+++ /dev/null
-/* Target-dependent code for Renesas Super-H, for GDB.
-
- Copyright (C) 1993-2018 Free Software Foundation, Inc.
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>. */
-
-/* Contributed by Steve Chamberlain
- sac@cygnus.com. */
-
-#include "defs.h"
-#include "frame.h"
-#include "frame-base.h"
-#include "frame-unwind.h"
-#include "dwarf2-frame.h"
-#include "symtab.h"
-#include "gdbtypes.h"
-#include "gdbcmd.h"
-#include "gdbcore.h"
-#include "value.h"
-#include "dis-asm.h"
-#include "inferior.h"
-#include "arch-utils.h"
-#include "regcache.h"
-#include "osabi.h"
-#include "target-float.h"
-#include "valprint.h"
-#include "target-float.h"
-
-#include "elf-bfd.h"
-
-/* sh flags */
-#include "elf/sh.h"
-/* Register numbers shared with the simulator. */
-#include "gdb/sim-sh.h"
-#include "language.h"
-#include "sh64-tdep.h"
-#include <algorithm>
-
-/* Information that is dependent on the processor variant. */
-enum sh_abi
- {
- SH_ABI_UNKNOWN,
- SH_ABI_32,
- SH_ABI_64
- };
-
-struct gdbarch_tdep
- {
- enum sh_abi sh_abi;
- /* ISA-specific data types. */
- struct type *sh_littlebyte_bigword_type;
- };
-
-struct type *
-sh64_littlebyte_bigword_type (struct gdbarch *gdbarch)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
- if (tdep->sh_littlebyte_bigword_type == NULL)
- tdep->sh_littlebyte_bigword_type
- = arch_float_type (gdbarch, -1, "builtin_type_sh_littlebyte_bigword",
- floatformats_ieee_double_littlebyte_bigword);
-
- return tdep->sh_littlebyte_bigword_type;
-}
-
-struct sh64_frame_cache
-{
- /* Base address. */
- CORE_ADDR base;
- LONGEST sp_offset;
- CORE_ADDR pc;
-
- /* Flag showing that a frame has been created in the prologue code. */
- int uses_fp;
-
- int media_mode;
-
- /* Saved registers. */
- CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
- CORE_ADDR saved_sp;
-};
-
-/* Registers of SH5 */
-enum
- {
- R0_REGNUM = 0,
- DEFAULT_RETURN_REGNUM = 2,
- STRUCT_RETURN_REGNUM = 2,
- ARG0_REGNUM = 2,
- ARGLAST_REGNUM = 9,
- FLOAT_ARGLAST_REGNUM = 11,
- MEDIA_FP_REGNUM = 14,
- PR_REGNUM = 18,
- SR_REGNUM = 65,
- DR0_REGNUM = 141,
- DR_LAST_REGNUM = 172,
- /* FPP stands for Floating Point Pair, to avoid confusion with
- GDB's gdbarch_fp0_regnum, which is the number of the first Floating
- point register. Unfortunately on the sh5, the floating point
- registers are called FR, and the floating point pairs are called FP. */
- FPP0_REGNUM = 173,
- FPP_LAST_REGNUM = 204,
- FV0_REGNUM = 205,
- FV_LAST_REGNUM = 220,
- R0_C_REGNUM = 221,
- R_LAST_C_REGNUM = 236,
- PC_C_REGNUM = 237,
- GBR_C_REGNUM = 238,
- MACH_C_REGNUM = 239,
- MACL_C_REGNUM = 240,
- PR_C_REGNUM = 241,
- T_C_REGNUM = 242,
- FPSCR_C_REGNUM = 243,
- FPUL_C_REGNUM = 244,
- FP0_C_REGNUM = 245,
- FP_LAST_C_REGNUM = 260,
- DR0_C_REGNUM = 261,
- DR_LAST_C_REGNUM = 268,
- FV0_C_REGNUM = 269,
- FV_LAST_C_REGNUM = 272,
- FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
- SSR_REGNUM = SIM_SH64_SSR_REGNUM,
- SPC_REGNUM = SIM_SH64_SPC_REGNUM,
- TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
- FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
- };
-
-static const char *
-sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
-{
- static const char *register_names[] =
- {
- /* SH MEDIA MODE (ISA 32) */
- /* general registers (64-bit) 0-63 */
- "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
- "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
- "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
- "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
- "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
- "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
- "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
- "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
-
- /* pc (64-bit) 64 */
- "pc",
-
- /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
- "sr", "ssr", "spc",
-
- /* target registers (64-bit) 68-75 */
- "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
-
- /* floating point state control register (32-bit) 76 */
- "fpscr",
-
- /* single precision floating point registers (32-bit) 77-140 */
- "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
- "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
- "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
- "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
- "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
- "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
- "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
