log("\n");
}
+ inline bool IsRightType(Cell* cell, GateType gt)
+ {
+ return (cell->type == "$_AND_" && gt == GateType::And) ||
+ (cell->type == "$_OR_" && gt == GateType::Or) ||
+ (cell->type == "$_XOR_" && gt == GateType::Xor);
+ }
+
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
log_header(design, "Executing EXTRACT_REDUCE pass.\n");
allow_off_chain = true;
continue;
}
- break;
}
extra_args(args, argidx, design);
// Actual logic starts here
pool<Cell*> consumed_cells;
- pool<Cell*> head_cells;
for (auto cell : module->selected_cells())
{
if (consumed_cells.count(cell))
log("Working on cell %s...\n", cell->name.c_str());
- // Go all the way to the sink
- Cell* head_cell = cell;
- Cell* x = cell;
- while (true)
+ // If looking for a single chain, follow linearly to the sink
+ pool<Cell*> sinks;
+ if(!allow_off_chain)
{
- if (!((x->type == "$_AND_" && gt == GateType::And) ||
- (x->type == "$_OR_" && gt == GateType::Or) ||
- (x->type == "$_XOR_" && gt == GateType::Xor)))
- break;
+ Cell* head_cell = cell;
+ Cell* x = cell;
+ while (true)
+ {
+ if(!IsRightType(x, gt))
+ break;
- head_cell = x;
+ head_cell = x;
- auto y = sigmap(x->getPort("\\Y"));
- log_assert(y.size() == 1);
+ auto y = sigmap(x->getPort("\\Y"));
+ log_assert(y.size() == 1);
- // Should only continue if there is one fanout back into a cell (not to a port)
- if (sig_to_sink[y[0]].size() != 1)
- break;
+ // Should only continue if there is one fanout back into a cell (not to a port)
+ if (sig_to_sink[y[0]].size() != 1)
+ break;
- x = *sig_to_sink[y[0]].begin();
- }
+ x = *sig_to_sink[y[0]].begin();
+ }
- log(" Head cell is %s\n", head_cell->name.c_str());
+ sinks.insert(head_cell);
+ }
- pool<Cell*> cur_supercell;
- std::deque<Cell*> bfs_queue = {head_cell};
- while (bfs_queue.size())
+ //If off-chain loads are allowed, we have to do a wider traversal to see what the longest chain is
+ else
{
- Cell* x = bfs_queue.front();
- bfs_queue.pop_front();
+ //BFS, following all chains until they hit a cell of a different type
+ //Pick the longest one
+ auto y = sigmap(cell->getPort("\\Y"));
+ pool<Cell*> current_loads = sig_to_sink[y];
+ pool<Cell*> next_loads;
- cur_supercell.insert(x);
-
- auto a = sigmap(x->getPort("\\A"));
- log_assert(a.size() == 1);
- // Must have only one sink
- // XXX: Check that it is indeed this node?
- if (sig_to_sink[a[0]].size() + port_sigs.count(a[0]) == 1)
+ while(!current_loads.empty())
{
- Cell* cell_a = sig_to_driver[a[0]];
- if (cell_a && ((cell_a->type == "$_AND_" && gt == GateType::And) ||
- (cell_a->type == "$_OR_" && gt == GateType::Or) ||
- (cell_a->type == "$_XOR_" && gt == GateType::Xor)))
+ //Find each sink and see what they are
+ for(auto x : current_loads)
{
- // The cell here is the correct type, and it's definitely driving only
- // this current cell.
- bfs_queue.push_back(cell_a);
+ //Not one of our gates? Don't follow any further
+ //(but add the originating cell to the list of sinks)
+ if(!IsRightType(x, gt))
+ {
+ sinks.insert(cell);
+ continue;
+ }
+
+ //If this signal drives a port, add it to the sinks
+ //(even though it may not be the end of a chain)
+ if(port_sigs.count(x) && !consumed_cells.count(x))
+ sinks.insert(x);
+
+ //It's a match, search everything out from it
+ auto& next = sig_to_sink[x];
+ for(auto z : next)
+ next_loads.insert(z);
}
- }
- auto b = sigmap(x->getPort("\\B"));
- log_assert(b.size() == 1);
- // Must have only one sink
- // XXX: Check that it is indeed this node?
- if (sig_to_sink[b[0]].size() + port_sigs.count(b[0]) == 1)
- {
- Cell* cell_b = sig_to_driver[b[0]];
- if (cell_b && ((cell_b->type == "$_AND_" && gt == GateType::And) ||
- (cell_b->type == "$_OR_" && gt == GateType::Or) ||
- (cell_b->type == "$_XOR_" && gt == GateType::Xor)))
+ //If we couldn't find any downstream loads, stop.
+ //Create a reduction for each of the max-length chains we found
+ if(next_loads.empty())
{
- // The cell here is the correct type, and it's definitely driving only
- // this current cell.
