#include <stdbool.h>
#include <assert.h>
#include <math.h>
-#include <gallium/auxiliary/util/u_math.h>
+#include "util/u_math.h"
#ifdef HAVE_VALGRIND
#include <valgrind.h>
util/u_linear.h \
util/u_log.c \
util/u_log.h \
- util/u_math.c \
- util/u_math.h \
util/u_memory.h \
util/u_mm.c \
util/u_mm.h \
'util/u_linear.h',
'util/u_log.c',
'util/u_log.h',
- 'util/u_math.c',
- 'util/u_math.h',
'util/u_memory.h',
'util/u_mm.c',
'util/u_mm.h',
* @author Jose Fonseca <jfonseca@vmware.com>
*/
-#include "u_math.h"
#include "u_memory.h"
#include "u_format.h"
#include "u_format_s3tc.h"
#include "u_surface.h"
+#include "util/u_math.h"
#include "pipe/p_defines.h"
*
**************************************************************************/
-#include "u_math.h"
#include "u_format.h"
#include "u_format_bptc.h"
#include "util/format_srgb.h"
+#include "util/u_math.h"
#define BPTC_BLOCK_DECODE
#include "../../../mesa/main/texcompress_bptc_tmp.h"
**************************************************************************/
#include <stdio.h>
-#include "u_math.h"
#include "u_format.h"
#include "u_format_rgtc.h"
#include "u_format_latc.h"
#include "util/rgtc.h"
+#include "util/u_math.h"
void
util_format_latc1_unorm_fetch_rgba_8unorm(uint8_t *dst, const uint8_t *src, unsigned i, unsigned j)
**************************************************************************/
-#include "u_math.h"
#include "u_format_other.h"
+#include "util/u_math.h"
#include "util/format_rgb9e5.h"
#include "util/format_r11g11b10f.h"
def generate(formats):
print()
print('#include "pipe/p_compiler.h"')
- print('#include "u_math.h"')
+ print('#include "util/u_math.h"')
print('#include "u_half.h"')
print('#include "u_format.h"')
print('#include "u_format_other.h"')
**************************************************************************/
#include <stdio.h>
-#include "u_math.h"
#include "u_format.h"
#include "u_format_rgtc.h"
+#include "util/u_math.h"
#include "util/rgtc.h"
void
**************************************************************************/
#include "u_dl.h"
-#include "u_math.h"
#include "u_format.h"
#include "u_format_s3tc.h"
#include "util/format_srgb.h"
+#include "util/u_math.h"
#include "../../../mesa/main/texcompress_s3tc_tmp.h"
#include "pipe/p_compiler.h"
-#include "u_math.h"
+#include "util/u_math.h"
/*
#include "u_debug.h"
-#include "u_math.h"
#include "u_format_zs.h"
+#include "util/u_math.h"
/*
+++ /dev/null
-/**************************************************************************
- *
- * Copyright 2008 VMware, Inc.
- * All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the
- * "Software"), to deal in the Software without restriction, including
- * without limitation the rights to use, copy, modify, merge, publish,
- * distribute, sub license, and/or sell copies of the Software, and to
- * permit persons to whom the Software is furnished to do so, subject to
- * the following conditions:
- *
- * The above copyright notice and this permission notice (including the
- * next paragraph) shall be included in all copies or substantial portions
- * of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
- * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
- * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
- * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
- * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- *
- **************************************************************************/
-
-
-
-#include "pipe/p_config.h"
-#include "util/u_math.h"
-#include "util/u_cpu_detect.h"
-
-#if defined(PIPE_ARCH_SSE)
-#include <xmmintrin.h>
-/* This is defined in pmmintrin.h, but it can only be included when -msse3 is
- * used, so just define it here to avoid further. */
-#define _MM_DENORMALS_ZERO_MASK 0x0040
-#endif
-
-
-/** 2^x, for x in [-1.0, 1.0) */
-float pow2_table[POW2_TABLE_SIZE];
-
-
-static void
-init_pow2_table(void)
-{
- int i;
- for (i = 0; i < POW2_TABLE_SIZE; i++)
- pow2_table[i] = exp2f((i - POW2_TABLE_OFFSET) / POW2_TABLE_SCALE);
-}
-
-
-/** log2(x), for x in [1.0, 2.0) */
-float log2_table[LOG2_TABLE_SIZE];
-
-
-static void
-init_log2_table(void)
-{
- unsigned i;
- for (i = 0; i < LOG2_TABLE_SIZE; i++)
- log2_table[i] = (float) log2(1.0 + i * (1.0 / LOG2_TABLE_SCALE));
-}
-
-
-/**
- * One time init for math utilities.
- */
-void
-util_init_math(void)
-{
- static boolean initialized = FALSE;
- if (!initialized) {
- init_pow2_table();
- init_log2_table();
- initialized = TRUE;
- }
-}
-
-/**
- * Fetches the contents of the fpstate (mxcsr on x86) register.
- *
- * On platforms without support for it just returns 0.
- */
-unsigned
-util_fpstate_get(void)
-{
- unsigned mxcsr = 0;
-
-#if defined(PIPE_ARCH_SSE)
- if (util_cpu_caps.has_sse) {
- mxcsr = _mm_getcsr();
- }
-#endif
-
- return mxcsr;
-}
-
-/**
- * Make sure that the fp treats the denormalized floating
- * point numbers as zero.
- *
- * This is the behavior required by D3D10. OpenGL doesn't care.
- */
-unsigned
-util_fpstate_set_denorms_to_zero(unsigned current_mxcsr)
-{
-#if defined(PIPE_ARCH_SSE)
- if (util_cpu_caps.has_sse) {
- /* Enable flush to zero mode */
- current_mxcsr |= _MM_FLUSH_ZERO_MASK;
- if (util_cpu_caps.has_daz) {
- /* Enable denormals are zero mode */
- current_mxcsr |= _MM_DENORMALS_ZERO_MASK;
- }
- util_fpstate_set(current_mxcsr);
- }
-#endif
- return current_mxcsr;
-}
-
-/**
- * Set the state of the fpstate (mxcsr on x86) register.
- *
- * On platforms without support for it's a noop.
