW this means that its of one of
+ the following forms:
+ -1- ARRAY_REF = var
+ -2- var = ARRAY_REF
+ (This should have been verified in analyze_data_refs).
+
+ 'var' in the second case corresponds to a def, not a use,
+ so USE cannot correspond to any operands that are not used
+ for array indexing.
+
+ Therefore, all we need to check is if STMT falls into the
+ first case, and whether var corresponds to USE. */
+
+ if (TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME)
+ return false;
+
+ operand = TREE_OPERAND (stmt, 1);
+
+ if (TREE_CODE (operand) != SSA_NAME)
+ return false;
+
+ if (operand == use)
+ return true;
+
+ return false;
+}
+
+
+/* Function vect_is_simple_iv_evolution.
+
+ FORNOW: A simple evolution of an induction variables in the loop is
+ considered a polynomial evolution with constant step. */
+
+static bool
+vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
+ tree * step, bool strict)
+{
+ tree init_expr;
+ tree step_expr;
+
+ tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
+
+ /* When there is no evolution in this loop, the evolution function
+ is not "simple". */
+ if (evolution_part == NULL_TREE)
+ return false;
+
+ /* When the evolution is a polynomial of degree >= 2
+ the evolution function is not "simple". */
+ if (tree_is_chrec (evolution_part))
+ return false;
+
+ step_expr = evolution_part;
+ init_expr = initial_condition (access_fn);
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "step: ");
+ print_generic_expr (dump_file, step_expr, TDF_SLIM);
+ fprintf (dump_file, ", init: ");
+ print_generic_expr (dump_file, init_expr, TDF_SLIM);
+ }
+
+ *init = init_expr;
+ *step = step_expr;
+
+ if (TREE_CODE (step_expr) != INTEGER_CST)
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "step unknown.");
+ return false;
+ }
+
+ if (strict)
+ if (!integer_onep (step_expr))
+ {
+ if (vect_debug_details (NULL))
+ print_generic_expr (dump_file, step_expr, TDF_SLIM);
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Function vect_analyze_scalar_cycles.
+
+ Examine the cross iteration def-use cycles of scalar variables, by
+ analyzing the loop (scalar) PHIs; verify that the cross iteration def-use
+ cycles that they represent do not impede vectorization.
+
+ FORNOW: Reduction as in the following loop, is not supported yet:
+ loop1:
+ for (i=0; i<N; i++)
+ sum += a[i];
+ The cross-iteration cycle corresponding to variable 'sum' will be
+ considered too complicated and will impede vectorization.
+
+ FORNOW: Induction as in the following loop, is not supported yet:
+ loop2:
+ for (i=0; i<N; i++)
+ a[i] = i;
+
+ However, the following loop *is* vectorizable:
+ loop3:
+ for (i=0; i<N; i++)
+ a[i] = b[i];
+
+ In both loops there exists a def-use cycle for the variable i:
+ loop: i_2 = PHI (i_0, i_1)
+ a[i_2] = ...;
+ i_1 = i_2 + 1;
+ GOTO loop;
+
+ The evolution of the above cycle is considered simple enough,
+ however, we also check that the cycle does not need to be
+ vectorized, i.e - we check that the variable that this cycle
+ defines is only used for array indexing or in stmts that do not
+ need to be vectorized. This is not the case in loop2, but it
+ *is* the case in loop3. */
+
+static bool
+vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
+{
+ tree phi;
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ basic_block bb = loop->header;
+ tree dummy;
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "\n<<vect_analyze_scalar_cycles>>\n");
+
+ for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
+ {
+ tree access_fn = NULL;
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "Analyze phi: ");
+ print_generic_expr (dump_file, phi, TDF_SLIM);
+ }
+
+ /* Skip virtual phi's. The data dependences that are associated with
+ virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
+
+ if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "virtual phi. skip.");
+ continue;
+ }
+
+ /* Analyze the evolution function. */
+
+ /* FORNOW: The only scalar cross-iteration cycles that we allow are
+ those of loop induction variables; This property is verified here.
+
+ Furthermore, if that induction variable is used in an operation
+ that needs to be vectorized (i.e, is not solely used to index
+ arrays and check the exit condition) - we do not support its
+ vectorization yet. This property is verified in vect_is_simple_use,
+ during vect_analyze_operations. */
+
+ access_fn = instantiate_parameters
+ (loop,
+ analyze_scalar_evolution (loop, PHI_RESULT (phi)));
+
+ if (!access_fn)
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ fprintf (dump_file, "not vectorized: unsupported scalar cycle.");
+ return false;
+ }
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "Access function of PHI: ");
+ print_generic_expr (dump_file, access_fn, TDF_SLIM);
+ }
+
+ if (!vect_is_simple_iv_evolution (loop->num, access_fn, &dummy,
+ &dummy, false))
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ fprintf (dump_file, "not vectorized: unsupported scalar cycle.");
+ return false;
+ }
+ }
+
+ return true;
+}
+
+
+/* Function vect_analyze_data_ref_dependence.
+
+ Return TRUE if there (might) exist a dependence between a memory-reference
+ DRA and a memory-reference DRB. */
+
+static bool
+vect_analyze_data_ref_dependence (struct data_reference *dra,
+ struct data_reference *drb,
+ struct loop *loop)
+{
+ bool differ_p;
+ struct data_dependence_relation *ddr;
+
+ if (!array_base_name_differ_p (dra, drb, &differ_p))
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ {
+ fprintf (dump_file,
+ "not vectorized: can't determine dependence between: ");
+ print_generic_expr (dump_file, DR_REF (dra), TDF_SLIM);
+ fprintf (dump_file, " and ");
+ print_generic_expr (dump_file, DR_REF (drb), TDF_SLIM);
+ }
+ return true;
+ }
+
+ if (differ_p)
+ return false;
+
+ ddr = initialize_data_dependence_relation (dra, drb);
+ compute_affine_dependence (ddr);
+
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
+ return false;
+
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ {
+ fprintf (dump_file,
+ "not vectorized: possible dependence between data-refs ");
+ print_generic_expr (dump_file, DR_REF (dra), TDF_SLIM);
+ fprintf (dump_file, " and ");
+ print_generic_expr (dump_file, DR_REF (drb), TDF_SLIM);
+ }
+
+ return true;
+}
+
+
+/* Function vect_analyze_data_ref_dependences.
