* add support for mkBoundVar() (BOUND_VAR_LISTs in quantifiers must be bound vars)
}
bool Expr::isBoundVar() const {
- Unimplemented();
+ return getKind() == CVC4::kind::BOUND_VARIABLE;
}
bool Expr::isLambda() const {
Expr ValidityChecker::boundVarExpr(const std::string& name, const std::string& uid,
const Type& type) {
- Unimplemented("Quantifiers not supported by CVC4 yet (sorry!)");
+ return d_em->mkBoundVar(name, type);
}
Expr ValidityChecker::forallExpr(const std::vector<Expr>& vars, const Expr& body) {
} \
++ *(d_exprStatistics[kind]); \
}
- #define INC_STAT_VAR(type) \
+ #define INC_STAT_VAR(type, bound_var) \
{ \
TypeNode* typeNode = Type::getTypeNode(type); \
TypeConstant type = typeNode->getKind() == kind::TYPE_CONSTANT ? typeNode->getConst<TypeConstant>() : LAST_TYPE; \
if (d_exprStatisticsVars[type] == NULL) { \
stringstream statName; \
if (type == LAST_TYPE) { \
- statName << "expr::ExprManager::VARIABLE:Parameterized type"; \
+ statName << "expr::ExprManager::" << ((bound_var) ? "BOUND_VARIABLE" : "VARIABLE") << ":Parameterized type"; \
} else { \
- statName << "expr::ExprManager::VARIABLE:" << type; \
+ statName << "expr::ExprManager::" << ((bound_var) ? "BOUND_VARIABLE" : "VARIABLE") << ":" << type; \
} \
d_exprStatisticsVars[type] = new IntStat(statName.str(), 0); \
d_nodeManager->getStatisticsRegistry()->registerStat_(d_exprStatisticsVars[type]); \
}
#else
#define INC_STAT(kind)
- #define INC_STAT_VAR(type)
+ #define INC_STAT_VAR(type, bound_var)
#endif
using namespace std;
}
Expr ExprManager::mkVar(const std::string& name, Type type) {
+ Assert(NodeManager::currentNM() == NULL, "ExprManager::mkVar() should only be called externally, not from within CVC4 code. Please use mkSkolem().");
NodeManagerScope nms(d_nodeManager);
Node* n = d_nodeManager->mkVarPtr(name, *type.d_typeNode);
Debug("nm") << "set " << name << " on " << *n << std::endl;
- INC_STAT_VAR(type);
+ INC_STAT_VAR(type, false);
return Expr(this, n);
}
Expr ExprManager::mkVar(Type type) {
+ Assert(NodeManager::currentNM() == NULL, "ExprManager::mkVar() should only be called externally, not from within CVC4 code. Please use mkSkolem().");
NodeManagerScope nms(d_nodeManager);
- INC_STAT_VAR(type);
+ INC_STAT_VAR(type, false);
return Expr(this, d_nodeManager->mkVarPtr(*type.d_typeNode));
}
+Expr ExprManager::mkBoundVar(const std::string& name, Type type) {
+ NodeManagerScope nms(d_nodeManager);
+ Node* n = d_nodeManager->mkBoundVarPtr(name, *type.d_typeNode);
+ Debug("nm") << "set " << name << " on " << *n << std::endl;
+ INC_STAT_VAR(type, true);
+ return Expr(this, n);
+}
+
+Expr ExprManager::mkBoundVar(Type type) {
+ NodeManagerScope nms(d_nodeManager);
+ INC_STAT_VAR(type, true);
+ return Expr(this, d_nodeManager->mkBoundVarPtr(*type.d_typeNode));
+}
+
Expr ExprManager::mkAssociative(Kind kind,
const std::vector<Expr>& children) {
CheckArgument( kind::isAssociative(kind), kind,
// variables are special, because duplicates are permitted
Expr mkVar(const std::string& name, Type type);
Expr mkVar(Type type);
+ Expr mkBoundVar(const std::string& name, Type type);
+ Expr mkBoundVar(Type type);
/** Get a reference to the statistics registry for this ExprManager */
StatisticsRegistry* getStatisticsRegistry() const throw();
friend class expr::NodeValue;
friend class expr::TypeChecker;
+ // friends so they can access mkVar() here, which is private
+ friend Expr ExprManager::mkVar(const std::string& name, Type type);
+ friend Expr ExprManager::mkVar(Type type);
+
/** Predicate for use with STL algorithms */
struct NodeValueReferenceCountNonZero {
bool operator()(expr::NodeValue* nv) { return nv->d_rc > 0; }
void init();
+ /**
+ * Create a variable with the given name and type. NOTE that no
+ * lookup is done on the name. If you mkVar("a", type) and then
+ * mkVar("a", type) again, you have two variables. The NodeManager
+ * version of this is private to avoid internal uses of mkVar() from
+ * within CVC4. Such uses should employ mkSkolem() instead.