- */
-void
-util_fpstate_set(unsigned mxcsr)
-{
-#if defined(PIPE_ARCH_SSE)
- if (util_cpu_caps.has_sse) {
- _mm_setcsr(mxcsr);
- }
-#endif
-}
+++ /dev/null
-/**************************************************************************
- *
- * Copyright 2008 VMware, Inc.
- * All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the
- * "Software"), to deal in the Software without restriction, including
- * without limitation the rights to use, copy, modify, merge, publish,
- * distribute, sub license, and/or sell copies of the Software, and to
- * permit persons to whom the Software is furnished to do so, subject to
- * the following conditions:
- *
- * The above copyright notice and this permission notice (including the
- * next paragraph) shall be included in all copies or substantial portions
- * of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
- * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
- * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
- * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
- * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- *
- **************************************************************************/
-
-
-/**
- * Math utilities and approximations for common math functions.
- * Reduced precision is usually acceptable in shaders...
- *
- * "fast" is used in the names of functions which are low-precision,
- * or at least lower-precision than the normal C lib functions.
- */
-
-
-#ifndef U_MATH_H
-#define U_MATH_H
-
-
-#include "pipe/p_compiler.h"
-
-#include "c99_math.h"
-#include <assert.h>
-#include <float.h>
-#include <stdarg.h>
-
-#include "util/bitscan.h"
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-
-#ifndef M_SQRT2
-#define M_SQRT2 1.41421356237309504880
-#endif
-
-#define POW2_TABLE_SIZE_LOG2 9
-#define POW2_TABLE_SIZE (1 << POW2_TABLE_SIZE_LOG2)
-#define POW2_TABLE_OFFSET (POW2_TABLE_SIZE/2)
-#define POW2_TABLE_SCALE ((float)(POW2_TABLE_SIZE/2))
-extern float pow2_table[POW2_TABLE_SIZE];
-
-
-/**
- * Initialize math module. This should be called before using any
- * other functions in this module.
- */
-extern void
-util_init_math(void);
-
-
-union fi {
- float f;
- int32_t i;
- uint32_t ui;
-};
-
-
-union di {
- double d;
- int64_t i;
- uint64_t ui;
-};
-
-
-/**
- * Extract the IEEE float32 exponent.
- */
-static inline signed
-util_get_float32_exponent(float x)
-{
- union fi f;
-
- f.f = x;
-
- return ((f.ui >> 23) & 0xff) - 127;
-}
-
-
-/**
- * Fast version of 2^x
- * Identity: exp2(a + b) = exp2(a) * exp2(b)
- * Let ipart = int(x)
- * Let fpart = x - ipart;
- * So, exp2(x) = exp2(ipart) * exp2(fpart)
- * Compute exp2(ipart) with i << ipart
- * Compute exp2(fpart) with lookup table.
- */
-static inline float
-util_fast_exp2(float x)
-{
- int32_t ipart;
- float fpart, mpart;
- union fi epart;
-
- if(x > 129.00000f)
- return 3.402823466e+38f;
-
- if (x < -126.99999f)
- return 0.0f;
-
- ipart = (int32_t) x;
- fpart = x - (float) ipart;
-
- /* same as
- * epart.f = (float) (1 << ipart)
- * but faster and without integer overflow for ipart > 31
- */
- epart.i = (ipart + 127 ) << 23;
-
- mpart = pow2_table[POW2_TABLE_OFFSET + (int)(fpart * POW2_TABLE_SCALE)];
-
- return epart.f * mpart;
-}
-
-
-/**
- * Fast approximation to exp(x).
- */
-static inline float
-util_fast_exp(float x)
-{
- const float k = 1.44269f; /* = log2(e) */
- return util_fast_exp2(k * x);
-}
-
-
-#define LOG2_TABLE_SIZE_LOG2 16
-#define LOG2_TABLE_SCALE (1 << LOG2_TABLE_SIZE_LOG2)
-#define LOG2_TABLE_SIZE (LOG2_TABLE_SCALE + 1)
-extern float log2_table[LOG2_TABLE_SIZE];
-
-
-/**
- * Fast approximation to log2(x).
- */
-static inline float
-util_fast_log2(float x)
-{
- union fi num;
- float epart, mpart;
- num.f = x;
- epart = (float)(((num.i & 0x7f800000) >> 23) - 127);
- /* mpart = log2_table[mantissa*LOG2_TABLE_SCALE + 0.5] */
- mpart = log2_table[((num.i & 0x007fffff) + (1 << (22 - LOG2_TABLE_SIZE_LOG2))) >> (23 - LOG2_TABLE_SIZE_LOG2)];
- return epart + mpart;
-}
-
-
-/**
- * Fast approximation to x^y.
- */
-static inline float
-util_fast_pow(float x, float y)
-{
- return util_fast_exp2(util_fast_log2(x) * y);
-}
-
-
-/**
- * Floor(x), returned as int.
- */
-static inline int
-util_ifloor(float f)
-{
- int ai, bi;
- double af, bf;
- union fi u;
- af = (3 << 22) + 0.5 + (double) f;
- bf = (3 << 22) + 0.5 - (double) f;
- u.f = (float) af; ai = u.i;
- u.f = (float) bf; bi = u.i;
- return (ai - bi) >> 1;
-}
-
-
-/**
- * Round float to nearest int.