- "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
-
- /* double precision registers (pseudo) 141-172 */
- "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
- "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
- "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
- "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
-
- /* floating point pairs (pseudo) 173-204 */
- "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
- "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
- "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
- "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
-
- /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
- "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
- "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
-
- /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
- "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
- "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
- "pc_c",
- "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
- "fpscr_c", "fpul_c",
- "fr0_c", "fr1_c", "fr2_c", "fr3_c",
- "fr4_c", "fr5_c", "fr6_c", "fr7_c",
- "fr8_c", "fr9_c", "fr10_c", "fr11_c",
- "fr12_c", "fr13_c", "fr14_c", "fr15_c",
- "dr0_c", "dr2_c", "dr4_c", "dr6_c",
- "dr8_c", "dr10_c", "dr12_c", "dr14_c",
- "fv0_c", "fv4_c", "fv8_c", "fv12_c",
- /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
- };
-
- if (reg_nr < 0)
- return NULL;
- if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
- return NULL;
- return register_names[reg_nr];
-}
-
-#define NUM_PSEUDO_REGS_SH_MEDIA 80
-#define NUM_PSEUDO_REGS_SH_COMPACT 51
-
-/* Macros and functions for setting and testing a bit in a minimal
- symbol that marks it as 32-bit function. The MSB of the minimal
- symbol's "info" field is used for this purpose.
-
- gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
- i.e. refers to a 32-bit function, and sets a "special" bit in a
- minimal symbol to mark it as a 32-bit function
- MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
-
-#define MSYMBOL_IS_SPECIAL(msym) \
- MSYMBOL_TARGET_FLAG_1 (msym)
-
-static void
-sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
-{
- if (msym == NULL)
- return;
-
- if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
- {
- MSYMBOL_TARGET_FLAG_1 (msym) = 1;
- SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
- }
-}
-
-/* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
- are some macros to test, set, or clear bit 0 of addresses. */
-#define IS_ISA32_ADDR(addr) ((addr) & 1)
-#define MAKE_ISA32_ADDR(addr) ((addr) | 1)
-#define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
-
-static int
-pc_is_isa32 (bfd_vma memaddr)
-{
- struct bound_minimal_symbol sym;
-
- /* If bit 0 of the address is set, assume this is a
- ISA32 (shmedia) address. */
- if (IS_ISA32_ADDR (memaddr))
- return 1;
-
- /* A flag indicating that this is a ISA32 function is stored by elfread.c in
- the high bit of the info field. Use this to decide if the function is
- ISA16 or ISA32. */
- sym = lookup_minimal_symbol_by_pc (memaddr);
- if (sym.minsym)
- return MSYMBOL_IS_SPECIAL (sym.minsym);
- else
- return 0;
-}
-
-static int
-sh64_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
-{
- if (pc_is_isa32 (*pcptr))
- {
- *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
- return 4;
- }
- else
- return 2;
-}
-
-static const gdb_byte *
-sh64_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
-{
- *size = kind;
-
- /* The BRK instruction for shmedia is
- 01101111 11110101 11111111 11110000
- which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
- and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
-
- /* The BRK instruction for shcompact is
- 00000000 00111011
- which translates in big endian mode to 0x0, 0x3b
- and in little endian mode to 0x3b, 0x0 */
-
- if (kind == 4)
- {
- static unsigned char big_breakpoint_media[] = {
- 0x6f, 0xf5, 0xff, 0xf0
- };
- static unsigned char little_breakpoint_media[] = {
- 0xf0, 0xff, 0xf5, 0x6f
- };
-
- if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
- return big_breakpoint_media;
- else
- return little_breakpoint_media;
- }
- else
- {
- static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
- static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
-
- if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
- return big_breakpoint_compact;
- else
- return little_breakpoint_compact;
- }
-}
-
-/* Prologue looks like
- [mov.l <regs>,@-r15]...