+ */
+ Node mkVar(const std::string& name, const TypeNode& type);
+ Node* mkVarPtr(const std::string& name, const TypeNode& type);
+
+ /** Create a variable with the given type. */
+ Node mkVar(const TypeNode& type);
+ Node* mkVarPtr(const TypeNode& type);
+
public:
explicit NodeManager(context::Context* ctxt, ExprManager* exprManager);
template <bool ref_count>
Node* mkNodePtr(TNode opNode, const std::vector<NodeTemplate<ref_count> >& children);
- /**
- * Create a variable with the given name and type. NOTE that no
- * lookup is done on the name. If you mkVar("a", type) and then
- * mkVar("a", type) again, you have two variables.
- */
- Node mkVar(const std::string& name, const TypeNode& type);
- Node* mkVarPtr(const std::string& name, const TypeNode& type);
+ Node mkBoundVar(const std::string& name, const TypeNode& type);
+ Node* mkBoundVarPtr(const std::string& name, const TypeNode& type);
- /** Create a variable with the given type. */
- Node mkVar(const TypeNode& type);
- Node* mkVarPtr(const TypeNode& type);
+ Node mkBoundVar(const TypeNode& type);
+ Node* mkBoundVarPtr(const TypeNode& type);
/** Create a skolem constant with the given type. */
Node mkSkolem(const TypeNode& type);
+ Node mkSkolem(const std::string& name, const TypeNode& type);
/** Create a instantiation constant with the given type. */
Node mkInstConstant(const TypeNode& type);
inline Node NodeManager::mkVar(const std::string& name, const TypeNode& type) {
Node n = mkVar(type);
- setAttribute(n, TypeAttr(), type);
setAttribute(n, expr::VarNameAttr(), name);
return n;
}
inline Node* NodeManager::mkVarPtr(const std::string& name,
const TypeNode& type) {
Node* n = mkVarPtr(type);
- setAttribute(*n, TypeAttr(), type);
+ setAttribute(*n, expr::VarNameAttr(), name);
+ return n;
+}
+
+inline Node NodeManager::mkBoundVar(const std::string& name, const TypeNode& type) {
+ Node n = mkBoundVar(type);
+ setAttribute(n, expr::VarNameAttr(), name);
+ return n;
+}
+
+inline Node* NodeManager::mkBoundVarPtr(const std::string& name,
+ const TypeNode& type) {
+ Node* n = mkBoundVarPtr(type);
setAttribute(*n, expr::VarNameAttr(), name);
return n;
}
return n;
}
+inline Node NodeManager::mkBoundVar(const TypeNode& type) {
+ Node n = NodeBuilder<0>(this, kind::BOUND_VARIABLE);
+ setAttribute(n, TypeAttr(), type);
+ setAttribute(n, TypeCheckedAttr(), true);
+ return n;
+}
+
+inline Node* NodeManager::mkBoundVarPtr(const TypeNode& type) {
+ Node* n = NodeBuilder<0>(this, kind::BOUND_VARIABLE).constructNodePtr();
+ setAttribute(*n, TypeAttr(), type);
+ setAttribute(*n, TypeCheckedAttr(), true);
+ return n;
+}
+
+inline Node NodeManager::mkSkolem(const std::string& name, const TypeNode& type) {
+ Node n = mkSkolem(type);
+ setAttribute(n, expr::VarNameAttr(), name);
+ return n;
+}
+
inline Node NodeManager::mkSkolem(const TypeNode& type) {
Node n = NodeBuilder<0>(this, kind::SKOLEM);
setAttribute(n, TypeAttr(), type);
{ PARSER_STATE->pushScope(); } LPAREN
boundVarDecl[ids,t]
{ for(std::vector<std::string>::const_iterator i = ids.begin(); i != ids.end(); ++i) {
- bvs.push_back(PARSER_STATE->mkVar(*i, t));
+ bvs.push_back(PARSER_STATE->mkBoundVar(*i, t));
}
ids.clear();
}
( COMMA boundVarDecl[ids,t]
{
for(std::vector<std::string>::const_iterator i = ids.begin(); i != ids.end(); ++i) {