- */
-static inline int
-util_iround(float f)
-{
-#if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
- int r;
- __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
- return r;
-#elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86)
- int r;
- _asm {
- fld f
- fistp r
- }
- return r;
-#else
- if (f >= 0.0f)
- return (int) (f + 0.5f);
- else
- return (int) (f - 0.5f);
-#endif
-}
-
-
-/**
- * Approximate floating point comparison
- */
-static inline boolean
-util_is_approx(float a, float b, float tol)
-{
- return fabsf(b - a) <= tol;
-}
-
-
-/**
- * util_is_X_inf_or_nan = test if x is NaN or +/- Inf
- * util_is_X_nan = test if x is NaN
- * util_X_inf_sign = return +1 for +Inf, -1 for -Inf, or 0 for not Inf
- *
- * NaN can be checked with x != x, however this fails with the fast math flag
- **/
-
-
-/**
- * Single-float
- */
-static inline boolean
-util_is_inf_or_nan(float x)
-{
- union fi tmp;
- tmp.f = x;
- return (tmp.ui & 0x7f800000) == 0x7f800000;
-}
-
-
-static inline boolean
-util_is_nan(float x)
-{
- union fi tmp;
- tmp.f = x;
- return (tmp.ui & 0x7fffffff) > 0x7f800000;
-}
-
-
-static inline int
-util_inf_sign(float x)
-{
- union fi tmp;
- tmp.f = x;
- if ((tmp.ui & 0x7fffffff) != 0x7f800000) {
- return 0;
- }
-
- return (x < 0) ? -1 : 1;
-}
-
-
-/**
- * Double-float
- */
-static inline boolean
-util_is_double_inf_or_nan(double x)
-{
- union di tmp;
- tmp.d = x;
- return (tmp.ui & 0x7ff0000000000000ULL) == 0x7ff0000000000000ULL;
-}
-
-
-static inline boolean
-util_is_double_nan(double x)
-{
- union di tmp;
- tmp.d = x;
- return (tmp.ui & 0x7fffffffffffffffULL) > 0x7ff0000000000000ULL;
-}
-
-
-static inline int
-util_double_inf_sign(double x)
-{
- union di tmp;
- tmp.d = x;
- if ((tmp.ui & 0x7fffffffffffffffULL) != 0x7ff0000000000000ULL) {
- return 0;
- }
-
- return (x < 0) ? -1 : 1;
-}
-
-
-/**
- * Half-float
- */
-static inline boolean
-util_is_half_inf_or_nan(int16_t x)
-{
- return (x & 0x7c00) == 0x7c00;
-}
-
-
-static inline boolean
-util_is_half_nan(int16_t x)
-{
- return (x & 0x7fff) > 0x7c00;
-}
-
-
-static inline int
-util_half_inf_sign(int16_t x)
-{
- if ((x & 0x7fff) != 0x7c00) {
- return 0;
- }
-
- return (x < 0) ? -1 : 1;
-}
-
-
-/**
- * Return float bits.
- */
-static inline unsigned
-fui( float f )
-{
- union fi fi;
- fi.f = f;
- return fi.ui;
-}
-
-static inline float
-uif(uint32_t ui)
-{
- union fi fi;
- fi.ui = ui;
- return fi.f;
-}
-
-
-/**
- * Convert ubyte to float in [0, 1].
- */
-static inline float
-ubyte_to_float(ubyte ub)
-{
- return (float) ub * (1.0f / 255.0f);
-}
-
-
-/**
- * Convert float in [0,1] to ubyte in [0,255] with clamping.
- */
-static inline ubyte
-float_to_ubyte(float f)
-{
- /* return 0 for NaN too */
- if (!(f > 0.0f)) {
- return (ubyte) 0;
- }
- else if (f >= 1.0f) {
- return (ubyte) 255;
- }
- else {
- union fi tmp;
- tmp.f = f;
- tmp.f = tmp.f * (255.0f/256.0f) + 32768.0f;
- return (ubyte) tmp.i;
- }
-}
-
-static inline float
-byte_to_float_tex(int8_t b)
-{
- return (b == -128) ? -1.0F : b * 1.0F / 127.0F;
-}
-
-static inline int8_t
-float_to_byte_tex(float f)
-{
- return (int8_t) (127.0F * f);
-}
-
-/**
- * Calc log base 2
- */
-static inline unsigned
-util_logbase2(unsigned n)
-{
-#if defined(HAVE___BUILTIN_CLZ)
- return ((sizeof(unsigned) * 8 - 1) - __builtin_clz(n | 1));
-#else
- unsigned pos = 0;
- if (n >= 1<<16) { n >>= 16; pos += 16; }
- if (n >= 1<< 8) { n >>= 8; pos += 8; }
- if (n >= 1<< 4) { n >>= 4; pos += 4; }
- if (n >= 1<< 2) { n >>= 2; pos += 2; }
- if (n >= 1<< 1) { pos += 1; }
- return pos;
-#endif
-}
-
-static inline uint64_t
-util_logbase2_64(uint64_t n)
-{
-#if defined(HAVE___BUILTIN_CLZLL)
- return ((sizeof(uint64_t) * 8 - 1) - __builtin_clzll(n | 1));
-#else
- uint64_t pos = 0ull;
- if (n >= 1ull<<32) { n >>= 32; pos += 32; }
- if (n >= 1ull<<16) { n >>= 16; pos += 16; }
- if (n >= 1ull<< 8) { n >>= 8; pos += 8; }
- if (n >= 1ull<< 4) { n >>= 4; pos += 4; }
- if (n >= 1ull<< 2) { n >>= 2; pos += 2; }
- if (n >= 1ull<< 1) { pos += 1; }
- return pos;
-#endif
-}
-
-/**
- * Returns the ceiling of log n base 2, and 0 when n == 0. Equivalently,
- * returns the smallest x such that n <= 2**x.
- */
-static inline unsigned
-util_logbase2_ceil(unsigned n)
-{
- if (n <= 1)
- return 0;
-
- return 1 + util_logbase2(n - 1);
-}
-
-static inline uint64_t
-util_logbase2_ceil64(uint64_t n)
-{
- if (n <= 1)
- return 0;
-
- return 1ull + util_logbase2_64(n - 1);
-}
-
-/**
- * Returns the smallest power of two >= x
- */
-static inline unsigned
-util_next_power_of_two(unsigned x)
-{
-#if defined(HAVE___BUILTIN_CLZ)
- if (x <= 1)
- return 1;
-
- return (1 << ((sizeof(unsigned) * 8) - __builtin_clz(x - 1)));
-#else
- unsigned val = x;
-
- if (x <= 1)
- return 1;
-
- if (util_is_power_of_two_or_zero(x))
- return x;
-
- val--;
- val = (val >> 1) | val;
- val = (val >> 2) | val;
- val = (val >> 4) | val;
- val = (val >> 8) | val;
- val = (val >> 16) | val;
- val++;
- return val;
-#endif
-}
-
-static inline uint64_t
-util_next_power_of_two64(uint64_t x)
-{
-#if defined(HAVE___BUILTIN_CLZLL)
- if (x <= 1)
- return 1;
-
- return (1ull << ((sizeof(uint64_t) * 8) - __builtin_clzll(x - 1)));
-#else
- uint64_t val = x;
-
- if (x <= 1)
- return 1;
-
- if (util_is_power_of_two_or_zero64(x))
- return x;
-
- val--;
- val = (val >> 1) | val;
- val = (val >> 2) | val;
- val = (val >> 4) | val;
- val = (val >> 8) | val;
- val = (val >> 16) | val;
- val = (val >> 32) | val;
- val++;
- return val;
-#endif
-}
-
-
-/**
- * Return number of bits set in n.