+
+ Examine all the data references in the loop, and make sure there do not
+ exist any data dependences between them.
+
+ TODO: dependences which distance is greater than the vectorization factor
+ can be ignored. */
+
+static bool
+vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo)
+{
+ unsigned int i, j;
+ varray_type loop_write_refs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
+ varray_type loop_read_refs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+ /* Examine store-store (output) dependences. */
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "\n<<vect_analyze_dependences>>\n");
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "compare all store-store pairs.");
+
+ for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_refs); i++)
+ {
+ for (j = i + 1; j < VARRAY_ACTIVE_SIZE (loop_write_refs); j++)
+ {
+ struct data_reference *dra =
+ VARRAY_GENERIC_PTR (loop_write_refs, i);
+ struct data_reference *drb =
+ VARRAY_GENERIC_PTR (loop_write_refs, j);
+ if (vect_analyze_data_ref_dependence (dra, drb, loop))
+ return false;
+ }
+ }
+
+ /* Examine load-store (true/anti) dependences. */
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "compare all load-store pairs.");
+
+ for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_refs); i++)
+ {
+ for (j = 0; j < VARRAY_ACTIVE_SIZE (loop_write_refs); j++)
+ {
+ struct data_reference *dra = VARRAY_GENERIC_PTR (loop_read_refs, i);
+ struct data_reference *drb =
+ VARRAY_GENERIC_PTR (loop_write_refs, j);
+ if (vect_analyze_data_ref_dependence (dra, drb, loop))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+
+/* Function vect_get_first_index.
+
+ REF is a data reference.
+ If it is an ARRAY_REF: if its lower bound is simple enough,
+ put it in ARRAY_FIRST_INDEX and return TRUE; otherwise - return FALSE.
+ If it is not an ARRAY_REF: REF has no "first index";
+ ARRAY_FIRST_INDEX in zero, and the function returns TRUE. */
+
+static bool
+vect_get_first_index (tree ref, tree *array_first_index)
+{
+ tree array_start;
+
+ if (TREE_CODE (ref) != ARRAY_REF)
+ *array_first_index = size_zero_node;
+ else
+ {
+ array_start = array_ref_low_bound (ref);
+ if (!host_integerp (array_start,0))
+ {
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "array min val not simple integer cst.");
+ print_generic_expr (dump_file, array_start, TDF_DETAILS);
+ }
+ return false;
+ }
+ *array_first_index = array_start;
+ }
+
+ return true;
+}
+
+
+/* Function vect_compute_data_ref_alignment
+
+ Compute the misalignment of the data reference DR.
+
+ FOR NOW: No analysis is actually performed. Misalignment is calculated
+ only for trivial cases. TODO. */
+
+static void
+vect_compute_data_ref_alignment (struct data_reference *dr,
+ loop_vec_info loop_vinfo ATTRIBUTE_UNUSED)
+{
+ tree stmt = DR_STMT (dr);
+ tree ref = DR_REF (dr);
+ tree vectype;
+ tree access_fn = DR_ACCESS_FN (dr, 0); /* FORNOW: single access_fn. */
+ tree init;
+ tree scalar_type;
+ tree misalign;
+ tree array_first_index;
+ tree array_base = DR_BASE_NAME (dr);
+ tree base_decl = NULL_TREE;
+ tree bit_offset = size_zero_node;
+ tree offset = size_zero_node;
+ tree unit_bits = build_int_cst (unsigned_type_node, BITS_PER_UNIT, 0);
+ tree nunits;
+ tree alignment;
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "vect_compute_data_ref_alignment:");
+
+ /* Initialize misalignment to unknown. */
+ DR_MISALIGNMENT (dr) = -1;
+
+ scalar_type = TREE_TYPE (ref);
+ vectype = get_vectype_for_scalar_type (scalar_type);
+ if (!vectype)
+ {
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "no vectype for stmt: ");
+ print_generic_expr (dump_file, stmt, TDF_SLIM);
+ fprintf (dump_file, "scalar_type: ");
+ print_generic_expr (dump_file, scalar_type, TDF_DETAILS);
+ }
+ return;
+ }
+
+ if (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (array_base))) < TYPE_ALIGN (vectype))
+ {
+ base_decl = vect_get_base_decl_and_bit_offset (array_base, &bit_offset);
+ if (!base_decl)
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "Unknown alignment for access");
+ return;
+ }
+
+ offset = int_const_binop (TRUNC_DIV_EXPR, bit_offset, unit_bits, 1);
+ bit_offset = int_const_binop (TRUNC_MOD_EXPR, bit_offset, unit_bits, 1);
+ if (!integer_zerop (bit_offset))
+ {
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "bit offset alignment: ");
+ print_generic_expr (dump_file, bit_offset, TDF_SLIM);
+ }
+ return;
+ }
+
+ if (!base_decl ||
+ (DECL_ALIGN (base_decl) < TYPE_ALIGN (vectype)
+ && !vect_can_force_dr_alignment_p (base_decl, TYPE_ALIGN (vectype))))
+ {
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "can't force alignment of ref: ");
+ print_generic_expr (dump_file, array_base, TDF_SLIM);
+ }
+ return;
+ }
+
+ if (DECL_ALIGN (base_decl) < TYPE_ALIGN (vectype))
+ {
+ /* Force the alignment of the decl.
+ NOTE: This is the only change to the code we make during
+ the analysis phase, before deciding to vectorize the loop. */
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "force alignment");
+ DECL_ALIGN (base_decl) = TYPE_ALIGN (vectype);
+ DECL_USER_ALIGN (base_decl) = TYPE_ALIGN (vectype);
+ }
+ }
+
+ /* The misalignement is:
+ (base_alignment + offset + index_access_fn_init) % alignment.
+ At this point we already guaranteed that base_alignment == 0,
+ and computed the offset.