- bvs.push_back(PARSER_STATE->mkVar(*i, t));
+ bvs.push_back(PARSER_STATE->mkBoundVar(*i, t));
}
ids.clear();
}
return expr;
}
+Expr
+Parser::mkBoundVar(const std::string& name, const Type& type) {
+ Debug("parser") << "mkVar(" << name << ", " << type << ")" << std::endl;
+ Expr expr = d_exprManager->mkBoundVar(name, type);
+ defineVar(name, expr, false);
+ return expr;
+}
+
Expr
Parser::mkFunction(const std::string& name, const Type& type,
bool levelZero) {
void
Parser::defineVar(const std::string& name, const Expr& val,
- bool levelZero) {
+ bool levelZero) {
+ Debug("parser") << "defineVar( " << name << " := " << val << " , " << levelZero << ")" << std::endl;;
d_symtab->bind(name, val, levelZero);
Assert( isDeclared(name) );
}
Expr::printtypes::Scope pts(Debug("parser-idt"), true);
Expr constructor = ctor.getConstructor();
Debug("parser-idt") << "+ define " << constructor << std::endl;
- string constructorName = constructor.toString();
+ string constructorName = ctor.getName();
if(isDeclared(constructorName, SYM_VARIABLE)) {
throw ParserException(constructorName + " already declared");
}
defineVar(constructorName, constructor);
Expr tester = ctor.getTester();
Debug("parser-idt") << "+ define " << tester << std::endl;
- string testerName = tester.toString();
+ string testerName = ctor.getTesterName();
if(isDeclared(testerName, SYM_VARIABLE)) {
throw ParserException(testerName + " already declared");
}
++k) {
Expr selector = (*k).getSelector();
Debug("parser-idt") << "+++ define " << selector << std::endl;
- string selectorName = selector.toString();
+ string selectorName = (*k).getName();
if(isDeclared(selectorName, SYM_VARIABLE)) {
throw ParserException(selectorName + " already declared");
}
mkVars(const std::vector<std::string> names, const Type& type,
bool levelZero = false);
+ /** Create a new CVC4 bound variable expression of the given type. */
+ Expr mkBoundVar(const std::string& name, const Type& type);
+
/** Create a new CVC4 function expression of the given type. */
Expr mkFunction(const std::string& name, const Type& type,
bool levelZero = false);
( FORALL_TOK { kind = kind::FORALL; } | EXISTS_TOK { kind = kind::EXISTS; } )
{ PARSER_STATE->pushScope(); }
( LPAREN_TOK let_identifier[name,CHECK_NONE] t=sortSymbol RPAREN_TOK
- { args.push_back(PARSER_STATE->mkVar(name, t)); }
+ { args.push_back(PARSER_STATE->mkBoundVar(name, t)); }
)+
annotatedFormula[expr] RPAREN_TOK
{ args2.push_back( MK_EXPR( kind::BOUND_VAR_LIST, args ) );
sortedVarNames.begin(), iend = sortedVarNames.end();
i != iend;
++i) {
- args.push_back(PARSER_STATE->mkVar((*i).first, (*i).second));
+ args.push_back(PARSER_STATE->mkBoundVar((*i).first, (*i).second));
}
bvl = MK_EXPR(kind::BOUND_VAR_LIST, args);
}
sortedVarNames.begin(), iend = sortedVarNames.end();
i != iend;
++i) {
- args.push_back(PARSER_STATE->mkVar((*i).first, (*i).second));
+ args.push_back(PARSER_STATE->mkBoundVar((*i).first, (*i).second));
}
bvl = MK_EXPR(kind::BOUND_VAR_LIST, args);
}
sortedVarNames.begin(), iend = sortedVarNames.end();
i != iend;
++i) {
- args.push_back(PARSER_STATE->mkVar((*i).first, (*i).second));
+ args.push_back(PARSER_STATE->mkBoundVar((*i).first, (*i).second));
}
Expr bvl = MK_EXPR(kind::BOUND_VAR_LIST, args);
args.clear();
if(!PARSER_STATE->cnf || PARSER_STATE->isDeclared(name)){