- */
-static inline unsigned
-util_bitcount(unsigned n)
-{
-#if defined(HAVE___BUILTIN_POPCOUNT)
- return __builtin_popcount(n);
-#else
- /* K&R classic bitcount.
- *
- * For each iteration, clear the LSB from the bitfield.
- * Requires only one iteration per set bit, instead of
- * one iteration per bit less than highest set bit.
- */
- unsigned bits;
- for (bits = 0; n; bits++) {
- n &= n - 1;
- }
- return bits;
-#endif
-}
-
-
-static inline unsigned
-util_bitcount64(uint64_t n)
-{
-#ifdef HAVE___BUILTIN_POPCOUNTLL
- return __builtin_popcountll(n);
-#else
- return util_bitcount(n) + util_bitcount(n >> 32);
-#endif
-}
-
-
-/**
- * Reverse bits in n
- * Algorithm taken from:
- * http://stackoverflow.com/questions/9144800/c-reverse-bits-in-unsigned-integer
- */
-static inline unsigned
-util_bitreverse(unsigned n)
-{
- n = ((n >> 1) & 0x55555555u) | ((n & 0x55555555u) << 1);
- n = ((n >> 2) & 0x33333333u) | ((n & 0x33333333u) << 2);
- n = ((n >> 4) & 0x0f0f0f0fu) | ((n & 0x0f0f0f0fu) << 4);
- n = ((n >> 8) & 0x00ff00ffu) | ((n & 0x00ff00ffu) << 8);
- n = ((n >> 16) & 0xffffu) | ((n & 0xffffu) << 16);
- return n;
-}
-
-/**
- * Convert from little endian to CPU byte order.
- */
-
-#ifdef PIPE_ARCH_BIG_ENDIAN
-#define util_le64_to_cpu(x) util_bswap64(x)
-#define util_le32_to_cpu(x) util_bswap32(x)
-#define util_le16_to_cpu(x) util_bswap16(x)
-#else
-#define util_le64_to_cpu(x) (x)
-#define util_le32_to_cpu(x) (x)
-#define util_le16_to_cpu(x) (x)
-#endif
-
-#define util_cpu_to_le64(x) util_le64_to_cpu(x)
-#define util_cpu_to_le32(x) util_le32_to_cpu(x)
-#define util_cpu_to_le16(x) util_le16_to_cpu(x)
-
-/**
- * Reverse byte order of a 32 bit word.
- */
-static inline uint32_t
-util_bswap32(uint32_t n)
-{
-#if defined(HAVE___BUILTIN_BSWAP32)
- return __builtin_bswap32(n);
-#else
- return (n >> 24) |
- ((n >> 8) & 0x0000ff00) |
- ((n << 8) & 0x00ff0000) |
- (n << 24);
-#endif
-}
-
-/**
- * Reverse byte order of a 64bit word.
- */
-static inline uint64_t
-util_bswap64(uint64_t n)
-{
-#if defined(HAVE___BUILTIN_BSWAP64)
- return __builtin_bswap64(n);
-#else
- return ((uint64_t)util_bswap32((uint32_t)n) << 32) |
- util_bswap32((n >> 32));
-#endif
-}
-
-
-/**
- * Reverse byte order of a 16 bit word.
- */
-static inline uint16_t
-util_bswap16(uint16_t n)
-{
- return (n >> 8) |
- (n << 8);
-}
-
-static inline void*
-util_memcpy_cpu_to_le32(void * restrict dest, const void * restrict src, size_t n)
-{
-#ifdef PIPE_ARCH_BIG_ENDIAN
- size_t i, e;
- assert(n % 4 == 0);
-
- for (i = 0, e = n / 4; i < e; i++) {
- uint32_t * restrict d = (uint32_t* restrict)dest;
- const uint32_t * restrict s = (const uint32_t* restrict)src;
- d[i] = util_bswap32(s[i]);
- }
- return dest;
-#else
- return memcpy(dest, src, n);
-#endif
-}
-
-/**
- * Clamp X to [MIN, MAX].
- * This is a macro to allow float, int, uint, etc. types.
- * We arbitrarily turn NaN into MIN.
- */
-#define CLAMP( X, MIN, MAX ) ( (X)>(MIN) ? ((X)>(MAX) ? (MAX) : (X)) : (MIN) )
-
-#define MIN2( A, B ) ( (A)<(B) ? (A) : (B) )
-#define MAX2( A, B ) ( (A)>(B) ? (A) : (B) )
-
-#define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C))
-#define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C))
-
-#define MIN4( A, B, C, D ) ((A) < (B) ? MIN3(A, C, D) : MIN3(B, C, D))
-#define MAX4( A, B, C, D ) ((A) > (B) ? MAX3(A, C, D) : MAX3(B, C, D))
-
-
-/**
- * Align a value, only works pot alignemnts.
- */
-static inline int
-align(int value, int alignment)
-{
- return (value + alignment - 1) & ~(alignment - 1);
-}
-
-static inline uint64_t
-align64(uint64_t value, unsigned alignment)
-{
- return (value + alignment - 1) & ~((uint64_t)alignment - 1);
-}
-
-/**
- * Works like align but on npot alignments.