+ It remains to check the first index accessed. */
+
+ if (!vect_get_first_index (ref, &array_first_index))
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "no first_index for array.");
+ return;
+ }
+
+ /* Check the index of the array_ref. */
+
+ init = initial_condition (access_fn);
+
+ /* FORNOW: In order to simplify the handling of alignment, we make sure
+ that the first location at which the array is accessed ('init') is on an
+ 'NUNITS' boundary, since we are assuming here that 'array base' is aligned.
+ This is too conservative, since we require that
+ both {'array_base' is a multiple of NUNITS} && {'init' is a multiple of
+ NUNITS}, instead of just {('array_base' + 'init') is a multiple of NUNITS}.
+ This should be relaxed in the future. */
+
+ if (!init || !host_integerp (init,0))
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "init not simple INTEGER_CST.");
+ return;
+ }
+
+ /* alignment required, in bytes: */
+ alignment = build_int_cst (unsigned_type_node,
+ TYPE_ALIGN (vectype)/BITS_PER_UNIT, 0);
+ /* bytes per scalar element: */
+ nunits = build_int_cst (unsigned_type_node,
+ GET_MODE_SIZE (TYPE_MODE (scalar_type)), 0);
+
+ /* misalign = (offset + (init-array_first_index)*nunits) % alignment */
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "misalign = ( offset <");
+ print_generic_expr (dump_file, offset, TDF_SLIM);
+ fprintf (dump_file, "> + (init <");
+ print_generic_expr (dump_file, init, TDF_SLIM);
+ fprintf (dump_file, "> - first_indx <");
+ print_generic_expr (dump_file, array_first_index, TDF_SLIM);
+ fprintf (dump_file, ">) * nunits <");
+ print_generic_expr (dump_file, nunits, TDF_SLIM);
+ fprintf (dump_file, ">) mod alignment <");
+ print_generic_expr (dump_file, alignment, TDF_SLIM);
+ fprintf (dump_file, ">");
+ }
+
+ misalign = int_const_binop (MINUS_EXPR, init, array_first_index, 0);
+ misalign = int_const_binop (MULT_EXPR, misalign, nunits, 0);
+ misalign = int_const_binop (PLUS_EXPR, misalign, offset, 0);
+ misalign = int_const_binop (TRUNC_MOD_EXPR, misalign, alignment, 0);
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "misalign = ");
+ print_generic_expr (dump_file, misalign, TDF_SLIM);
+ }
+
+ if (!host_integerp (misalign,1) || TREE_OVERFLOW (misalign))
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "unexpected misalign value");
+ return;
+ }
+
+ DR_MISALIGNMENT (dr) = tree_low_cst (misalign,1);
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "misalign = %d",DR_MISALIGNMENT (dr));
+}
+
+
+/* Function vect_compute_data_refs_alignment
+
+ Compute the misalignment of data references in the loop.
+ This pass may take place at function granularity instead of at loop
+ granularity.
+
+ FOR NOW: No analysis is actually performed. Misalignment is calculated
+ only for trivial cases. TODO. */
+
+static void
+vect_compute_data_refs_alignment (loop_vec_info loop_vinfo)
+{
+ varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
+ varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
+ unsigned int i;
+
+ for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
+ {
+ struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
+ vect_compute_data_ref_alignment (dr, loop_vinfo);
+ }
+
+ for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
+ {
+ struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
+ vect_compute_data_ref_alignment (dr, loop_vinfo);
+ }
+}
+
+
+/* Function vect_enhance_data_refs_alignment
+
+ This pass will use loop versioning and loop peeling in order to enhance
+ the alignment of data references in the loop.
+
+ FOR NOW: we assume that whatever versioning/peeling takes place, only the
+ original loop is to be vectorized; Any other loops that are created by
+ the transformations performed in this pass - are not supposed to be
+ vectorized. This restriction will be relaxed.
+
+ FOR NOW: No transformation is actually performed. TODO. */
+
+static void
+vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo ATTRIBUTE_UNUSED)
+{
+ /*
+ This pass will require a cost model to guide it whether to apply peeling
+ or versioning or a combination of the two. For example, the scheme that
+ intel uses when given a loop with several memory accesses, is as follows:
+ choose one memory access ('p') which alignment you want to force by doing
+ peeling. Then, either (1) generate a loop in which 'p' is aligned and all
+ other accesses are not necessarily aligned, or (2) use loop versioning to
+ generate one loop in which all accesses are aligned, and another loop in
+ which only 'p' is necessarily aligned.
+
+ ("Automatic Intra-Register Vectorization for the Intel Architecture",
+ Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
+ Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
+
+ Devising a cost model is the most critical aspect of this work. It will
+ guide us on which access to peel for, whether to use loop versioning, how
+ many versions to create, etc. The cost model will probably consist of
+ generic considerations as well as target specific considerations (on
+ powerpc for example, misaligned stores are more painful than misaligned
+ loads).
+
+ Here is the general steps involved in alignment enhancements:
+
+ -- original loop, before alignment analysis:
+ for (i=0; i<N; i++){
+ x = q[i]; # DR_MISALIGNMENT(q) = unknown
+ p[i] = y; # DR_MISALIGNMENT(p) = unknown
+ }
+
+ -- After vect_compute_data_refs_alignment:
+ for (i=0; i<N; i++){
+ x = q[i]; # DR_MISALIGNMENT(q) = 3
+ p[i] = y; # DR_MISALIGNMENT(p) = unknown
+ }
+
+ -- Possibility 1: we do loop versioning:
+ if (p is aligned) {
+ for (i=0; i<N; i++){ # loop 1A
+ x = q[i]; # DR_MISALIGNMENT(q) = 3
+ p[i] = y; # DR_MISALIGNMENT(p) = 0
+ }
+ }
+ else {
+ for (i=0; i<N; i++){ # loop 1B
+ x = q[i]; # DR_MISALIGNMENT(q) = 3
+ p[i] = y; # DR_MISALIGNMENT(p) = unaligned
+ }
+ }
+
+ -- Possibility 2: we do loop peeling:
+ for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
+ x = q[i];
+ p[i] = y;
+ }
+ for (i = 3; i < N; i++){ # loop 2A
+ x = q[i]; # DR_MISALIGNMENT(q) = 0
+ p[i] = y; # DR_MISALIGNMENT(p) = unknown
+ }
+
+ -- Possibility 3: combination of loop peeling and versioning:
+ for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
+ x = q[i];
+ p[i] = y;
+ }
+ if (p is aligned) {
+ for (i = 3; i<N; i++){ # loop 3A
+ x = q[i]; # DR_MISALIGNMENT(q) = 0
+ p[i] = y; # DR_MISALIGNMENT(p) = 0
+ }
+ }
+ else {
+ for (i = 3; i<N; i++){ # loop 3B
+ x = q[i]; # DR_MISALIGNMENT(q) = 0
+ p[i] = y; # DR_MISALIGNMENT(p) = unaligned
+ }
+ }
+
+ These loops are later passed to loop_transform to be vectorized. The
+ vectorizer will use the alignment information to guide the transformation
+ (whether to generate regular loads/stores, or with special handling for
+ misalignment).
