}
DeltaRationalException::~DeltaRationalException() {}
-
-Integer DeltaRational::euclidianDivideQuotient(const DeltaRational& y) const throw(DeltaRationalException){
+Integer DeltaRational::euclidianDivideQuotient(const DeltaRational& y) const
+{
if(isIntegral() && y.isIntegral()){
Integer ti = floor();
Integer yi = y.floor();
}
}
-Integer DeltaRational::euclidianDivideRemainder(const DeltaRational& y) const throw(DeltaRationalException){
+Integer DeltaRational::euclidianDivideRemainder(const DeltaRational& y) const
+{
if(isIntegral() && y.isIntegral()){
Integer ti = floor();
Integer yi = y.floor();
* This can be done whenever this->k or a.k is 0.
* Otherwise, the result is not a DeltaRational and a DeltaRationalException is thrown.
*/
- DeltaRational operator*(const DeltaRational& a) const throw(DeltaRationalException){
+ DeltaRational operator*(const DeltaRational& a) const
+ /* throw(DeltaRationalException) */ {
if(infinitesimalIsZero()){
return a * (this->getNoninfinitesimalPart());
}else if(a.infinitesimalIsZero()){
* This can be done when a.k is 0 and a.c is non-zero.
* Otherwise, the result is not a DeltaRational and a DeltaRationalException is thrown.
*/
- DeltaRational operator/(const DeltaRational& a) const throw(DeltaRationalException){
+ DeltaRational operator/(const DeltaRational& a) const
+ /* throw(DeltaRationalException) */ {
if(a.infinitesimalIsZero()){
return (*this) / a.getNoninfinitesimalPart();
}else{
}
/** Only well defined if both this and y are integral. */
- Integer euclidianDivideQuotient(const DeltaRational& y) const throw(DeltaRationalException);
+ Integer euclidianDivideQuotient(const DeltaRational& y) const
+ /* throw(DeltaRationalException) */;
/** Only well defined if both this and y are integral. */
- Integer euclidianDivideRemainder(const DeltaRational& y) const throw(DeltaRationalException);
-
+ Integer euclidianDivideRemainder(const DeltaRational& y) const
+ /* throw(DeltaRationalException) */;
std::string toString() const;
* precondition: The linear abstraction of the nodes must be satisfiable.
*/
DeltaRational getDeltaValue(TNode term) const
- throw(DeltaRationalException, ModelException);
+ /* throw(DeltaRationalException, ModelException) */;
Node axiomIteForTotalDivision(Node div_tot);
Node axiomIteForTotalIntDivision(Node int_div_like);