*/
+#include <float.h>
+
#include "util/u_memory.h"
#include "util/u_debug.h"
#include "util/u_math.h"
#include "lp_bld_logic.h"
#include "lp_bld_pack.h"
#include "lp_bld_debug.h"
+#include "lp_bld_bitarit.h"
#include "lp_bld_arit.h"
-#include "float.h"
#define EXP_POLY_DEGREE 5
}
+
/**
- * Normalized 8bit multiplication.
+ * Normalized multiplication.
+ *
+ * There are several approaches here (using 8-bit normalized multiplication as
+ * an example):
*
* - alpha plus one
*
* http://www.stereopsis.com/doubleblend.html
*/
static LLVMValueRef
-lp_build_mul_u8n(struct gallivm_state *gallivm,
- struct lp_type i16_type,
- LLVMValueRef a, LLVMValueRef b)
+lp_build_mul_norm(struct gallivm_state *gallivm,
+ struct lp_type wide_type,
+ LLVMValueRef a, LLVMValueRef b)
{
LLVMBuilderRef builder = gallivm->builder;
- LLVMValueRef c8;
+ struct lp_build_context bld;
+ unsigned bits;
+ LLVMValueRef shift;
+ LLVMValueRef half;
LLVMValueRef ab;
- assert(!i16_type.floating);
- assert(lp_check_value(i16_type, a));
- assert(lp_check_value(i16_type, b));
+ assert(!wide_type.floating);
+ assert(lp_check_value(wide_type, a));
+ assert(lp_check_value(wide_type, b));
+
+ lp_build_context_init(&bld, gallivm, wide_type);
+
+ bits = wide_type.width / 2;
+ if (wide_type.sign) {
+ --bits;
+ }
+
+ shift = lp_build_const_int_vec(gallivm, wide_type, bits);
- c8 = lp_build_const_int_vec(gallivm, i16_type, 8);
-
#if 0
/* a*b/255 ~= (a*(b + 1)) >> 256 */
- b = LLVMBuildAdd(builder, b, lp_build_const_int_vec(gallium, i16_type, 1), "");
+ /* XXX: This would not work for signed types */
+ assert(!wide_type.sign);
+ b = LLVMBuildAdd(builder, b, lp_build_const_int_vec(gallium, wide_type, 1), "");
ab = LLVMBuildMul(builder, a, b, "");
#else
/* ab/255 ~= (ab + (ab >> 8) + 0x80) >> 8 */
ab = LLVMBuildMul(builder, a, b, "");
- ab = LLVMBuildAdd(builder, ab, LLVMBuildLShr(builder, ab, c8, ""), "");
- ab = LLVMBuildAdd(builder, ab, lp_build_const_int_vec(gallivm, i16_type, 0x80), "");
+ ab = LLVMBuildAdd(builder, ab, LLVMBuildLShr(builder, ab, shift, ""), "");
+
+ /* Add rounding term */
+ half = lp_build_const_int_vec(gallivm, wide_type, 1 << (bits - 1));
+ if (wide_type.sign) {
+ LLVMValueRef minus_half = LLVMBuildNeg(builder, half, "");
+ LLVMValueRef sign = lp_build_shr_imm(&bld, half, wide_type.width - 1);
+ half = lp_build_select(&bld, sign, minus_half, half);
+ }
+ ab = LLVMBuildAdd(builder, ab, half, "");
#endif
- ab = LLVMBuildLShr(builder, ab, c8, "");
-
- return ab;
-}
-
-/**
- * Normalized 16bit multiplication.
- *
- * Utilises same principle as above code.
- */
-static LLVMValueRef
-lp_build_mul_u16n(struct gallivm_state *gallivm,
- struct lp_type i32_type,
- LLVMValueRef a, LLVMValueRef b)
-{
- LLVMBuilderRef builder = gallivm->builder;
- LLVMValueRef c16;
- LLVMValueRef ab;
-
- assert(!i32_type.floating);
- assert(lp_check_value(i32_type, a));
- assert(lp_check_value(i32_type, b));
-
- c16 = lp_build_const_int_vec(gallivm, i32_type, 16);
-
- /* ab/65535 ~= (ab + (ab >> 16) + 0x8000) >> 16 */
- ab = LLVMBuildMul(builder, a, b, "");
- ab = LLVMBuildAdd(builder, ab, LLVMBuildLShr(builder, ab, c16, ""), "");
- ab = LLVMBuildAdd(builder, ab, lp_build_const_int_vec(gallivm, i32_type, 0x8000), "");
-
- ab = LLVMBuildLShr(builder, ab, c16, "");
+ ab = LLVMBuildLShr(builder, ab, shift, "");
return ab;
}
if(a == bld->undef || b == bld->undef)
return bld->undef;
- if(!type.floating && !type.fixed && type.norm) {
- if(type.width == 8) {
- struct lp_type i16_type = lp_wider_type(type);
- LLVMValueRef al, ah, bl, bh, abl, abh, ab;
-
- lp_build_unpack2(bld->gallivm, type, i16_type, a, &al, &ah);
- lp_build_unpack2(bld->gallivm, type, i16_type, b, &bl, &bh);
-
- /* PMULLW, PSRLW, PADDW */
- abl = lp_build_mul_u8n(bld->gallivm, i16_type, al, bl);
- abh = lp_build_mul_u8n(bld->gallivm, i16_type, ah, bh);
-