+ */
+}
+
+
+/* Function vect_analyze_data_refs_alignment
+
+ Analyze the alignment of the data-references in the loop.
+ FOR NOW: Until support for misliagned accesses is in place, only if all
+ accesses are aligned can the loop be vectorized. This restriction will be
+ relaxed. */
+
+static bool
+vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo)
+{
+ varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
+ varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
+ unsigned int i;
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "\n<<vect_analyze_data_refs_alignment>>\n");
+
+
+ /* This pass may take place at function granularity instead of at loop
+ granularity. */
+
+ vect_compute_data_refs_alignment (loop_vinfo);
+
+
+ /* This pass will use loop versioning and loop peeling in order to enhance
+ the alignment of data references in the loop.
+ FOR NOW: we assume that whatever versioning/peeling took place, the
+ original loop is to be vectorized. Any other loops that were created by
+ the transformations performed in this pass - are not supposed to be
+ vectorized. This restriction will be relaxed. */
+
+ vect_enhance_data_refs_alignment (loop_vinfo);
+
+
+ /* Finally, check that loop can be vectorized.
+ FOR NOW: Until support for misaligned accesses is in place, only if all
+ accesses are aligned can the loop be vectorized. This restriction will be
+ relaxed. */
+
+ for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
+ {
+ struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
+ if (!aligned_access_p (dr))
+ {
+ if (vect_debug_stats (LOOP_VINFO_LOOP (loop_vinfo))
+ || vect_debug_details (LOOP_VINFO_LOOP (loop_vinfo)))
+ fprintf (dump_file, "not vectorized: unaligned store.");
+ return false;
+ }
+ }
+
+ for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
+ {
+ struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
+ if (!aligned_access_p (dr))
+ {
+ if (vect_debug_stats (LOOP_VINFO_LOOP (loop_vinfo))
+ || vect_debug_details (LOOP_VINFO_LOOP (loop_vinfo)))
+ fprintf (dump_file, "not vectorized: unaligned load.");
+ return false;
+ }
+ }
+
+ return true;
+}
+
+
+/* Function vect_analyze_data_ref_access.
+
+ Analyze the access pattern of the data-reference DR. For now, a data access
+ has to consecutive and aligned to be considered vectorizable. */
+
+static bool
+vect_analyze_data_ref_access (struct data_reference *dr)
+{
+ varray_type access_fns = DR_ACCESS_FNS (dr);
+ tree access_fn;
+ tree init, step;
+
+ /* FORNOW: handle only one dimensional arrays.
+ This restriction will be relaxed in the future. */
+ if (VARRAY_ACTIVE_SIZE (access_fns) != 1)
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "multi dimensional array reference.");
+ return false;
+ }
+ access_fn = DR_ACCESS_FN (dr, 0);
+
+ if (!vect_is_simple_iv_evolution (loop_containing_stmt (DR_STMT (dr))->num,
+ access_fn, &init, &step, true))
+ {
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "too complicated access function.");
+ print_generic_expr (dump_file, access_fn, TDF_SLIM);
+ }
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Function vect_analyze_data_ref_accesses.
+
+ Analyze the access pattern of all the data references in the loop.
+
+ FORNOW: the only access pattern that is considered vectorizable is a
+ simple step 1 (consecutive) access.
+
+ FORNOW: handle only one dimensional arrays, and pointer accesses. */
+
+static bool
+vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo)
+{
+ unsigned int i;
+ varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
+ varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "\n<<vect_analyze_data_ref_accesses>>\n");
+
+ for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
+ {
+ struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
+ bool ok = vect_analyze_data_ref_access (dr);
+ if (!ok)
+ {
+ if (vect_debug_stats (LOOP_VINFO_LOOP (loop_vinfo))
+ || vect_debug_details (LOOP_VINFO_LOOP (loop_vinfo)))
+ fprintf (dump_file, "not vectorized: complicated access pattern.");
+ return false;
+ }
+ }
+
+ for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
+ {
+ struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
+ bool ok = vect_analyze_data_ref_access (dr);
+ if (!ok)
+ {
+ if (vect_debug_stats (LOOP_VINFO_LOOP (loop_vinfo))
+ || vect_debug_details (LOOP_VINFO_LOOP (loop_vinfo)))
+ fprintf (dump_file, "not vectorized: complicated access pattern.");
+ return false;
+ }
+ }
+
+ return true;
+}
+
+
+/* Function vect_analyze_pointer_ref_access.
+
+ Input:
+ STMT - a stmt that contains a data-ref
+ MEMREF - a data-ref in STMT, which is an INDIRECT_REF.