- [sts.l pr,@-r15]
- [mov.l r14,@-r15]
- [mov r15,r14]
-
- Actually it can be more complicated than this. For instance, with
- newer gcc's:
-
- mov.l r14,@-r15
- add #-12,r15
- mov r15,r14
- mov r4,r1
- mov r5,r2
- mov.l r6,@(4,r14)
- mov.l r7,@(8,r14)
- mov.b r1,@r14
- mov r14,r1
- mov r14,r1
- add #2,r1
- mov.w r2,@r1
-
- */
-
-/* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
- with l=1 and n = 18 0110101111110001010010100aaa0000 */
-#define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
-
-/* STS.L PR,@-r0 0100000000100010
- r0-4-->r0, PR-->(r0) */
-#define IS_STS_R0(x) ((x) == 0x4022)
-
-/* STS PR, Rm 0000mmmm00101010
- PR-->Rm */
-#define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
-
-/* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
- Rm-->(dispx4+r15) */
-#define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
-
-/* MOV.L R14,@(disp,r15) 000111111110dddd
- R14-->(dispx4+r15) */
-#define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
-
-/* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
- R18-->(dispx8+R14) */
-#define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
-
-/* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
- R18-->(dispx8+R15) */
-#define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
-
-/* ST.L R15, disp, R18 101010001111dddddddddd0100100000
- R18-->(dispx4+R15) */
-#define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
-
-/* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
- R14-->(dispx8+R15) */
-#define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
-
-/* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
- R14-->(dispx4+R15) */
-#define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
-
-/* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
- R15 + imm --> R15 */
-#define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
-
-/* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
- R15 + imm --> R15 */
-#define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
-
-/* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
- R15 + R63 --> R14 */
-#define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
-
-/* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
- R15 + R63 --> R14 */
-#define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
-
-#define IS_MOV_SP_FP_MEDIA(x) \
- (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
-
-/* MOV #imm, R0 1110 0000 ssss ssss
- #imm-->R0 */
-#define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
-
-/* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
-#define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
-
-/* ADD r15,r0 0011 0000 1111 1100
- r15+r0-->r0 */
-#define IS_ADD_SP_R0(x) ((x) == 0x30fc)
-
-/* MOV.L R14 @-R0 0010 0000 1110 0110
- R14-->(R0-4), R0-4-->R0 */
-#define IS_MOV_R14_R0(x) ((x) == 0x20e6)
-
-/* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
- where Rm is one of r2-r9 which are the argument registers. */
-/* FIXME: Recognize the float and double register moves too! */
-#define IS_MEDIA_IND_ARG_MOV(x) \
- ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
- && (((x) & 0x03f00000) >= 0x00200000 \
- && ((x) & 0x03f00000) <= 0x00900000))
-
-/* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
- or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
- where Rm is one of r2-r9 which are the argument registers. */
-#define IS_MEDIA_ARG_MOV(x) \
-(((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
- && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
-
-/* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
-/* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
-/* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
-/* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
-/* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
-#define IS_MEDIA_MOV_TO_R14(x) \
-((((x) & 0xfffffc0f) == 0xa0e00000) \
-|| (((x) & 0xfffffc0f) == 0xa4e00000) \
-|| (((x) & 0xfffffc0f) == 0xa8e00000) \
-|| (((x) & 0xfffffc0f) == 0xb4e00000) \
-|| (((x) & 0xfffffc0f) == 0xbce00000))
-
-/* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
- where Rm is r2-r9 */
-#define IS_COMPACT_IND_ARG_MOV(x) \
- ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
- && (((x) & 0x00f0) <= 0x0090))
-
-/* compact direct arg move!