- ab = lp_build_pack2(bld->gallivm, i16_type, type, abl, abh);
-
- return ab;
- }
-
- if(type.width == 16) {
- struct lp_type i32_type = lp_wider_type(type);
- LLVMValueRef al, ah, bl, bh, abl, abh, ab;
+ if (!type.floating && !type.fixed && type.norm) {
+ struct lp_type wide_type = lp_wider_type(type);
+ LLVMValueRef al, ah, bl, bh, abl, abh, ab;
- lp_build_unpack2(bld->gallivm, type, i32_type, a, &al, &ah);
- lp_build_unpack2(bld->gallivm, type, i32_type, b, &bl, &bh);
+ lp_build_unpack2(bld->gallivm, type, wide_type, a, &al, &ah);
+ lp_build_unpack2(bld->gallivm, type, wide_type, b, &bl, &bh);
- /* PMULLW, PSRLW, PADDW */
- abl = lp_build_mul_u16n(bld->gallivm, i32_type, al, bl);
- abh = lp_build_mul_u16n(bld->gallivm, i32_type, ah, bh);
+ /* PMULLW, PSRLW, PADDW */
+ abl = lp_build_mul_norm(bld->gallivm, wide_type, al, bl);
+ abh = lp_build_mul_norm(bld->gallivm, wide_type, ah, bh);
- ab = lp_build_pack2(bld->gallivm, i32_type, type, abl, abh);
+ ab = lp_build_pack2(bld->gallivm, wide_type, type, abl, abh);
- return ab;
- }
-
- /* FIXME */
- assert(0);
+ return ab;
}
if(type.fixed)
/**
- * Linear interpolation -- without any checks.
+ * Linear interpolation helper.
+ *
+ * @param normalized whether we are interpolating normalized values,
+ * encoded in normalized integers, twice as wide.
*
* @sa http://www.stereopsis.com/doubleblend.html
*/
lp_build_lerp_simple(struct lp_build_context *bld,
LLVMValueRef x,
LLVMValueRef v0,
- LLVMValueRef v1)
+ LLVMValueRef v1,
+ bool normalized)
{
+ unsigned half_width = bld->type.width/2;
LLVMBuilderRef builder = bld->gallivm->builder;
LLVMValueRef delta;
LLVMValueRef res;
res = lp_build_mul(bld, x, delta);
+ if (normalized) {
+ if (bld->type.sign) {
+ res = lp_build_shr_imm(bld, res, half_width - 1);
+ } else {
+ res = lp_build_shr_imm(bld, res, half_width);
+ }
+ }
+
res = lp_build_add(bld, v0, res);
- if (bld->type.fixed) {
- /* XXX: This step is necessary for lerping 8bit colors stored on 16bits,
- * but it will be wrong for other uses. Basically we need a more
- * powerful lp_type, capable of further distinguishing the values
- * interpretation from the value storage. */
- res = LLVMBuildAnd(builder, res, lp_build_const_int_vec(bld->gallivm, bld->type, (1 << bld->type.width/2) - 1), "");
+ if (normalized && !bld->type.sign) {
+ /* We need to mask out the high order bits when lerping 8bit normalized colors stored on 16bits */
+ res = LLVMBuildAnd(builder, res, lp_build_const_int_vec(bld->gallivm, bld->type, (1 << half_width) - 1), "");
}
return res;
struct lp_type wide_type;
struct lp_build_context wide_bld;
LLVMValueRef xl, xh, v0l, v0h, v1l, v1h, resl, resh;
+ unsigned bits;
LLVMValueRef shift;
assert(type.length >= 2);
- assert(!type.sign);
/*
- * Create a wider type, enough to hold the intermediate result of the
- * multiplication.
+ * Create a wider integer type, enough to hold the
+ * intermediate result of the multiplication.
*/
memset(&wide_type, 0, sizeof wide_type);
- wide_type.fixed = TRUE;
+ wide_type.sign = type.sign;
wide_type.width = type.width*2;
wide_type.length = type.length/2;
* Scale x from [0, 255] to [0, 256]
*/
- shift = lp_build_const_int_vec(bld->gallivm, wide_type, type.width - 1);
+ bits = type.width - 1;
+ if (type.sign) {
+ --bits;
+ }
+
+ shift = lp_build_const_int_vec(bld->gallivm, wide_type, bits - 1);
xl = lp_build_add(&wide_bld, xl,
LLVMBuildAShr(builder, xl, shift, ""));
* Lerp both halves.
*/
- resl = lp_build_lerp_simple(&wide_bld, xl, v0l, v1l);
- resh = lp_build_lerp_simple(&wide_bld, xh, v0h, v1h);
+ resl = lp_build_lerp_simple(&wide_bld, xl, v0l, v1l, TRUE);
+ resh = lp_build_lerp_simple(&wide_bld, xh, v0h, v1h, TRUE);
res = lp_build_pack2(bld->gallivm, wide_type, type, resl, resh);
} else {
- res = lp_build_lerp_simple(bld, x, v0, v1);
+ res = lp_build_lerp_simple(bld, x, v0, v1, FALSE);
}
return res;