+
+ If the data-ref access is vectorizable, return a data_reference structure
+ that represents it (DR). Otherwise - return NULL. */
+
+static struct data_reference *
+vect_analyze_pointer_ref_access (tree memref, tree stmt, bool is_read)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ struct loop *loop = STMT_VINFO_LOOP (stmt_info);
+ tree access_fn = analyze_scalar_evolution (loop, TREE_OPERAND (memref, 0));
+ tree init, step;
+ int step_val;
+ tree reftype, innertype;
+ enum machine_mode innermode;
+ tree indx_access_fn;
+ int loopnum = loop->num;
+ struct data_reference *dr;
+
+ if (!access_fn)
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ fprintf (dump_file, "not vectorized: complicated pointer access.");
+ return NULL;
+ }
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "Access function of ptr: ");
+ print_generic_expr (dump_file, access_fn, TDF_SLIM);
+ }
+
+ if (!vect_is_simple_iv_evolution (loopnum, access_fn, &init, &step, false))
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ fprintf (dump_file, "not vectorized: pointer access is not simple.");
+ return NULL;
+ }
+
+ if (TREE_CODE (init) != SSA_NAME /* FORNOW */
+ || !host_integerp (step,0))
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ fprintf (dump_file,
+ "not vectorized: non constant init/step for pointer access.");
+ return NULL;
+ }
+
+ step_val = TREE_INT_CST_LOW (step);
+
+ reftype = TREE_TYPE (TREE_OPERAND (memref, 0));
+ if (TREE_CODE (reftype) != POINTER_TYPE)
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ fprintf (dump_file, "not vectorized: unexpected pointer access form.");
+ return NULL;
+ }
+
+ reftype = TREE_TYPE (init);
+ if (TREE_CODE (reftype) != POINTER_TYPE)
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ fprintf (dump_file, "not vectorized: unexpected pointer access form.");
+ return NULL;
+ }
+
+ innertype = TREE_TYPE (reftype);
+ innermode = TYPE_MODE (innertype);
+ if (GET_MODE_SIZE (innermode) != step_val)
+ {
+ /* FORNOW: support only consecutive access */
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ fprintf (dump_file, "not vectorized: non consecutive access.");
+ return NULL;
+ }
+
+ indx_access_fn =
+ build_polynomial_chrec (loopnum, integer_zero_node, integer_one_node);
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "Access function of ptr indx: ");
+ print_generic_expr (dump_file, indx_access_fn, TDF_SLIM);
+ }
+ dr = init_data_ref (stmt, memref, init, indx_access_fn, is_read);
+ return dr;
+}
+
+
+/* Function vect_analyze_data_refs.
+
+ Find all the data references in the loop.
+
+ FORNOW: Handle aligned INDIRECT_REFs and one dimensional ARRAY_REFs
+ which base is really an array (not a pointer) and which alignment
+ can be forced. This restriction will be relaxed. */
+
+static bool
+vect_analyze_data_refs (loop_vec_info loop_vinfo)
+{
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
+ int nbbs = loop->num_nodes;
+ block_stmt_iterator si;
+ int j;
+ struct data_reference *dr;
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "\n<<vect_analyze_data_refs>>\n");
+
+ for (j = 0; j < nbbs; j++)
+ {
+ basic_block bb = bbs[j];
+ for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
+ {
+ bool is_read = false;
+ tree stmt = bsi_stmt (si);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (stmt);
+ v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
+ vuse_optype vuses = STMT_VUSE_OPS (stmt);
+ varray_type *datarefs = NULL;
+ int nvuses, nv_may_defs, nv_must_defs;
+ tree memref = NULL;
+ tree array_base;
+ tree symbl;
+
+ /* Assumption: there exists a data-ref in stmt, if and only if
+ it has vuses/vdefs. */
+
+ if (!vuses && !v_may_defs && !v_must_defs)
+ continue;
+
+ nvuses = NUM_VUSES (vuses);
+ nv_may_defs = NUM_V_MAY_DEFS (v_may_defs);
+ nv_must_defs = NUM_V_MUST_DEFS (v_must_defs);
+
+ if (nvuses && (nv_may_defs || nv_must_defs))
+ {
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "unexpected vdefs and vuses in stmt: ");
+ print_generic_expr (dump_file, stmt, TDF_SLIM);
+ }
+ return false;
+ }
+
+ if (TREE_CODE (stmt) != MODIFY_EXPR)
+ {
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "unexpected vops in stmt: ");
+ print_generic_expr (dump_file, stmt, TDF_SLIM);
+ }
+ return false;
+ }
+
+ if (vuses)
+ {
+ memref = TREE_OPERAND (stmt, 1);
+ datarefs = &(LOOP_VINFO_DATAREF_READS (loop_vinfo));
+ is_read = true;
+ }
+ else /* vdefs */
+ {
+ memref = TREE_OPERAND (stmt, 0);
+ datarefs = &(LOOP_VINFO_DATAREF_WRITES (loop_vinfo));
+ is_read = false;
+ }
+
+ if (TREE_CODE (memref) == INDIRECT_REF)
+ {
+ dr = vect_analyze_pointer_ref_access (memref, stmt, is_read);
+ if (! dr)
+ return false;
+ symbl = DR_BASE_NAME (dr);
+ }
+ else if (TREE_CODE (memref) == ARRAY_REF)
+ {
+ tree base;
+ tree offset = size_zero_node;
+ array_base = TREE_OPERAND (memref, 0);
+
+ /* FORNOW: make sure that the array is one dimensional.
+ This restriction will be relaxed in the future. */
+ if (TREE_CODE (array_base) == ARRAY_REF)
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ {
+ fprintf (dump_file,
+ "not vectorized: multi-dimensional array.");
+ print_generic_expr (dump_file, stmt, TDF_SLIM);
+ }
+ return false;
+ }
+
+ dr = analyze_array (stmt, memref, is_read);
+
+ /* Find the relevant symbol for aliasing purposes. */
+ base = DR_BASE_NAME (dr);
+ switch (TREE_CODE (base))
+ {
+ case VAR_DECL:
+ symbl = base;
+ break;
+ /* FORNOW: Disabled.