- MOV.L Rn, @r14 0010 1110 mmmm 0010 */
-#define IS_COMPACT_ARG_MOV(x) \
- (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
- && ((x) & 0x00f0) <= 0x0090))
-
-/* MOV.B Rm, @R14 0010 1110 mmmm 0000
- MOV.W Rm, @R14 0010 1110 mmmm 0001 */
-#define IS_COMPACT_MOV_TO_R14(x) \
-((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
-
-#define IS_JSR_R0(x) ((x) == 0x400b)
-#define IS_NOP(x) ((x) == 0x0009)
-
-
-/* MOV r15,r14 0110111011110011
- r15-->r14 */
-#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
-
-/* ADD #imm,r15 01111111iiiiiiii
- r15+imm-->r15 */
-#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
-
-/* Skip any prologue before the guts of a function. */
-
-/* Skip the prologue using the debug information. If this fails we'll
- fall back on the 'guess' method below. */
-static CORE_ADDR
-after_prologue (CORE_ADDR pc)
-{
- struct symtab_and_line sal;
- CORE_ADDR func_addr, func_end;
-
- /* If we can not find the symbol in the partial symbol table, then
- there is no hope we can determine the function's start address
- with this code. */
- if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
- return 0;
-
-
- /* Get the line associated with FUNC_ADDR. */
- sal = find_pc_line (func_addr, 0);
-
- /* There are only two cases to consider. First, the end of the source line
- is within the function bounds. In that case we return the end of the
- source line. Second is the end of the source line extends beyond the
- bounds of the current function. We need to use the slow code to
- examine instructions in that case. */
- if (sal.end < func_end)
- return sal.end;
- else
- return 0;
-}
-
-static CORE_ADDR
-look_for_args_moves (struct gdbarch *gdbarch,
- CORE_ADDR start_pc, int media_mode)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- CORE_ADDR here, end;
- int w;
- int insn_size = (media_mode ? 4 : 2);
-
- for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
- {
- if (media_mode)
- {
- w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
- insn_size, byte_order);
- here += insn_size;
- if (IS_MEDIA_IND_ARG_MOV (w))
- {
- /* This must be followed by a store to r14, so the argument
- is where the debug info says it is. This can happen after
- the SP has been saved, unfortunately. */
-
- int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
- insn_size, byte_order);
- here += insn_size;
- if (IS_MEDIA_MOV_TO_R14 (next_insn))
- start_pc = here;
- }
- else if (IS_MEDIA_ARG_MOV (w))
- {
- /* These instructions store directly the argument in r14. */
- start_pc = here;
- }
- else
- break;
- }
- else
- {
- w = read_memory_integer (here, insn_size, byte_order);
- w = w & 0xffff;
- here += insn_size;
- if (IS_COMPACT_IND_ARG_MOV (w))
- {
- /* This must be followed by a store to r14, so the argument
- is where the debug info says it is. This can happen after
- the SP has been saved, unfortunately. */
-
- int next_insn = 0xffff & read_memory_integer (here, insn_size,
- byte_order);
- here += insn_size;
- if (IS_COMPACT_MOV_TO_R14 (next_insn))
- start_pc = here;
- }
- else if (IS_COMPACT_ARG_MOV (w))
- {
- /* These instructions store directly the argument in r14. */
- start_pc = here;
- }
- else if (IS_MOVL_R0 (w))
- {
- /* There is a function that gcc calls to get the arguments
