if (entry)
return entry->data;
- struct vtn_ssa_value *val = ralloc(b, struct vtn_ssa_value);
+ struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
val->type = type;
switch (glsl_get_base_type(type)) {
val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
for (unsigned i = 0; i < columns; i++) {
- struct vtn_ssa_value *col_val = ralloc(b, struct vtn_ssa_value);
+ struct vtn_ssa_value *col_val = rzalloc(b, struct vtn_ssa_value);
col_val->type = glsl_get_column_type(val->type);
nir_load_const_instr *load =
nir_load_const_instr_create(b->shader, rows);
case SpvDecorationFPFastMathMode:
case SpvDecorationLinkageAttributes:
case SpvDecorationSpecId:
+ break;
default:
unreachable("Unhandled variable decoration");
}
_vtn_variable_load(struct vtn_builder *b,
nir_deref_var *src_deref, nir_deref *src_deref_tail)
{
- struct vtn_ssa_value *val = ralloc(b, struct vtn_ssa_value);
+ struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
val->type = src_deref_tail->type;
/* The deref tail may contain a deref to select a component of a vector (in
nir_builder_instr_insert(&b->nb, &instr->instr);
}
+static struct vtn_ssa_value *
+vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
+{
+ struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
+ val->type = type;
+
+ if (!glsl_type_is_vector_or_scalar(type)) {
+ unsigned elems = glsl_get_length(type);
+ val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
+ for (unsigned i = 0; i < elems; i++) {
+ const struct glsl_type *child_type;
+
+ switch (glsl_get_base_type(type)) {
+ case GLSL_TYPE_INT:
+ case GLSL_TYPE_UINT:
+ case GLSL_TYPE_BOOL:
+ case GLSL_TYPE_FLOAT:
+ case GLSL_TYPE_DOUBLE:
+ child_type = glsl_get_column_type(type);
+ break;
+ case GLSL_TYPE_ARRAY:
+ child_type = glsl_get_array_element(type);
+ break;
+ case GLSL_TYPE_STRUCT:
+ child_type = glsl_get_struct_field(type, i);
+ break;
+ default:
+ unreachable("unkown base type");
+ }
+
+ val->elems[i] = vtn_create_ssa_value(b, child_type);
+ }
+ }
+
+ return val;
+}
+
+static nir_alu_instr *
+create_vec(void *mem_ctx, unsigned num_components)
+{
+ nir_op op;
+ switch (num_components) {
+ case 1: op = nir_op_fmov; break;
+ case 2: op = nir_op_vec2; break;
+ case 3: op = nir_op_vec3; break;
+ case 4: op = nir_op_vec4; break;
+ default: unreachable("bad vector size");
+ }
+
+ nir_alu_instr *vec = nir_alu_instr_create(mem_ctx, op);
+ nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components, NULL);
+
+ return vec;
+}
+
+static struct vtn_ssa_value *
+vtn_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
+{
+ if (src->transposed)
+ return src->transposed;
+
+ struct vtn_ssa_value *dest =
+ vtn_create_ssa_value(b, glsl_transposed_type(src->type));
+
+ for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
+ nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type));
+ if (glsl_type_is_vector_or_scalar(src->type)) {
+ vec->src[0].src = nir_src_for_ssa(src->def);
+ vec->src[0].swizzle[0] = i;
+ } else {
+ for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
+ vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
+ vec->src[j].swizzle[0] = i;
+ }
+ }
+ nir_builder_instr_insert(&b->nb, &vec->instr);
+ dest->elems[i]->def = &vec->dest.dest.ssa;
+ }
+
+ dest->transposed = src;
+
+ return dest;
+}
+
+/*
+ * Normally, column vectors in SPIR-V correspond to a single NIR SSA
+ * definition. But for matrix multiplies, we want to do one routine for
+ * multiplying a matrix by a matrix and then pretend that vectors are matrices
+ * with one column. So we "wrap" these things, and unwrap the result before we
+ * send it off.