+ case INDIRECT_REF:
+ symbl = TREE_OPERAND (base, 0);
+ break;
+ */
+ case COMPONENT_REF:
+ /* CHECKME: could have recorded more accurate information -
+ i.e, the actual FIELD_DECL that is being referenced -
+ but later passes expect VAR_DECL as the nmt. */
+ symbl = vect_get_base_decl_and_bit_offset (base, &offset);
+ if (symbl)
+ break;
+ /* fall through */
+ default:
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ {
+ fprintf (dump_file,
+ "not vectorized: unhandled struct/class field access ");
+ print_generic_expr (dump_file, stmt, TDF_SLIM);
+ }
+ return false;
+ } /* switch */
+ }
+ else
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ {
+ fprintf (dump_file, "not vectorized: unhandled data ref: ");
+ print_generic_expr (dump_file, stmt, TDF_SLIM);
+ }
+ return false;
+ }
+
+ /* Find and record the memtag assigned to this data-ref. */
+ if (TREE_CODE (symbl) == VAR_DECL)
+ STMT_VINFO_MEMTAG (stmt_info) = symbl;
+ else if (TREE_CODE (symbl) == SSA_NAME)
+ {
+ tree tag;
+ symbl = SSA_NAME_VAR (symbl);
+ tag = get_var_ann (symbl)->type_mem_tag;
+ if (!tag)
+ {
+ tree ptr = TREE_OPERAND (memref, 0);
+ if (TREE_CODE (ptr) == SSA_NAME)
+ tag = get_var_ann (SSA_NAME_VAR (ptr))->type_mem_tag;
+ }
+ if (!tag)
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ fprintf (dump_file, "not vectorized: no memtag for ref.");
+ return false;
+ }
+ STMT_VINFO_MEMTAG (stmt_info) = tag;
+ }
+ else
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ {
+ fprintf (dump_file, "not vectorized: unsupported data-ref: ");
+ print_generic_expr (dump_file, memref, TDF_SLIM);
+ }
+ return false;
+ }
+
+ VARRAY_PUSH_GENERIC_PTR (*datarefs, dr);
+ STMT_VINFO_DATA_REF (stmt_info) = dr;
+ }
+ }
+
+ return true;
+}
+
+
+/* Utility functions used by vect_mark_stmts_to_be_vectorized. */
+
+/* Function vect_mark_relevant.
+
+ Mark STMT as "relevant for vectorization" and add it to WORKLIST. */
+
+static void
+vect_mark_relevant (varray_type worklist, tree stmt)
+{
+ stmt_vec_info stmt_info;
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "mark relevant.");
+
+ if (TREE_CODE (stmt) == PHI_NODE)
+ {
+ VARRAY_PUSH_TREE (worklist, stmt);
+ return;
+ }
+
+ stmt_info = vinfo_for_stmt (stmt);
+
+ if (!stmt_info)
+ {
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "mark relevant: no stmt info!!.");
+ print_generic_expr (dump_file, stmt, TDF_SLIM);
+ }
+ return;
+ }
+
+ if (STMT_VINFO_RELEVANT_P (stmt_info))
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "already marked relevant.");
+ return;
+ }
+
+ STMT_VINFO_RELEVANT_P (stmt_info) = 1;
+ VARRAY_PUSH_TREE (worklist, stmt);
+}
+
+
+/* Function vect_stmt_relevant_p.
+
+ Return true if STMT in loop that is represented by LOOP_VINFO is
+ "relevant for vectorization".
+
+ A stmt is considered "relevant for vectorization" if:
+ - it has uses outside the loop.
+ - it has vdefs (it alters memory).
+ - control stmts in the loop (except for the exit condition).
+
+ CHECKME: what other side effects would the vectorizer allow? */
+
+static bool
+vect_stmt_relevant_p (tree stmt, loop_vec_info loop_vinfo)
+{
+ v_may_def_optype v_may_defs;
+ v_must_def_optype v_must_defs;
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ int i;
+ dataflow_t df;
+ int num_uses;
+
+ /* cond stmt other than loop exit cond. */
+ if (is_ctrl_stmt (stmt) && (stmt != LOOP_VINFO_EXIT_COND (loop_vinfo)))
+ return true;
+
+ /* changing memory. */
+ v_may_defs = STMT_V_MAY_DEF_OPS (stmt);
+ v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
+ if (v_may_defs || v_must_defs)
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "vec_stmt_relevant_p: stmt has vdefs.");
+ return true;
+ }
+
+ /* uses outside the loop. */
+ df = get_immediate_uses (stmt);
+ num_uses = num_immediate_uses (df);
+ for (i = 0; i < num_uses; i++)
+ {
+ tree use = immediate_use (df, i);
+ basic_block bb = bb_for_stmt (use);
+ if (!flow_bb_inside_loop_p (loop, bb))
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "vec_stmt_relevant_p: used out of loop.");
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+/* Function vect_mark_stmts_to_be_vectorized.
+
+ Not all stmts in the loop need to be vectorized. For example:
+
+ for i...
+ for j...
+ 1. T0 = i + j
+ 2. T1 = a[T0]
+
+ 3. j = j + 1
+
+ Stmt 1 and 3 do not need to be vectorized, because loop control and
+ addressing of vectorized data-refs are handled differently.
+
+ This pass detects such stmts. */
+
+static bool
+vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
+{
+ varray_type worklist;
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
+ unsigned int nbbs = loop->num_nodes;
+ block_stmt_iterator si;
+ tree stmt;
+ stmt_ann_t ann;
+ unsigned int i;
+ int j;
+ use_optype use_ops;
+ stmt_vec_info stmt_info;
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "\n<<vect_mark_stmts_to_be_vectorized>>\n");
+
+ VARRAY_TREE_INIT (worklist, 64, "work list");
+
+ /* 1. Init worklist. */
+
+ for (i = 0; i < nbbs; i++)
+ {
+ basic_block bb = bbs[i];
+ for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
+ {
+ stmt = bsi_stmt (si);
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "init: stmt relevant? ");
+ print_generic_expr (dump_file, stmt, TDF_SLIM);
+ }
+
+ stmt_info = vinfo_for_stmt (stmt);
+ STMT_VINFO_RELEVANT_P (stmt_info) = 0;
+
+ if (vect_stmt_relevant_p (stmt, loop_vinfo))
+ vect_mark_relevant (worklist, stmt);
+ }
+ }
+
+
+ /* 2. Process_worklist */
+
+ while (VARRAY_ACTIVE_SIZE (worklist) > 0)
+ {
+ stmt = VARRAY_TOP_TREE (worklist);
+ VARRAY_POP (worklist);
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "worklist: examine stmt: ");
+ print_generic_expr (dump_file, stmt, TDF_SLIM);
+ }
+
+ /* Examine the USES in this statement. Mark all the statements which
+ feed this statement's uses as "relevant", unless the USE is used as
+ an array index. */
+
+ if (TREE_CODE (stmt) == PHI_NODE)
+ {
+ /* follow the def-use chain inside the loop. */
+ for (j = 0; j < PHI_NUM_ARGS (stmt); j++)
+ {
+ tree arg = PHI_ARG_DEF (stmt, j);
+ tree def_stmt = NULL_TREE;
+ basic_block bb;
+ if (!vect_is_simple_use (arg, loop, &def_stmt))
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "worklist: unsupported use.");
+ varray_clear (worklist);
+ return false;
+ }
+ if (!def_stmt)
+ continue;
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "worklist: def_stmt: ");
+ print_generic_expr (dump_file, def_stmt, TDF_SLIM);
+ }
+
+ bb = bb_for_stmt (def_stmt);
+ if (flow_bb_inside_loop_p (loop, bb))
+ vect_mark_relevant (worklist, def_stmt);
+ }
+ }
+
+ ann = stmt_ann (stmt);
+ use_ops = USE_OPS (ann);
+
+ for (i = 0; i < NUM_USES (use_ops); i++)
+ {
+ tree use = USE_OP (use_ops, i);
+
+ /* We are only interested in uses that need to be vectorized. Uses
+ that are used for address computation are not considered relevant.