- */
-static inline size_t
-util_align_npot(size_t value, size_t alignment)
-{
- if (value % alignment)
- return value + (alignment - (value % alignment));
- return value;
-}
-
-static inline unsigned
-u_minify(unsigned value, unsigned levels)
-{
- return MAX2(1, value >> levels);
-}
-
-#ifndef COPY_4V
-#define COPY_4V( DST, SRC ) \
-do { \
- (DST)[0] = (SRC)[0]; \
- (DST)[1] = (SRC)[1]; \
- (DST)[2] = (SRC)[2]; \
- (DST)[3] = (SRC)[3]; \
-} while (0)
-#endif
-
-
-#ifndef COPY_4FV
-#define COPY_4FV( DST, SRC ) COPY_4V(DST, SRC)
-#endif
-
-
-#ifndef ASSIGN_4V
-#define ASSIGN_4V( DST, V0, V1, V2, V3 ) \
-do { \
- (DST)[0] = (V0); \
- (DST)[1] = (V1); \
- (DST)[2] = (V2); \
- (DST)[3] = (V3); \
-} while (0)
-#endif
-
-
-static inline uint32_t
-util_unsigned_fixed(float value, unsigned frac_bits)
-{
- return value < 0 ? 0 : (uint32_t)(value * (1<<frac_bits));
-}
-
-static inline int32_t
-util_signed_fixed(float value, unsigned frac_bits)
-{
- return (int32_t)(value * (1<<frac_bits));
-}
-
-unsigned
-util_fpstate_get(void);
-unsigned
-util_fpstate_set_denorms_to_zero(unsigned current_fpstate);
-void
-util_fpstate_set(unsigned fpstate);
-
-
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* U_MATH_H */
u_atomic.h \
u_dynarray.h \
u_endian.h \
+ u_math.c \
+ u_math.h \
u_queue.c \
u_queue.h \
u_string.h \
'u_thread.h',
'u_vector.c',
'u_vector.h',
+ 'u_math.c',
+ 'u_math.h',
'vma.c',
'vma.h',
)
--- /dev/null
+/**************************************************************************
+ *
+ * Copyright 2008 VMware, Inc.
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sub license, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial portions
+ * of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
+ * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
+ * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ **************************************************************************/
+
+
+
+#include "pipe/p_config.h"
+#include "util/u_math.h"
+#include "util/u_cpu_detect.h"
+
+#if defined(PIPE_ARCH_SSE)
+#include <xmmintrin.h>
+/* This is defined in pmmintrin.h, but it can only be included when -msse3 is
+ * used, so just define it here to avoid further. */
+#define _MM_DENORMALS_ZERO_MASK 0x0040
+#endif
+
+
+/** 2^x, for x in [-1.0, 1.0) */
+float pow2_table[POW2_TABLE_SIZE];
+
+
+static void
+init_pow2_table(void)
+{
+ int i;
+ for (i = 0; i < POW2_TABLE_SIZE; i++)
+ pow2_table[i] = exp2f((i - POW2_TABLE_OFFSET) / POW2_TABLE_SCALE);
+}
+
+
+/** log2(x), for x in [1.0, 2.0) */
+float log2_table[LOG2_TABLE_SIZE];
+
+
+static void
+init_log2_table(void)
+{
+ unsigned i;
+ for (i = 0; i < LOG2_TABLE_SIZE; i++)
+ log2_table[i] = (float) log2(1.0 + i * (1.0 / LOG2_TABLE_SCALE));
+}
+
+
+/**
+ * One time init for math utilities.
+ */
+void
+util_init_math(void)
+{
+ static boolean initialized = FALSE;
+ if (!initialized) {
+ init_pow2_table();
+ init_log2_table();
+ initialized = TRUE;
+ }
+}
+
+/**
+ * Fetches the contents of the fpstate (mxcsr on x86) register.
+ *
+ * On platforms without support for it just returns 0.
+ */
+unsigned
+util_fpstate_get(void)
+{
+ unsigned mxcsr = 0;
+
+#if defined(PIPE_ARCH_SSE)
+ if (util_cpu_caps.has_sse) {
+ mxcsr = _mm_getcsr();
+ }
+#endif
+
+ return mxcsr;
+}
+
+/**
+ * Make sure that the fp treats the denormalized floating
+ * point numbers as zero.
+ *
+ * This is the behavior required by D3D10. OpenGL doesn't care.
+ */
+unsigned
+util_fpstate_set_denorms_to_zero(unsigned current_mxcsr)
+{
+#if defined(PIPE_ARCH_SSE)
+ if (util_cpu_caps.has_sse) {
+ /* Enable flush to zero mode */
+ current_mxcsr |= _MM_FLUSH_ZERO_MASK;
+ if (util_cpu_caps.has_daz) {
+ /* Enable denormals are zero mode */
+ current_mxcsr |= _MM_DENORMALS_ZERO_MASK;
+ }
+ util_fpstate_set(current_mxcsr);
+ }
+#endif
+ return current_mxcsr;
+}
+
+/**
+ * Set the state of the fpstate (mxcsr on x86) register.
+ *
+ * On platforms without support for it's a noop.
+ */
+void
+util_fpstate_set(unsigned mxcsr)
+{
+#if defined(PIPE_ARCH_SSE)
+ if (util_cpu_caps.has_sse) {
+ _mm_setcsr(mxcsr);
+ }
+#endif
+}
--- /dev/null
+/**************************************************************************
+ *
+ * Copyright 2008 VMware, Inc.
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sub license, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial portions
+ * of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
+ * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
+ * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ **************************************************************************/
+
+
+/**
+ * Math utilities and approximations for common math functions.
+ * Reduced precision is usually acceptable in shaders...
+ *
+ * "fast" is used in the names of functions which are low-precision,
+ * or at least lower-precision than the normal C lib functions.
+ */
+
+
+#ifndef U_MATH_H
+#define U_MATH_H
+
+
+#include "pipe/p_compiler.h"
+
+#include "c99_math.h"
+#include <assert.h>
+#include <float.h>
+#include <stdarg.h>
+
+#include "bitscan.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
+#ifndef M_SQRT2
+#define M_SQRT2 1.41421356237309504880
+#endif
+
+#define POW2_TABLE_SIZE_LOG2 9
+#define POW2_TABLE_SIZE (1 << POW2_TABLE_SIZE_LOG2)
+#define POW2_TABLE_OFFSET (POW2_TABLE_SIZE/2)
+#define POW2_TABLE_SCALE ((float)(POW2_TABLE_SIZE/2))
+extern float pow2_table[POW2_TABLE_SIZE];
+
+
+/**
+ * Initialize math module. This should be called before using any
+ * other functions in this module.