+ */
+
+static struct vtn_ssa_value *
+vtn_wrap_matrix(struct vtn_builder *b, struct vtn_ssa_value *val)
+{
+ if (val == NULL)
+ return NULL;
+
+ if (glsl_type_is_matrix(val->type))
+ return val;
+
+ struct vtn_ssa_value *dest = rzalloc(b, struct vtn_ssa_value);
+ dest->type = val->type;
+ dest->elems = ralloc_array(b, struct vtn_ssa_value *, 1);
+ dest->elems[0] = val;
+
+ return dest;
+}
+
+static struct vtn_ssa_value *
+vtn_unwrap_matrix(struct vtn_ssa_value *val)
+{
+ if (glsl_type_is_matrix(val->type))
+ return val;
+
+ return val->elems[0];
+}
+
+static struct vtn_ssa_value *
+vtn_matrix_multiply(struct vtn_builder *b,
+ struct vtn_ssa_value *_src0, struct vtn_ssa_value *_src1)
+{
+
+ struct vtn_ssa_value *src0 = vtn_wrap_matrix(b, _src0);
+ struct vtn_ssa_value *src1 = vtn_wrap_matrix(b, _src1);
+ struct vtn_ssa_value *src0_transpose = vtn_wrap_matrix(b, _src0->transposed);
+ struct vtn_ssa_value *src1_transpose = vtn_wrap_matrix(b, _src1->transposed);
+
+ unsigned src0_rows = glsl_get_vector_elements(src0->type);
+ unsigned src0_columns = glsl_get_matrix_columns(src0->type);
+ unsigned src1_columns = glsl_get_matrix_columns(src1->type);
+
+ struct vtn_ssa_value *dest =
+ vtn_create_ssa_value(b, glsl_matrix_type(glsl_get_base_type(src0->type),
+ src0_rows, src1_columns));
+
+ dest = vtn_wrap_matrix(b, dest);
+
+ bool transpose_result = false;
+ if (src0_transpose && src1_transpose) {
+ /* transpose(A) * transpose(B) = transpose(B * A) */
+ src1 = src0_transpose;
+ src0 = src1_transpose;
+ src0_transpose = NULL;
+ src1_transpose = NULL;
+ transpose_result = true;
+ }
+
+ if (src0_transpose && !src1_transpose &&
+ glsl_get_base_type(src0->type) == GLSL_TYPE_FLOAT) {
+ /* We already have the rows of src0 and the columns of src1 available,
+ * so we can just take the dot product of each row with each column to
+ * get the result.
+ */
+
+ for (unsigned i = 0; i < src1_columns; i++) {
+ nir_alu_instr *vec = create_vec(b, src0_rows);
+ for (unsigned j = 0; j < src0_rows; j++) {
+ vec->src[j].src =
+ nir_src_for_ssa(nir_fdot(&b->nb, src0_transpose->elems[j]->def,
+ src1->elems[i]->def));
+ }
+
+ nir_builder_instr_insert(&b->nb, &vec->instr);
+ dest->elems[i]->def = &vec->dest.dest.ssa;
+ }
+ } else {
+ /* We don't handle the case where src1 is transposed but not src0, since
+ * the general case only uses individual components of src1 so the
+ * optimizer should chew through the transpose we emitted for src1.