+ */
+ if (exist_non_indexing_operands_for_use_p (use, stmt))
+ {
+ tree def_stmt = NULL_TREE;
+ basic_block bb;
+ if (!vect_is_simple_use (use, loop, &def_stmt))
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "worklist: unsupported use.");
+ varray_clear (worklist);
+ return false;
+ }
+
+ if (!def_stmt)
+ continue;
+
+ if (vect_debug_details (NULL))
+ {
+ fprintf (dump_file, "worklist: examine use %d: ", i);
+ print_generic_expr (dump_file, use, TDF_SLIM);
+ }
+
+ bb = bb_for_stmt (def_stmt);
+ if (flow_bb_inside_loop_p (loop, bb))
+ vect_mark_relevant (worklist, def_stmt);
+ }
+ }
+ } /* while worklist */
+
+ varray_clear (worklist);
+ return true;
+}
+
+
+/* Function vect_get_loop_niters.
+
+ Determine how many iterations the loop is executed. */
+
+static tree
+vect_get_loop_niters (struct loop *loop, HOST_WIDE_INT *number_of_iterations)
+{
+ tree niters;
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "\n<<get_loop_niters>>\n");
+
+ niters = number_of_iterations_in_loop (loop);
+
+ if (niters != NULL_TREE
+ && niters != chrec_dont_know
+ && host_integerp (niters,0))
+ {
+ *number_of_iterations = TREE_INT_CST_LOW (niters);
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "==> get_loop_niters:" HOST_WIDE_INT_PRINT_DEC,
+ *number_of_iterations);
+ }
+
+ return get_loop_exit_condition (loop);
+}
+
+
+/* Function vect_analyze_loop_form.
+
+ Verify the following restrictions (some may be relaxed in the future):
+ - it's an inner-most loop
+ - number of BBs = 2 (which are the loop header and the latch)
+ - the loop has a pre-header
+ - the loop has a single entry and exit
+ - the loop exit condition is simple enough, and the number of iterations
+ can be analyzed (a countable loop). */
+
+static loop_vec_info
+vect_analyze_loop_form (struct loop *loop)
+{
+ loop_vec_info loop_vinfo;
+ tree loop_cond;
+ HOST_WIDE_INT number_of_iterations = -1;
+
+ if (vect_debug_details (loop))
+ fprintf (dump_file, "\n<<vect_analyze_loop_form>>\n");
+
+ if (loop->level > 1 /* FORNOW: inner-most loop */
+ || loop->num_exits > 1 || loop->num_entries > 1 || loop->num_nodes != 2
+ || !loop->pre_header || !loop->header || !loop->latch)
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ {
+ fprintf (dump_file, "not vectorized: bad loop form. ");
+ if (loop->level > 1)
+ fprintf (dump_file, "nested loop.");
+ else if (loop->num_exits > 1 || loop->num_entries > 1)
+ fprintf (dump_file, "multiple entries or exits.");
+ else if (loop->num_nodes != 2 || !loop->header || !loop->latch)
+ fprintf (dump_file, "too many BBs in loop.");
+ else if (!loop->pre_header)
+ fprintf (dump_file, "no pre-header BB for loop.");
+ }
+
+ return NULL;
+ }
+
+ /* We assume that the loop exit condition is at the end of the loop. i.e,
+ that the loop is represented as a do-while (with a proper if-guard
+ before the loop if needed), where the loop header contains all the
+ executable statements, and the latch is empty. */
+ if (!empty_block_p (loop->latch))
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ fprintf (dump_file, "not vectorized: unexpectd loop form.");
+ return NULL;
+ }
+
+ if (empty_block_p (loop->header))
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ fprintf (dump_file, "not vectorized: empty loop.");
+ return NULL;
+ }
+
+ loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
+ if (!loop_cond)
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ fprintf (dump_file, "not vectorized: complicated exit condition.");
+ return NULL;
+ }
+
+ if (number_of_iterations < 0)
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ fprintf (dump_file, "not vectorized: unknown loop bound.");
+ return NULL;
+ }
+
+ if (number_of_iterations == 0) /* CHECKME: can this happen? */
+ {
+ if (vect_debug_stats (loop) || vect_debug_details (loop))
+ fprintf (dump_file, "not vectorized: number of iterations = 0.");
+ return NULL;
+ }
+
+ loop_vinfo = new_loop_vec_info (loop);
+ LOOP_VINFO_EXIT_COND (loop_vinfo) = loop_cond;
+ LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
+
+ return loop_vinfo;
+}
+
+
+/* Function vect_analyze_loop.
+
+ Apply a set of analyses on LOOP, and create a loop_vec_info struct
+ for it. The different analyses will record information in the
+ loop_vec_info struct. */
+
+static loop_vec_info
+vect_analyze_loop (struct loop *loop)
+{
+ bool ok;
+ loop_vec_info loop_vinfo;
+
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "\n<<<<<<< analyze_loop_nest >>>>>>>\n");
+
+ /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
+
+ loop_vinfo = vect_analyze_loop_form (loop);
+ if (!loop_vinfo)
+ {
+ if (vect_debug_details (loop))
+ fprintf (dump_file, "bad loop form.");
+ return NULL;
+ }
+
+ /* Find all data references in the loop (which correspond to vdefs/vuses)
+ and analyze their evolution in the loop.
