rd_transparent.bits.push_back(State(port.transparent));
rd_clk.append(port.clk);
rd_en.append(port.en);
- SigSpec addr = port.addr;
+ SigSpec addr = port.sub_addr(sub);
addr.extend_u0(abits, false);
- for (int i = 0; i < port.wide_log2; i++)
- addr[i] = State(sub >> i & 1);
rd_addr.append(addr);
log_assert(GetSize(addr) == abits);
}
wr_clk_enable.bits.push_back(State(port.clk_enable));
wr_clk_polarity.bits.push_back(State(port.clk_polarity));
wr_clk.append(port.clk);
- SigSpec addr = port.addr;
+ SigSpec addr = port.sub_addr(sub);
addr.extend_u0(abits, false);
- for (int i = 0; i < port.wide_log2; i++)
- addr[i] = State(sub >> i & 1);
wr_addr.append(addr);
log_assert(GetSize(addr) == abits);
}
for (int sub = 0; sub < (1 << max_wide_log2); sub += (1 << min_wide_log2)) {
SigSpec raddr = port.addr;
SigSpec waddr = wport.addr;
- for (int j = min_wide_log2; j < max_wide_log2; j++)
- if (wide_write)
- waddr[j] = State(sub >> j & 1);
- else
- raddr[j] = State(sub >> j & 1);
+ if (wide_write)
+ waddr = wport.sub_addr(sub);
+ else
+ raddr = port.sub_addr(sub);
SigSpec addr_eq;
if (raddr != waddr)
addr_eq = module->Eq(stringf("$%s$rdtransen[%d][%d][%d]$d", memid.c_str(), idx, i, sub), raddr, waddr);
port.init_value = port.init_value.extract(it.second * width, width);
port.arst_value = port.arst_value.extract(it.second * width, width);
port.srst_value = port.srst_value.extract(it.second * width, width);
- for (int i = 0; i < port.wide_log2; i++)
- port.addr[i] = State(it.second >> i & 1);
+ port.addr = port.sub_addr(it.second);
port.wide_log2 = 0;
}
new_rd_ports.push_back(port);
if (port.wide_log2) {
port.data = port.data.extract(it.second * width, width);
port.en = port.en.extract(it.second * width, width);
- for (int i = 0; i < port.wide_log2; i++)
- port.addr[i] = State(it.second >> i & 1);
+ port.addr = port.sub_addr(it.second);
port.wide_log2 = 0;
}
port.priority_mask.clear();
for (int sub = 0; sub < (1 << max_wide_log2); sub += (1 << min_wide_log2)) {
SigSpec addr1 = port1.addr;
SigSpec addr2 = port2.addr;
- for (int j = min_wide_log2; j < max_wide_log2; j++)
- if (wide1)
- addr1[j] = State(sub >> j & 1);
- else
- addr2[j] = State(sub >> j & 1);
+ if (wide1)
+ addr1 = port1.sub_addr(sub);
+ else
+ addr2 = port2.sub_addr(sub);
SigSpec addr_eq = module->Eq(NEW_ID, addr1, addr2);
int ewidth = width << min_wide_log2;
int sub1 = wide1 ? sub : 0;
Const arst_value, srst_value, init_value;
bool transparent;
SigSpec clk, en, arst, srst, addr, data;
+
MemRd() : removed(false), cell(nullptr) {}
+
+ // Returns the address of given subword index accessed by this port.
+ SigSpec sub_addr(int sub) {
+ SigSpec res = addr;
+ for (int i = 0; i < wide_log2; i++)
+ res[i] = State(sub >> i & 1);
+ return res;
+ }
};
struct MemWr {
bool clk_enable, clk_polarity;
std::vector<bool> priority_mask;
SigSpec clk, en, addr, data;
+
MemWr() : removed(false), cell(nullptr) {}
+
+ // Returns the address of given subword index accessed by this port.
+ SigSpec sub_addr(int sub) {
+ SigSpec res = addr;
+ for (int i = 0; i < wide_log2; i++)
+ res[i] = State(sub >> i & 1);
+ return res;
+ }
};
struct MemInit {
continue;
for (int sub = 0; sub < (1 << port.wide_log2); sub++) {
- SigSpec addr = sigmap_xmux(port.addr);
- for (int i = 0; i < port.wide_log2; i++)
- addr[i] = State(sub >> i & 1);
+ SigSpec addr = sigmap_xmux(port.sub_addr(sub));
async_rd_bits[addr].resize(mem.width);
for (int i = 0; i < mem.width; i++)
async_rd_bits[addr][i].insert(sigmap(port.data[i + sub * mem.width]));
for (int sub = 0; sub < (1 << port.wide_log2); sub++)
{
- SigSpec addr = sigmap_xmux(port.addr);
- for (int k = 0; k < port.wide_log2; k++)
- addr[k] = State(sub >> k & 1);
+ SigSpec addr = sigmap_xmux(port.sub_addr(sub));
if (!async_rd_bits.count(addr))
continue;