+ */
+
+ for (unsigned i = 0; i < src1_columns; i++) {
+ /* dest[i] = sum(src0[j] * src1[i][j] for all j) */
+ dest->elems[i]->def =
+ nir_fmul(&b->nb, src0->elems[0]->def,
+ vtn_vector_extract(b, src1->elems[i]->def, 0));
+ for (unsigned j = 1; j < src0_columns; j++) {
+ dest->elems[i]->def =
+ nir_fadd(&b->nb, dest->elems[i]->def,
+ nir_fmul(&b->nb, src0->elems[j]->def,
+ vtn_vector_extract(b,
+ src1->elems[i]->def, j)));
+ }
+ }
+ }
+
+ dest = vtn_unwrap_matrix(dest);
+
+ if (transpose_result)
+ dest = vtn_transpose(b, dest);
+
+ return dest;
+}
+
+static struct vtn_ssa_value *
+vtn_mat_times_scalar(struct vtn_builder *b,
+ struct vtn_ssa_value *mat,
+ nir_ssa_def *scalar)
+{
+ struct vtn_ssa_value *dest = vtn_create_ssa_value(b, mat->type);
+ for (unsigned i = 0; i < glsl_get_matrix_columns(mat->type); i++) {
+ if (glsl_get_base_type(mat->type) == GLSL_TYPE_FLOAT)
+ dest->elems[i]->def = nir_fmul(&b->nb, mat->elems[i]->def, scalar);
+ else
+ dest->elems[i]->def = nir_imul(&b->nb, mat->elems[i]->def, scalar);
+ }
+
+ return dest;
+}
+
static void
vtn_handle_matrix_alu(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
- unreachable("Matrix math not handled");
+ struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
+ val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
+
+ switch (opcode) {
+ case SpvOpTranspose: {
+ struct vtn_ssa_value *src = vtn_ssa_value(b, w[3]);
+ val->ssa = vtn_transpose(b, src);
+ break;
+ }
+
+ case SpvOpOuterProduct: {
+ struct vtn_ssa_value *src0 = vtn_ssa_value(b, w[3]);
+ struct vtn_ssa_value *src1 = vtn_ssa_value(b, w[4]);
+
+ val->ssa = vtn_matrix_multiply(b, src0, vtn_transpose(b, src1));
+ break;
+ }
+
+ case SpvOpMatrixTimesScalar: {
+ struct vtn_ssa_value *mat = vtn_ssa_value(b, w[3]);
+ struct vtn_ssa_value *scalar = vtn_ssa_value(b, w[4]);
+
+ if (mat->transposed) {
+ val->ssa = vtn_transpose(b, vtn_mat_times_scalar(b, mat->transposed,
+ scalar->def));
+ } else {
+ val->ssa = vtn_mat_times_scalar(b, mat, scalar->def);
+ }
+ break;
+ }
+
+ case SpvOpVectorTimesMatrix:
+ case SpvOpMatrixTimesVector:
+ case SpvOpMatrixTimesMatrix: {
+ struct vtn_ssa_value *src0 = vtn_ssa_value(b, w[3]);
+ struct vtn_ssa_value *src1 = vtn_ssa_value(b, w[4]);
+
+ val->ssa = vtn_matrix_multiply(b, src0, src1);
+ break;
+ }
+
+ default: unreachable("unknown matrix opcode");
+ }
}
static void
static nir_ssa_def *
vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
{
- nir_alu_src alu_src;
- alu_src.src = nir_src_for_ssa(src);
- alu_src.swizzle[0] = index;
- return nir_fmov_alu(&b->nb, alu_src, 1);
+ unsigned swiz[4] = { index };
+ return nir_swizzle(&b->nb, src, swiz, 1, true);
}
-static nir_alu_instr *
-create_vec(void *mem_ctx, unsigned num_components)
-{
- nir_op op;
- switch (num_components) {
- case 1: op = nir_op_fmov; break;
- case 2: op = nir_op_vec2; break;
- case 3: op = nir_op_vec3; break;
- case 4: op = nir_op_vec4; break;
- default: unreachable("bad vector size");
- }
-
- nir_alu_instr *vec = nir_alu_instr_create(mem_ctx, op);
- nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components, NULL);
-
- return vec;
-}
static nir_ssa_def *
vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
static struct vtn_ssa_value *
vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
{
- struct vtn_ssa_value *dest = ralloc(mem_ctx, struct vtn_ssa_value);
+ struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
dest->type = src->type;
if (glsl_type_is_vector_or_scalar(src->type)) {
* vector to extract.
*/
- struct vtn_ssa_value *ret = ralloc(b, struct vtn_ssa_value);
+ struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
ret->def = vtn_vector_extract(b, cur->def, indices[i]);
return ret;
break;
case SpvOpCompositeConstruct: {
- val->ssa = ralloc(b, struct vtn_ssa_value);
+ val->ssa = rzalloc(b, struct vtn_ssa_value);
unsigned elems = count - 3;
if (glsl_type_is_vector_or_scalar(val->type)) {
nir_ssa_def *srcs[4];