+
+ FORNOW: Handle only simple, one-dimensional, array references, which
+ alignment can be forced, and aligned pointer-references. */
+
+ ok = vect_analyze_data_refs (loop_vinfo);
+ if (!ok)
+ {
+ if (vect_debug_details (loop))
+ fprintf (dump_file, "bad data references.");
+ destroy_loop_vec_info (loop_vinfo);
+ return NULL;
+ }
+
+
+ /* Data-flow analysis to detect stmts that do not need to be vectorized. */
+
+ ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
+ if (!ok)
+ {
+ if (vect_debug_details (loop))
+ fprintf (dump_file, "unexpected pattern.");
+ if (vect_debug_details (loop))
+ fprintf (dump_file, "not vectorized: unexpected pattern.");
+ destroy_loop_vec_info (loop_vinfo);
+ return NULL;
+ }
+
+
+ /* Check that all cross-iteration scalar data-flow cycles are OK.
+ Cross-iteration cycles caused by virtual phis are analyzed separately. */
+
+ ok = vect_analyze_scalar_cycles (loop_vinfo);
+ if (!ok)
+ {
+ if (vect_debug_details (loop))
+ fprintf (dump_file, "bad scalar cycle.");
+ destroy_loop_vec_info (loop_vinfo);
+ return NULL;
+ }
+
+
+ /* Analyze data dependences between the data-refs in the loop.
+ FORNOW: fail at the first data dependence that we encounter. */
+
+ ok = vect_analyze_data_ref_dependences (loop_vinfo);
+ if (!ok)
+ {
+ if (vect_debug_details (loop))
+ fprintf (dump_file, "bad data dependence.");
+ destroy_loop_vec_info (loop_vinfo);
+ return NULL;
+ }
+
+
+ /* Analyze the access patterns of the data-refs in the loop (consecutive,
+ complex, etc.). FORNOW: Only handle consecutive access pattern. */
+
+ ok = vect_analyze_data_ref_accesses (loop_vinfo);
+ if (!ok)
+ {
+ if (vect_debug_details (loop))
+ fprintf (dump_file, "bad data access.");
+ destroy_loop_vec_info (loop_vinfo);
+ return NULL;
+ }
+
+
+ /* Analyze the alignment of the data-refs in the loop.
+ FORNOW: Only aligned accesses are handled. */
+
+ ok = vect_analyze_data_refs_alignment (loop_vinfo);
+ if (!ok)
+ {
+ if (vect_debug_details (loop))
+ fprintf (dump_file, "bad data alignment.");
+ destroy_loop_vec_info (loop_vinfo);
+ return NULL;
+ }
+
+
+ /* Scan all the operations in the loop and make sure they are
+ vectorizable. */
+
+ ok = vect_analyze_operations (loop_vinfo);
+ if (!ok)
+ {
+ if (vect_debug_details (loop))
+ fprintf (dump_file, "bad operation or unsupported loop bound.");
+ destroy_loop_vec_info (loop_vinfo);
+ return NULL;
+ }
+
+ LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
+
+ return loop_vinfo;
+}
+
+
+/* Function need_imm_uses_for.
+
+ Return whether we ought to include information for 'var'
+ when calculating immediate uses. For this pass we only want use
+ information for non-virtual variables. */
+
+static bool
+need_imm_uses_for (tree var)
+{
+ return is_gimple_reg (var);
+}
+
+
+/* Function vectorize_loops.
+
+ Entry Point to loop vectorization phase. */
+
+void
+vectorize_loops (struct loops *loops)
+{
+ unsigned int i, loops_num;
+ unsigned int num_vectorized_loops = 0;
+
+ /* Does the target support SIMD? */
+ /* FORNOW: until more sophisticated machine modelling is in place. */
+ if (!UNITS_PER_SIMD_WORD)
+ {
+ if (vect_debug_details (NULL))
+ fprintf (dump_file, "vectorizer: target vector size is not defined.");
+ return;
+ }
+
+ compute_immediate_uses (TDFA_USE_OPS, need_imm_uses_for);
+
+ /* ----------- Analyze loops. ----------- */
+
+ /* If some loop was duplicated, it gets bigger number
+ than all previously defined loops. This fact allows us to run
+ only over initial loops skipping newly generated ones. */
+ loops_num = loops->num;
+ for (i = 1; i < loops_num; i++)
+ {
+ loop_vec_info loop_vinfo;
+ struct loop *loop = loops->parray[i];
+
+ if (!loop)
+ continue;
+
+ flow_loop_scan (loop, LOOP_ALL);
+
+ loop_vinfo = vect_analyze_loop (loop);
+ loop->aux = loop_vinfo;
+
+ if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo))
+ continue;
+
+ vect_transform_loop (loop_vinfo, loops);
+ num_vectorized_loops++;
+ }
+
+ if (vect_debug_stats (NULL) || vect_debug_details (NULL))
+ fprintf (dump_file, "\nvectorized %u loops in function.\n",
+ num_vectorized_loops);
+
+ /* ----------- Finalize. ----------- */
+
+ free_df ();
+ for (i = 1; i < loops_num; i++)
+ {
+ struct loop *loop = loops->parray[i];
+ loop_vec_info loop_vinfo = loop->aux;
+ if (!loop)
+ continue;
+ destroy_loop_vec_info (loop_vinfo);
+ loop->aux = NULL;
+ }
+
+ loop_commit_inserts ();
+ rewrite_into_ssa (false);
+ if (bitmap_first_set_bit (vars_to_rename) >= 0)
+ {
+ /* The rewrite of ssa names may cause violation of loop closed ssa
+ form invariants. TODO -- avoid these rewrites completely.
+ Information in virtual phi nodes is sufficient for it. */
+ rewrite_into_loop_closed_ssa ();
+ }
+ bitmap_clear (vars_to_rename);
+}