- bfs_queue.push_back(cell_b);
+ for(auto s : current_loads)
+ {
+ //Not one of our gates? Don't follow any further
+ if(!IsRightType(s, gt))
+ continue;
+
+ sinks.insert(s);
+ }
+ break;
}
+
+ //Otherwise, continue down the chain
+ current_loads = next_loads;
+ next_loads.clear();
}
}
- log(" Cells:\n");
- for (auto x : cur_supercell)
- log(" %s\n", x->name.c_str());
-
- if (cur_supercell.size() > 1)
+ //We have our list, go act on it
+ for(auto head_cell : sinks)
{
- // Worth it to create reduce cell
- log(" Creating $reduce_* cell!\n");
+ log(" Head cell is %s\n", head_cell->name.c_str());
- pool<SigBit> input_pool;
- pool<SigBit> input_pool_intermed;
- for (auto x : cur_supercell)
+ //Avoid duplication if we already were covered
+ if(consumed_cells.count(head_cell))
+ continue;
+
+ pool<Cell*> cur_supercell;
+ std::deque<Cell*> bfs_queue = {head_cell};
+ while (bfs_queue.size())
{
- input_pool.insert(sigmap(x->getPort("\\A"))[0]);
- input_pool.insert(sigmap(x->getPort("\\B"))[0]);
- input_pool_intermed.insert(sigmap(x->getPort("\\Y"))[0]);
+ Cell* x = bfs_queue.front();
+ bfs_queue.pop_front();
+
+ cur_supercell.insert(x);
+
+ auto a = sigmap(x->getPort("\\A"));
+ log_assert(a.size() == 1);
+
+ // Must have only one sink unless we're going off chain
+ // XXX: Check that it is indeed this node?
+ if( allow_off_chain || (sig_to_sink[a[0]].size() + port_sigs.count(a[0]) == 1) )
+ {
+ Cell* cell_a = sig_to_driver[a[0]];
+ if(cell_a && IsRightType(cell_a, gt))
+ {
+ // The cell here is the correct type, and it's definitely driving
+ // this current cell.
+ bfs_queue.push_back(cell_a);
+ }
+ }
+
+ auto b = sigmap(x->getPort("\\B"));
+ log_assert(b.size() == 1);
+
+ // Must have only one sink
+ // XXX: Check that it is indeed this node?
+ if( allow_off_chain || (sig_to_sink[b[0]].size() + port_sigs.count(b[0]) == 1) )
+ {
+ Cell* cell_b = sig_to_driver[b[0]];
+ if(cell_b && IsRightType(cell_b, gt))
+ {
+ // The cell here is the correct type, and it's definitely driving only
+ // this current cell.
+ bfs_queue.push_back(cell_b);
+ }
+ }
}
- SigSpec input;
- for (auto b : input_pool)
- if (input_pool_intermed.count(b) == 0)
- input.append_bit(b);
-
- SigBit output = sigmap(head_cell->getPort("\\Y")[0]);
-
- auto new_reduce_cell = module->addCell(NEW_ID,
- gt == GateType::And ? "$reduce_and" :
- gt == GateType::Or ? "$reduce_or" :
- gt == GateType::Xor ? "$reduce_xor" : "");
- new_reduce_cell->setParam("\\A_SIGNED", 0);
- new_reduce_cell->setParam("\\A_WIDTH", input.size());
- new_reduce_cell->setParam("\\Y_WIDTH", 1);
- new_reduce_cell->setPort("\\A", input);
- new_reduce_cell->setPort("\\Y", output);
+ log(" Cells:\n");
for (auto x : cur_supercell)
- consumed_cells.insert(x);
- head_cells.insert(head_cell);
+ log(" %s\n", x->name.c_str());
+
+ if (cur_supercell.size() > 1)
+ {
+ // Worth it to create reduce cell
+ log(" Creating $reduce_* cell!\n");
+
+ pool<SigBit> input_pool;
+ pool<SigBit> input_pool_intermed;
+ for (auto x : cur_supercell)
+ {
+ input_pool.insert(sigmap(x->getPort("\\A"))[0]);
+ input_pool.insert(sigmap(x->getPort("\\B"))[0]);
+ input_pool_intermed.insert(sigmap(x->getPort("\\Y"))[0]);
+ }
+ SigSpec input;
+ for (auto b : input_pool)
+ if (input_pool_intermed.count(b) == 0)
+ input.append_bit(b);
+
+ SigBit output = sigmap(head_cell->getPort("\\Y")[0]);
+
+ auto new_reduce_cell = module->addCell(NEW_ID,
+ gt == GateType::And ? "$reduce_and" :
+ gt == GateType::Or ? "$reduce_or" :
+ gt == GateType::Xor ? "$reduce_xor" : "");
+ new_reduce_cell->setParam("\\A_SIGNED", 0);
+ new_reduce_cell->setParam("\\A_WIDTH", input.size());
+ new_reduce_cell->setParam("\\Y_WIDTH", 1);
+ new_reduce_cell->setPort("\\A", input);
+ new_reduce_cell->setPort("\\Y", output);
+
+ if(allow_off_chain)
+ consumed_cells.insert(head_cell);
+ else
+ {
+ for (auto x : cur_supercell)
+ consumed_cells.insert(x);
+ }
+ }
}
}
// Remove all of the head cells, since we supplant them.
// Do not remove the upstream cells since some might still be in use ("clean" will get rid of unused ones)
- for (auto cell : head_cells)
+ for (auto cell : consumed_cells)
module->remove(cell);
}