- passed correctly to the function. Only after this
- function call the arguments will be found at the place
- where they are supposed to be. This happens in case the
- argument has to be stored into a 64-bit register (for
- instance doubles, long longs). SHcompact doesn't have
- access to the full 64-bits, so we store the register in
- stack slot and store the address of the stack slot in
- the register, then do a call through a wrapper that
- loads the memory value into the register. A SHcompact
- callee calls an argument decoder
- (GCC_shcompact_incoming_args) that stores the 64-bit
- value in a stack slot and stores the address of the
- stack slot in the register. GCC thinks the argument is
- just passed by transparent reference, but this is only
- true after the argument decoder is called. Such a call
- needs to be considered part of the prologue. */
-
- /* This must be followed by a JSR @r0 instruction and by
- a NOP instruction. After these, the prologue is over! */
-
- int next_insn = 0xffff & read_memory_integer (here, insn_size,
- byte_order);
- here += insn_size;
- if (IS_JSR_R0 (next_insn))
- {
- next_insn = 0xffff & read_memory_integer (here, insn_size,
- byte_order);
- here += insn_size;
-
- if (IS_NOP (next_insn))
- start_pc = here;
- }
- }
- else
- break;
- }
- }
-
- return start_pc;
-}
-
-static CORE_ADDR
-sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- CORE_ADDR here, end;
- int updated_fp = 0;
- int insn_size = 4;
- int media_mode = 1;
-
- if (!start_pc)
- return 0;
-
- if (pc_is_isa32 (start_pc) == 0)
- {
- insn_size = 2;
- media_mode = 0;
- }
-
- for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
- {
-
- if (media_mode)
- {
- int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
- insn_size, byte_order);
- here += insn_size;
- if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
- || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
- || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
- || IS_PTABSL_R18 (w))
- {
- start_pc = here;
- }
- else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
- {
- start_pc = here;
- updated_fp = 1;
- }
- else
- if (updated_fp)
- {
- /* Don't bail out yet, we may have arguments stored in
- registers here, according to the debug info, so that
- gdb can print the frames correctly. */
- start_pc = look_for_args_moves (gdbarch,
- here - insn_size, media_mode);
- break;
- }
- }
- else
- {
- int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
- here += insn_size;
-
- if (IS_STS_R0 (w) || IS_STS_PR (w)
- || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
- || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
- {
- start_pc = here;
- }
- else if (IS_MOV_SP_FP (w))
- {
- start_pc = here;
- updated_fp = 1;
- }
- else
- if (updated_fp)
- {
- /* Don't bail out yet, we may have arguments stored in
- registers here, according to the debug info, so that
- gdb can print the frames correctly. */
- start_pc = look_for_args_moves (gdbarch,
- here - insn_size, media_mode);
- break;
- }
- }
- }
-
- return start_pc;
-}
-
-static CORE_ADDR
-sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
-{
- CORE_ADDR post_prologue_pc;
-
- /* See if we can determine the end of the prologue via the symbol table.