expr = PARSER_STATE->getVariable(name);
} else {
- expr = PARSER_STATE->mkVar(name, PARSER_STATE->d_unsorted);
+ expr = PARSER_STATE->mkBoundVar(name, PARSER_STATE->d_unsorted);
if(PARSER_STATE->cnf) PARSER_STATE->addFreeVar(expr);
}
}
: UPPER_WORD
{
std::string name = AntlrInput::tokenText($UPPER_WORD);
- expr = PARSER_STATE->mkVar(name, PARSER_STATE->d_unsorted);
+ expr = PARSER_STATE->mkBoundVar(name, PARSER_STATE->d_unsorted);
}
;
// construct the let binder
std::stringstream ss;
ss << d_letVarPrefix << d_letVar++;
- Node letvar = NodeManager::currentNM()->mkVar(ss.str(), (*i).getType());
+ Node letvar = NodeManager::currentNM()->mkSkolem(ss.str(), (*i).getType());
// apply previous substitutions to the rhs, enabling cascading LETs
Node n = d_substitutions->apply(*i);
inline Node makeIntegerVariable(){
NodeManager* curr = NodeManager::currentNM();
- return curr->mkVar(curr->integerType());
+ return curr->mkSkolem(curr->integerType());
}
DioSolver::DioSolver(context::Context* ctxt) :
if( it==d_deltas.end() ){
std::ostringstream os;
os << "delta_" << d_deltas.size();
- Node delta = NodeManager::currentNM()->mkVar( os.str(), n.getType() );
+ Node delta = NodeManager::currentNM()->mkSkolem( os.str(), n.getType() );
d_deltas[ n.getType() ] = delta;
Node gt = NodeManager::currentNM()->mkNode( GT, delta, NodeManager::currentNM()->mkConst( Rational(0) ) );
//add split
TNode k;
std::hash_map<TNode, Node, TNodeHashFunction>::iterator it = d_diseqCache.find(fact);
if (it == d_diseqCache.end()) {
- Node newk = nm->mkVar(indexType);
+ Node newk = nm->mkSkolem(indexType);
Dump.declareVar(newk.toExpr(),
"an extensional lemma index variable from the theory of arrays");
d_diseqCache[fact] = newk;
ArrayModel::ArrayModel( Node arr, quantifiers::FirstOrderModel* m ) : d_model( m ), d_arr( arr ){
Assert( arr.getKind()!=STORE );
//look at ground assertions
- Node sel = NodeManager::currentNM()->mkNode( SELECT, arr, NodeManager::currentNM()->mkVar( arr.getType().getArrayIndexType() ) );
+ Node sel = NodeManager::currentNM()->mkNode( SELECT, arr, NodeManager::currentNM()->mkSkolem( arr.getType().getArrayIndexType() ) );
Node sel_op = sel.getOperator(); //FIXME: easier way to do this?
for( size_t i=0; i<d_model->getTermDatabase()->d_op_map[ sel_op ].size(); i++ ){
Node n = d_model->getTermDatabase()->d_op_map[ sel_op ][i];
operator EQUAL 2 "equality"
operator DISTINCT 2: "disequality"
-variable SKOLEM "skolem var"
variable VARIABLE "variable"
+variable BOUND_VARIABLE "bound variable"
+variable SKOLEM "skolem var"
operator TUPLE 1: "a tuple"
constant TYPE_CONSTANT \
}
inline static Node mkGroundTerm(TypeNode type) {
Assert(type.getKind() == kind::SORT_TYPE);
- return NodeManager::currentNM()->mkVar( type );
+ return NodeManager::currentNM()->mkSkolem( type );
}
};/* class SortProperties */
inline Node mkVar(unsigned size) {
NodeManager* nm = NodeManager::currentNM();
- return nm->mkVar(nm->mkBitVectorType(size));
+ return nm->mkSkolem(nm->mkBitVectorType(size));
}
inline Node mkAnd(std::vector<TNode>& children) {
return (*it).second;
}
else {
- Node var = NodeManager::currentNM()->mkVar(t);
+ Node var = NodeManager::currentNM()->mkSkolem(t);
d_simpVars[t] = var;
return var;
}
}while( true );
}else{
//otherwise must make a variable FIXME: how to make constants for other sorts?