+ */
+extern void
+util_init_math(void);
+
+
+union fi {
+ float f;
+ int32_t i;
+ uint32_t ui;
+};
+
+
+union di {
+ double d;
+ int64_t i;
+ uint64_t ui;
+};
+
+
+/**
+ * Extract the IEEE float32 exponent.
+ */
+static inline signed
+util_get_float32_exponent(float x)
+{
+ union fi f;
+
+ f.f = x;
+
+ return ((f.ui >> 23) & 0xff) - 127;
+}
+
+
+/**
+ * Fast version of 2^x
+ * Identity: exp2(a + b) = exp2(a) * exp2(b)
+ * Let ipart = int(x)
+ * Let fpart = x - ipart;
+ * So, exp2(x) = exp2(ipart) * exp2(fpart)
+ * Compute exp2(ipart) with i << ipart
+ * Compute exp2(fpart) with lookup table.
+ */
+static inline float
+util_fast_exp2(float x)
+{
+ int32_t ipart;
+ float fpart, mpart;
+ union fi epart;
+
+ if(x > 129.00000f)
+ return 3.402823466e+38f;
+
+ if (x < -126.99999f)
+ return 0.0f;
+
+ ipart = (int32_t) x;
+ fpart = x - (float) ipart;
+
+ /* same as
+ * epart.f = (float) (1 << ipart)
+ * but faster and without integer overflow for ipart > 31
+ */
+ epart.i = (ipart + 127 ) << 23;
+
+ mpart = pow2_table[POW2_TABLE_OFFSET + (int)(fpart * POW2_TABLE_SCALE)];
+
+ return epart.f * mpart;
+}
+
+
+/**
+ * Fast approximation to exp(x).
+ */
+static inline float
+util_fast_exp(float x)
+{
+ const float k = 1.44269f; /* = log2(e) */
+ return util_fast_exp2(k * x);
+}
+
+
+#define LOG2_TABLE_SIZE_LOG2 16
+#define LOG2_TABLE_SCALE (1 << LOG2_TABLE_SIZE_LOG2)
+#define LOG2_TABLE_SIZE (LOG2_TABLE_SCALE + 1)
+extern float log2_table[LOG2_TABLE_SIZE];
+
+
+/**
+ * Fast approximation to log2(x).
+ */
+static inline float
+util_fast_log2(float x)
+{
+ union fi num;
+ float epart, mpart;
+ num.f = x;
+ epart = (float)(((num.i & 0x7f800000) >> 23) - 127);
+ /* mpart = log2_table[mantissa*LOG2_TABLE_SCALE + 0.5] */
+ mpart = log2_table[((num.i & 0x007fffff) + (1 << (22 - LOG2_TABLE_SIZE_LOG2))) >> (23 - LOG2_TABLE_SIZE_LOG2)];
+ return epart + mpart;
+}
+
+
+/**
+ * Fast approximation to x^y.
+ */
+static inline float
+util_fast_pow(float x, float y)
+{
+ return util_fast_exp2(util_fast_log2(x) * y);
+}
+
+
+/**
+ * Floor(x), returned as int.
+ */
+static inline int
+util_ifloor(float f)
+{
+ int ai, bi;
+ double af, bf;
+ union fi u;
+ af = (3 << 22) + 0.5 + (double) f;
+ bf = (3 << 22) + 0.5 - (double) f;
+ u.f = (float) af; ai = u.i;
+ u.f = (float) bf; bi = u.i;
+ return (ai - bi) >> 1;
+}
+
+
+/**
+ * Round float to nearest int.
+ */
+static inline int
+util_iround(float f)
+{
+#if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
+ int r;
+ __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
+ return r;
+#elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86)
+ int r;
+ _asm {
+ fld f
+ fistp r
+ }
+ return r;
+#else
+ if (f >= 0.0f)
+ return (int) (f + 0.5f);
+ else
+ return (int) (f - 0.5f);
+#endif
+}
+
+
+/**
+ * Approximate floating point comparison
+ */
+static inline boolean
+util_is_approx(float a, float b, float tol)
+{
+ return fabsf(b - a) <= tol;
+}
+
+
+/**
+ * util_is_X_inf_or_nan = test if x is NaN or +/- Inf
+ * util_is_X_nan = test if x is NaN
+ * util_X_inf_sign = return +1 for +Inf, -1 for -Inf, or 0 for not Inf
+ *
+ * NaN can be checked with x != x, however this fails with the fast math flag
+ **/
+
+
+/**
+ * Single-float
+ */
+static inline boolean
+util_is_inf_or_nan(float x)
+{
+ union fi tmp;
+ tmp.f = x;
+ return (tmp.ui & 0x7f800000) == 0x7f800000;
+}
+
+
+static inline boolean
+util_is_nan(float x)
+{
+ union fi tmp;
+ tmp.f = x;
+ return (tmp.ui & 0x7fffffff) > 0x7f800000;
+}
+
+
+static inline int
+util_inf_sign(float x)
+{
+ union fi tmp;
+ tmp.f = x;
+ if ((tmp.ui & 0x7fffffff) != 0x7f800000) {
+ return 0;
+ }
+
+ return (x < 0) ? -1 : 1;
+}
+
+
+/**
+ * Double-float
+ */
+static inline boolean
+util_is_double_inf_or_nan(double x)
+{
+ union di tmp;
+ tmp.d = x;
+ return (tmp.ui & 0x7ff0000000000000ULL) == 0x7ff0000000000000ULL;
+}
+
+
+static inline boolean
+util_is_double_nan(double x)
+{
+ union di tmp;
+ tmp.d = x;
+ return (tmp.ui & 0x7fffffffffffffffULL) > 0x7ff0000000000000ULL;
+}
+
+
+static inline int
+util_double_inf_sign(double x)
+{
+ union di tmp;
+ tmp.d = x;
+ if ((tmp.ui & 0x7fffffffffffffffULL) != 0x7ff0000000000000ULL) {
+ return 0;
+ }
+
+ return (x < 0) ? -1 : 1;
+}
+
+
+/**
+ * Half-float
+ */
+static inline boolean
+util_is_half_inf_or_nan(int16_t x)
+{
+ return (x & 0x7c00) == 0x7c00;
+}
+
+
+static inline boolean
+util_is_half_nan(int16_t x)
+{
+ return (x & 0x7fff) > 0x7c00;
+}
+
+
+static inline int
+util_half_inf_sign(int16_t x)
+{
+ if ((x & 0x7fff) != 0x7c00) {
+ return 0;
+ }
+
+ return (x < 0) ? -1 : 1;
+}
+
+
+/**
+ * Return float bits.