- If so, then return either PC, or the PC after the prologue, whichever
- is greater. */
- post_prologue_pc = after_prologue (pc);
-
- /* If after_prologue returned a useful address, then use it. Else
- fall back on the instruction skipping code. */
- if (post_prologue_pc != 0)
- return std::max (pc, post_prologue_pc);
- else
- return sh64_skip_prologue_hard_way (gdbarch, pc);
-}
-
-/* Should call_function allocate stack space for a struct return? */
-static int
-sh64_use_struct_convention (struct type *type)
-{
- return (TYPE_LENGTH (type) > 8);
-}
-
-/* For vectors of 4 floating point registers. */
-static int
-sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
-{
- int fp_regnum;
-
- fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
- return fp_regnum;
-}
-
-/* For double precision floating point registers, i.e 2 fp regs. */
-static int
-sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
-{
- int fp_regnum;
-
- fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
- return fp_regnum;
-}
-
-/* For pairs of floating point registers. */
-static int
-sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
-{
- int fp_regnum;
-
- fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
- return fp_regnum;
-}
-
-/* *INDENT-OFF* */
-/*
- SH COMPACT MODE (ISA 16) (all pseudo) 221-272
- GDB_REGNUM BASE_REGNUM
- r0_c 221 0
- r1_c 222 1
- r2_c 223 2
- r3_c 224 3
- r4_c 225 4
- r5_c 226 5
- r6_c 227 6
- r7_c 228 7
- r8_c 229 8
- r9_c 230 9
- r10_c 231 10
- r11_c 232 11
- r12_c 233 12
- r13_c 234 13
- r14_c 235 14
- r15_c 236 15
-
- pc_c 237 64
- gbr_c 238 16
- mach_c 239 17
- macl_c 240 17
- pr_c 241 18
- t_c 242 19
- fpscr_c 243 76
- fpul_c 244 109
-
- fr0_c 245 77
- fr1_c 246 78
- fr2_c 247 79
- fr3_c 248 80
- fr4_c 249 81
- fr5_c 250 82
- fr6_c 251 83
- fr7_c 252 84
- fr8_c 253 85
- fr9_c 254 86
- fr10_c 255 87
- fr11_c 256 88
- fr12_c 257 89
- fr13_c 258 90
- fr14_c 259 91
- fr15_c 260 92
-
- dr0_c 261 77
- dr2_c 262 79
- dr4_c 263 81
- dr6_c 264 83
- dr8_c 265 85
- dr10_c 266 87
- dr12_c 267 89
- dr14_c 268 91
-
- fv0_c 269 77
- fv4_c 270 81
- fv8_c 271 85
- fv12_c 272 91
-*/
-/* *INDENT-ON* */
-static int
-sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
-{
- int base_regnum = reg_nr;
-
- /* general register N maps to general register N */
- if (reg_nr >= R0_C_REGNUM
- && reg_nr <= R_LAST_C_REGNUM)
- base_regnum = reg_nr - R0_C_REGNUM;
-
- /* floating point register N maps to floating point register N */
- else if (reg_nr >= FP0_C_REGNUM
- && reg_nr <= FP_LAST_C_REGNUM)
- base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
-
- /* double prec register N maps to base regnum for double prec register N */
- else if (reg_nr >= DR0_C_REGNUM
- && reg_nr <= DR_LAST_C_REGNUM)
- base_regnum = sh64_dr_reg_base_num (gdbarch,
- DR0_REGNUM + reg_nr - DR0_C_REGNUM);
-
- /* vector N maps to base regnum for vector register N */
- else if (reg_nr >= FV0_C_REGNUM
- && reg_nr <= FV_LAST_C_REGNUM)
- base_regnum = sh64_fv_reg_base_num (gdbarch,
- FV0_REGNUM + reg_nr - FV0_C_REGNUM);
-
- else if (reg_nr == PC_C_REGNUM)
- base_regnum = gdbarch_pc_regnum (gdbarch);
-
- else if (reg_nr == GBR_C_REGNUM)
- base_regnum = 16;
-
- else if (reg_nr == MACH_C_REGNUM
- || reg_nr == MACL_C_REGNUM)
- base_regnum = 17;
-
- else if (reg_nr == PR_C_REGNUM)
- base_regnum = PR_REGNUM;
-
- else if (reg_nr == T_C_REGNUM)
- base_regnum = 19;
-
- else if (reg_nr == FPSCR_C_REGNUM)
- base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
-
- else if (reg_nr == FPUL_C_REGNUM)
- base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
-
- return base_regnum;
-}
-
-static int
-sign_extend (int value, int bits)
-{
- value = value & ((1 << bits) - 1);
- return (value & (1 << (bits - 1))
- ? value | (~((1 << bits) - 1))
- : value);
-}
-
-static void
-sh64_analyze_prologue (struct gdbarch *gdbarch,
- struct sh64_frame_cache *cache,
- CORE_ADDR func_pc,
- CORE_ADDR current_pc)
-{
- int pc;
- int opc;
- int insn;
- int r0_val = 0;
- int insn_size;