- //return NodeManager::currentNM()->mkVar( tn );
+ //return NodeManager::currentNM()->mkSkolem( tn );
return Node::null();
}
}
default_v = v;
}
if( default_v.isNull() ){
- default_v = getInterpretedValue( NodeManager::currentNM()->mkVar( type.getRangeType() ) );
+ default_v = getInterpretedValue( NodeManager::currentNM()->mkSkolem( type.getRangeType() ) );
}
ufmt.setDefaultValue( this, default_v );
ufmt.simplify();
TypeNode typ = NodeManager::currentNM()->mkFunctionType( argTypes, NodeManager::currentNM()->booleanType() );
std::stringstream ss;
ss << "cnf_" << n.getKind() << "_" << n.getId();
- Node op = NodeManager::currentNM()->mkVar( ss.str(), typ );
+ Node op = NodeManager::currentNM()->mkSkolem( ss.str(), typ );
std::vector< Node > predArgs;
predArgs.push_back( op );
predArgs.insert( predArgs.end(), activeArgs.begin(), activeArgs.end() );
for( int i=0; i<(int)body[0].getNumChildren(); i++ ){
//if( std::find( args.begin(), args.end(), body[0][i] )!=args.end() ){
terms.push_back( body[0][i] );
- subs.push_back( NodeManager::currentNM()->mkVar( body[0][i].getType() ) );
+ subs.push_back( NodeManager::currentNM()->mkSkolem( body[0][i].getType() ) );
}
args.insert( args.end(), subs.begin(), subs.end() );
}else{
terms.push_back( body[0][i] );
//make the new function symbol
TypeNode typ = NodeManager::currentNM()->mkFunctionType( argTypes, body[0][i].getType() );
- Node op = NodeManager::currentNM()->mkVar( typ );
+ Node op = NodeManager::currentNM()->mkSkolem( typ );
std::vector< Node > funcArgs;
funcArgs.push_back( op );
funcArgs.insert( funcArgs.end(), args.begin(), args.end() );
std::stringstream ss;
ss << Expr::setlanguage(options::outputLanguage());
ss << "e_" << tn;
- mbt = NodeManager::currentNM()->mkVar( ss.str(), tn );
+ mbt = NodeManager::currentNM()->mkSkolem( ss.str(), tn );
}else{
mbt = d_type_map[ tn ][ 0 ];
}
d_free_vars[tn] = NodeManager::currentNM()->mkConst( z );
}else{
if( d_type_map[ tn ].empty() ){
- d_free_vars[tn] = NodeManager::currentNM()->mkVar( tn );
+ d_free_vars[tn] = NodeManager::currentNM()->mkSkolem( tn );
}else{
d_free_vars[tn] = d_type_map[ tn ][ 0 ];
}
Assert(n.getKind() == kind::BOUND_VAR_LIST );
if( check ){
for( int i=0; i<(int)n.getNumChildren(); i++ ){
- if( n[i].getKind()!=kind::VARIABLE ){
- throw TypeCheckingExceptionPrivate(n, "argument of bound var list is not variable");
+ if( n[i].getKind()!=kind::BOUND_VARIABLE ){
+ throw TypeCheckingExceptionPrivate(n, "argument of bound var list is not bound variable");
}
}
}
std::stringstream ss;
ss << Expr::setlanguage(options::outputLanguage());
ss << "t_" << d_type;
- d_cardinality_lemma_term = NodeManager::currentNM()->mkVar( ss.str(), d_type );
+ d_cardinality_lemma_term = NodeManager::currentNM()->mkSkolem( ss.str(), d_type );
}
Node lem = NodeManager::currentNM()->mkNode( CARDINALITY_CONSTRAINT, d_cardinality_lemma_term,
NodeManager::currentNM()->mkConst( Rational( d_cardinality ) ) );
Node UnconstrainedSimplifier::newUnconstrainedVar(TypeNode t, TNode var)
{
- Node n = NodeManager::currentNM()->mkVar(t);
+ Node n = NodeManager::currentNM()->mkSkolem(t);
Dump.declareVar(n.toExpr(), "a new var introduced because of unconstrained variable " + var.toString());
return n;
}
"cannot resolve a Datatype constructor twice; "
"perhaps the same constructor was added twice, "
"or to two datatypes?");
+
+ // we're using some internals, so we have to set up this library context
+ ExprManagerScope ems(*em);
+
+ NodeManager* nm = NodeManager::fromExprManager(em);