+ */
+static inline unsigned
+fui( float f )
+{
+ union fi fi;
+ fi.f = f;
+ return fi.ui;
+}
+
+static inline float
+uif(uint32_t ui)
+{
+ union fi fi;
+ fi.ui = ui;
+ return fi.f;
+}
+
+
+/**
+ * Convert ubyte to float in [0, 1].
+ */
+static inline float
+ubyte_to_float(ubyte ub)
+{
+ return (float) ub * (1.0f / 255.0f);
+}
+
+
+/**
+ * Convert float in [0,1] to ubyte in [0,255] with clamping.
+ */
+static inline ubyte
+float_to_ubyte(float f)
+{
+ /* return 0 for NaN too */
+ if (!(f > 0.0f)) {
+ return (ubyte) 0;
+ }
+ else if (f >= 1.0f) {
+ return (ubyte) 255;
+ }
+ else {
+ union fi tmp;
+ tmp.f = f;
+ tmp.f = tmp.f * (255.0f/256.0f) + 32768.0f;
+ return (ubyte) tmp.i;
+ }
+}
+
+static inline float
+byte_to_float_tex(int8_t b)
+{
+ return (b == -128) ? -1.0F : b * 1.0F / 127.0F;
+}
+
+static inline int8_t
+float_to_byte_tex(float f)
+{
+ return (int8_t) (127.0F * f);
+}
+
+/**
+ * Calc log base 2
+ */
+static inline unsigned
+util_logbase2(unsigned n)
+{
+#if defined(HAVE___BUILTIN_CLZ)
+ return ((sizeof(unsigned) * 8 - 1) - __builtin_clz(n | 1));
+#else
+ unsigned pos = 0;
+ if (n >= 1<<16) { n >>= 16; pos += 16; }
+ if (n >= 1<< 8) { n >>= 8; pos += 8; }
+ if (n >= 1<< 4) { n >>= 4; pos += 4; }
+ if (n >= 1<< 2) { n >>= 2; pos += 2; }
+ if (n >= 1<< 1) { pos += 1; }
+ return pos;
+#endif
+}
+
+static inline uint64_t
+util_logbase2_64(uint64_t n)
+{
+#if defined(HAVE___BUILTIN_CLZLL)
+ return ((sizeof(uint64_t) * 8 - 1) - __builtin_clzll(n | 1));
+#else
+ uint64_t pos = 0ull;
+ if (n >= 1ull<<32) { n >>= 32; pos += 32; }
+ if (n >= 1ull<<16) { n >>= 16; pos += 16; }
+ if (n >= 1ull<< 8) { n >>= 8; pos += 8; }
+ if (n >= 1ull<< 4) { n >>= 4; pos += 4; }
+ if (n >= 1ull<< 2) { n >>= 2; pos += 2; }
+ if (n >= 1ull<< 1) { pos += 1; }
+ return pos;
+#endif
+}
+
+/**
+ * Returns the ceiling of log n base 2, and 0 when n == 0. Equivalently,
+ * returns the smallest x such that n <= 2**x.
+ */
+static inline unsigned
+util_logbase2_ceil(unsigned n)
+{
+ if (n <= 1)
+ return 0;
+
+ return 1 + util_logbase2(n - 1);
+}
+
+static inline uint64_t
+util_logbase2_ceil64(uint64_t n)
+{
+ if (n <= 1)
+ return 0;
+
+ return 1ull + util_logbase2_64(n - 1);
+}
+
+/**
+ * Returns the smallest power of two >= x
+ */
+static inline unsigned
+util_next_power_of_two(unsigned x)
+{
+#if defined(HAVE___BUILTIN_CLZ)
+ if (x <= 1)
+ return 1;
+
+ return (1 << ((sizeof(unsigned) * 8) - __builtin_clz(x - 1)));
+#else
+ unsigned val = x;
+
+ if (x <= 1)
+ return 1;
+
+ if (util_is_power_of_two_or_zero(x))
+ return x;
+
+ val--;
+ val = (val >> 1) | val;
+ val = (val >> 2) | val;
+ val = (val >> 4) | val;
+ val = (val >> 8) | val;
+ val = (val >> 16) | val;
+ val++;
+ return val;
+#endif
+}
+
+static inline uint64_t
+util_next_power_of_two64(uint64_t x)
+{
+#if defined(HAVE___BUILTIN_CLZLL)
+ if (x <= 1)
+ return 1;
+
+ return (1ull << ((sizeof(uint64_t) * 8) - __builtin_clzll(x - 1)));
+#else
+ uint64_t val = x;
+
+ if (x <= 1)
+ return 1;
+
+ if (util_is_power_of_two_or_zero64(x))
+ return x;
+
+ val--;
+ val = (val >> 1) | val;
+ val = (val >> 2) | val;
+ val = (val >> 4) | val;
+ val = (val >> 8) | val;
+ val = (val >> 16) | val;
+ val = (val >> 32) | val;
+ val++;
+ return val;
+#endif
+}
+
+
+/**
+ * Return number of bits set in n.
+ */
+static inline unsigned
+util_bitcount(unsigned n)
+{
+#if defined(HAVE___BUILTIN_POPCOUNT)
+ return __builtin_popcount(n);
+#else
+ /* K&R classic bitcount.
+ *
+ * For each iteration, clear the LSB from the bitfield.
+ * Requires only one iteration per set bit, instead of
+ * one iteration per bit less than highest set bit.