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
-
- cache->sp_offset = 0;
-
- /* Loop around examining the prologue insns until we find something
- that does not appear to be part of the prologue. But give up
- after 20 of them, since we're getting silly then. */
-
- pc = func_pc;
-
- if (cache->media_mode)
- insn_size = 4;
- else
- insn_size = 2;
-
- opc = pc + (insn_size * 28);
- if (opc > current_pc)
- opc = current_pc;
- for ( ; pc <= opc; pc += insn_size)
- {
- insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
- : pc,
- insn_size, byte_order);
-
- if (!cache->media_mode)
- {
- if (IS_STS_PR (insn))
- {
- int next_insn = read_memory_integer (pc + insn_size,
- insn_size, byte_order);
- if (IS_MOV_TO_R15 (next_insn))
- {
- cache->saved_regs[PR_REGNUM]
- = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
- - 0x8) << 2);
- pc += insn_size;
- }
- }
-
- else if (IS_MOV_R14 (insn))
- {
- cache->saved_regs[MEDIA_FP_REGNUM] =
- cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
- cache->uses_fp = 1;
- }
-
- else if (IS_MOV_R0 (insn))
- {
- /* Put in R0 the offset from SP at which to store some
- registers. We are interested in this value, because it
- will tell us where the given registers are stored within
- the frame. */
- r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
- }
-
- else if (IS_ADD_SP_R0 (insn))
- {
- /* This instruction still prepares r0, but we don't care.
- We already have the offset in r0_val. */
- }
-
- else if (IS_STS_R0 (insn))
- {
- /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
- cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
- r0_val -= 4;
- }
-
- else if (IS_MOV_R14_R0 (insn))
- {
- /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
- cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
- - (r0_val - 4);
- cache->uses_fp = 1;
- r0_val -= 4;
- }
-
- else if (IS_ADD_SP (insn))
- cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
-
- else if (IS_MOV_SP_FP (insn))
- break;
- }
- else
- {
- if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
- cache->sp_offset -=
- sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
-
- else if (IS_STQ_R18_R15 (insn))
- cache->saved_regs[PR_REGNUM]
- = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
- 9) << 3);
-
- else if (IS_STL_R18_R15 (insn))
- cache->saved_regs[PR_REGNUM]
- = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
- 9) << 2);
-
- else if (IS_STQ_R14_R15 (insn))
- {
- cache->saved_regs[MEDIA_FP_REGNUM]
- = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
- 9) << 3);
- cache->uses_fp = 1;
- }
-
- else if (IS_STL_R14_R15 (insn))
- {
- cache->saved_regs[MEDIA_FP_REGNUM]
- = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
- 9) << 2);
- cache->uses_fp = 1;
- }
-
- else if (IS_MOV_SP_FP_MEDIA (insn))
- break;
- }
- }
-}
-
-static CORE_ADDR
-sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
-{
- return sp & ~7;
-}
-
-/* Function: push_dummy_call
- Setup the function arguments for calling a function in the inferior.
-
- On the Renesas SH architecture, there are four registers (R4 to R7)
- which are dedicated for passing function arguments. Up to the first
- four arguments (depending on size) may go into these registers.
- The rest go on the stack.
-
- Arguments that are smaller than 4 bytes will still take up a whole
- register or a whole 32-bit word on the stack, and will be
- right-justified in the register or the stack word. This includes
- chars, shorts, and small aggregate types.
-
- Arguments that are larger than 4 bytes may be split between two or
- more registers. If there are not enough registers free, an argument
- may be passed partly in a register (or registers), and partly on the
- stack. This includes doubles, long longs, and larger aggregates.
- As far as I know, there is no upper limit to the size of aggregates
- that will be passed in this way; in other words, the convention of
- passing a pointer to a large aggregate instead of a copy is not used.