+ TypeNode selfTypeNode = TypeNode::fromType(self);
size_t index = 0;
for(iterator i = begin(), i_end = end(); i != i_end; ++i) {
if((*i).d_selector.isNull()) {
string typeName = (*i).d_name.substr((*i).d_name.find('\0') + 1);
(*i).d_name.resize((*i).d_name.find('\0'));
if(typeName == "") {
- (*i).d_selector = em->mkVar((*i).d_name, em->mkSelectorType(self, self));
+ (*i).d_selector = nm->mkSkolem((*i).d_name, nm->mkSelectorType(selfTypeNode, selfTypeNode)).toExpr();
} else {
map<string, DatatypeType>::const_iterator j = resolutions.find(typeName);
if(j == resolutions.end()) {
<< "of constructor \"" << d_name << "\"";
throw DatatypeResolutionException(msg.str());
} else {
- (*i).d_selector = em->mkVar((*i).d_name, em->mkSelectorType(self, (*j).second));
+ (*i).d_selector = nm->mkSkolem((*i).d_name, nm->mkSelectorType(selfTypeNode, TypeNode::fromType((*j).second))).toExpr();
}
}
} else {
if(!paramTypes.empty() ) {
range = doParametricSubstitution( range, paramTypes, paramReplacements );
}
- (*i).d_selector = em->mkVar((*i).d_name, em->mkSelectorType(self, range));
+ (*i).d_selector = nm->mkSkolem((*i).d_name, nm->mkSelectorType(selfTypeNode, TypeNode::fromType(range))).toExpr();
}
Node::fromExpr((*i).d_selector).setAttribute(DatatypeIndexAttr(), index++);
(*i).d_resolved = true;
// fails above, we want Constuctor::isResolved() to remain "false".
// Further, mkConstructorType() iterates over the selectors, so
// should get the results of any resolutions we did above.
- d_tester = em->mkVar(d_name.substr(d_name.find('\0') + 1), em->mkTesterType(self));
- d_name.resize(d_name.find('\0'));
- d_constructor = em->mkVar(d_name, em->mkConstructorType(*this, self));
+ d_tester = nm->mkSkolem(getTesterName(), nm->mkTesterType(selfTypeNode)).toExpr();
+ d_constructor = nm->mkSkolem(getName(), nm->mkConstructorType(*this, selfTypeNode)).toExpr();
// associate constructor with all selectors
for(iterator i = begin(), i_end = end(); i != i_end; ++i) {
(*i).d_constructor = d_constructor;
// create the proper selector type)
CheckArgument(!isResolved(), this, "cannot modify a finalized Datatype constructor");
CheckArgument(!selectorType.isNull(), selectorType, "cannot add a null selector type");
- Expr type = selectorType.getExprManager()->mkVar(selectorType);
+
+ // we're using some internals, so we have to set up this library context
+ ExprManagerScope ems(selectorType);
+
+ Expr type = NodeManager::currentNM()->mkSkolem(TypeNode::fromType(selectorType)).toExpr();
Debug("datatypes") << type << endl;
d_args.push_back(DatatypeConstructorArg(selectorName, type));
}
}
std::string DatatypeConstructor::getName() const throw() {
- string name = d_name;
- if(!isResolved()) {
- name.resize(name.find('\0'));
- }
- return name;
+ return d_name.substr(0, d_name.find('\0'));
+}
+
+std::string DatatypeConstructor::getTesterName() const throw() {
+ return d_name.substr(d_name.find('\0') + 1);
}
Expr DatatypeConstructor::getConstructor() const {
*/
Expr getTester() const;
+ /**
+ * Get the tester name for this Datatype constructor.
+ */
+ std::string getTesterName() const throw();
+
/**
* Get the number of arguments (so far) of this Datatype constructor.
*/
TypeNode nodeType = node.getType();
if(!nodeType.isBoolean()) {
// Make the skolem to represent the ITE
- Node skolem = nodeManager->mkVar(nodeType);
+ Node skolem = nodeManager->mkSkolem(nodeType);
Dump.declareVar(skolem.toExpr(), "a variable introduced due to term-level ITE removal");