+ */
+ unsigned bits;
+ for (bits = 0; n; bits++) {
+ n &= n - 1;
+ }
+ return bits;
+#endif
+}
+
+
+static inline unsigned
+util_bitcount64(uint64_t n)
+{
+#ifdef HAVE___BUILTIN_POPCOUNTLL
+ return __builtin_popcountll(n);
+#else
+ return util_bitcount(n) + util_bitcount(n >> 32);
+#endif
+}
+
+
+/**
+ * Reverse bits in n
+ * Algorithm taken from:
+ * http://stackoverflow.com/questions/9144800/c-reverse-bits-in-unsigned-integer
+ */
+static inline unsigned
+util_bitreverse(unsigned n)
+{
+ n = ((n >> 1) & 0x55555555u) | ((n & 0x55555555u) << 1);
+ n = ((n >> 2) & 0x33333333u) | ((n & 0x33333333u) << 2);
+ n = ((n >> 4) & 0x0f0f0f0fu) | ((n & 0x0f0f0f0fu) << 4);
+ n = ((n >> 8) & 0x00ff00ffu) | ((n & 0x00ff00ffu) << 8);
+ n = ((n >> 16) & 0xffffu) | ((n & 0xffffu) << 16);
+ return n;
+}
+
+/**
+ * Convert from little endian to CPU byte order.
+ */
+
+#ifdef PIPE_ARCH_BIG_ENDIAN
+#define util_le64_to_cpu(x) util_bswap64(x)
+#define util_le32_to_cpu(x) util_bswap32(x)
+#define util_le16_to_cpu(x) util_bswap16(x)
+#else
+#define util_le64_to_cpu(x) (x)
+#define util_le32_to_cpu(x) (x)
+#define util_le16_to_cpu(x) (x)
+#endif
+
+#define util_cpu_to_le64(x) util_le64_to_cpu(x)
+#define util_cpu_to_le32(x) util_le32_to_cpu(x)
+#define util_cpu_to_le16(x) util_le16_to_cpu(x)
+
+/**
+ * Reverse byte order of a 32 bit word.
+ */
+static inline uint32_t
+util_bswap32(uint32_t n)
+{
+#if defined(HAVE___BUILTIN_BSWAP32)
+ return __builtin_bswap32(n);
+#else
+ return (n >> 24) |
+ ((n >> 8) & 0x0000ff00) |
+ ((n << 8) & 0x00ff0000) |
+ (n << 24);
+#endif
+}
+
+/**
+ * Reverse byte order of a 64bit word.
+ */
+static inline uint64_t
+util_bswap64(uint64_t n)
+{
+#if defined(HAVE___BUILTIN_BSWAP64)
+ return __builtin_bswap64(n);
+#else
+ return ((uint64_t)util_bswap32((uint32_t)n) << 32) |
+ util_bswap32((n >> 32));
+#endif
+}
+
+
+/**
+ * Reverse byte order of a 16 bit word.
+ */
+static inline uint16_t
+util_bswap16(uint16_t n)
+{
+ return (n >> 8) |
+ (n << 8);
+}
+
+static inline void*
+util_memcpy_cpu_to_le32(void * restrict dest, const void * restrict src, size_t n)
+{
+#ifdef PIPE_ARCH_BIG_ENDIAN
+ size_t i, e;
+ assert(n % 4 == 0);
+
+ for (i = 0, e = n / 4; i < e; i++) {
+ uint32_t * restrict d = (uint32_t* restrict)dest;
+ const uint32_t * restrict s = (const uint32_t* restrict)src;
+ d[i] = util_bswap32(s[i]);
+ }
+ return dest;
+#else
+ return memcpy(dest, src, n);
+#endif
+}
+
+/**
+ * Clamp X to [MIN, MAX].
+ * This is a macro to allow float, int, uint, etc. types.
+ * We arbitrarily turn NaN into MIN.
+ */
+#define CLAMP( X, MIN, MAX ) ( (X)>(MIN) ? ((X)>(MAX) ? (MAX) : (X)) : (MIN) )
+
+#define MIN2( A, B ) ( (A)<(B) ? (A) : (B) )
+#define MAX2( A, B ) ( (A)>(B) ? (A) : (B) )
+
+#define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C))
+#define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C))
+
+#define MIN4( A, B, C, D ) ((A) < (B) ? MIN3(A, C, D) : MIN3(B, C, D))
+#define MAX4( A, B, C, D ) ((A) > (B) ? MAX3(A, C, D) : MAX3(B, C, D))
+
+
+/**
+ * Align a value, only works pot alignemnts.
+ */
+static inline int
+align(int value, int alignment)
+{
+ return (value + alignment - 1) & ~(alignment - 1);
+}
+
+static inline uint64_t
+align64(uint64_t value, unsigned alignment)
+{
+ return (value + alignment - 1) & ~((uint64_t)alignment - 1);
+}
+
+/**
+ * Works like align but on npot alignments.
+ */
+static inline size_t
+util_align_npot(size_t value, size_t alignment)
+{
+ if (value % alignment)
+ return value + (alignment - (value % alignment));
+ return value;
+}
+
+static inline unsigned
+u_minify(unsigned value, unsigned levels)
+{
+ return MAX2(1, value >> levels);
+}
+
+#ifndef COPY_4V
+#define COPY_4V( DST, SRC ) \
+do { \
+ (DST)[0] = (SRC)[0]; \
+ (DST)[1] = (SRC)[1]; \
+ (DST)[2] = (SRC)[2]; \
+ (DST)[3] = (SRC)[3]; \
+} while (0)
+#endif
+
+
+#ifndef COPY_4FV
+#define COPY_4FV( DST, SRC ) COPY_4V(DST, SRC)
+#endif
+
+
+#ifndef ASSIGN_4V
+#define ASSIGN_4V( DST, V0, V1, V2, V3 ) \
+do { \
+ (DST)[0] = (V0); \
+ (DST)[1] = (V1); \
+ (DST)[2] = (V2); \
+ (DST)[3] = (V3); \
+} while (0)
+#endif
+
+
+static inline uint32_t
+util_unsigned_fixed(float value, unsigned frac_bits)
+{
+ return value < 0 ? 0 : (uint32_t)(value * (1<<frac_bits));
+}
+
+static inline int32_t
+util_signed_fixed(float value, unsigned frac_bits)
+{
+ return (int32_t)(value * (1<<frac_bits));
+}
+
+unsigned
+util_fpstate_get(void);
+unsigned
+util_fpstate_set_denorms_to_zero(unsigned current_fpstate);
+void
+util_fpstate_set(unsigned fpstate);
+
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* U_MATH_H */