-
- An exceptional case exists for struct arguments (and possibly other
- aggregates such as arrays) if the size is larger than 4 bytes but
- not a multiple of 4 bytes. In this case the argument is never split
- between the registers and the stack, but instead is copied in its
- entirety onto the stack, AND also copied into as many registers as
- there is room for. In other words, space in registers permitting,
- two copies of the same argument are passed in. As far as I can tell,
- only the one on the stack is used, although that may be a function
- of the level of compiler optimization. I suspect this is a compiler
- bug. Arguments of these odd sizes are left-justified within the
- word (as opposed to arguments smaller than 4 bytes, which are
- right-justified).
-
- If the function is to return an aggregate type such as a struct, it
- is either returned in the normal return value register R0 (if its
- size is no greater than one byte), or else the caller must allocate
- space into which the callee will copy the return value (if the size
- is greater than one byte). In this case, a pointer to the return
- value location is passed into the callee in register R2, which does
- not displace any of the other arguments passed in via registers R4
- to R7. */
-
-/* R2-R9 for integer types and integer equivalent (char, pointers) and
- non-scalar (struct, union) elements (even if the elements are
- floats).
- FR0-FR11 for single precision floating point (float)
- DR0-DR10 for double precision floating point (double)
-
- If a float is argument number 3 (for instance) and arguments number
- 1,2, and 4 are integer, the mapping will be:
- arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
-
- If a float is argument number 10 (for instance) and arguments number
- 1 through 10 are integer, the mapping will be:
- arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
- arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
- arg11->stack(16,SP). I.e. there is hole in the stack.
-
- Different rules apply for variable arguments functions, and for functions
- for which the prototype is not known. */
-
-static CORE_ADDR
-sh64_push_dummy_call (struct gdbarch *gdbarch,
- struct value *function,
- struct regcache *regcache,
- CORE_ADDR bp_addr,
- int nargs, struct value **args,
- CORE_ADDR sp, int struct_return,
- CORE_ADDR struct_addr)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- int stack_offset, stack_alloc;
- int int_argreg;
- int float_arg_index = 0;
- int double_arg_index = 0;
- int argnum;
- struct type *type;
- CORE_ADDR regval;
- const gdb_byte *val;
- gdb_byte valbuf[8];
- int len;
- int argreg_size;
- int fp_args[12];
-
- memset (fp_args, 0, sizeof (fp_args));
-
- /* First force sp to a 8-byte alignment. */
- sp = sh64_frame_align (gdbarch, sp);
-
- /* The "struct return pointer" pseudo-argument has its own dedicated
- register. */
-
- if (struct_return)
- regcache_cooked_write_unsigned (regcache,
- STRUCT_RETURN_REGNUM, struct_addr);
-
- /* Now make sure there's space on the stack. */
- for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
- stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
- sp -= stack_alloc; /* Make room on stack for args. */
-
- /* Now load as many as possible of the first arguments into
- registers, and push the rest onto the stack. There are 64 bytes
- in eight registers available. Loop thru args from first to last. */
-
- int_argreg = ARG0_REGNUM;
-
- for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
- {
- type = value_type (args[argnum]);
- len = TYPE_LENGTH (type);
- memset (valbuf, 0, sizeof (valbuf));
-
- if (TYPE_CODE (type) != TYPE_CODE_FLT)
- {
- argreg_size = register_size (gdbarch, int_argreg);
-
- if (len < argreg_size)
- {
- /* value gets right-justified in the register or stack word. */
- if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
- memcpy (valbuf + argreg_size - len,
- value_contents (args[argnum]), len);
- else
- memcpy (valbuf, value_contents (args[argnum]), len);
-
- val = valbuf;
- }
- else
- val = value_contents (args[argnum]);
-
- while (len > 0)
- {
- if (int_argreg > ARGLAST_REGNUM)
- {
- /* Must go on the stack. */
- write_memory (sp + stack_offset, val, argreg_size);
- stack_offset += 8;/*argreg_size;*/
- }
- /* NOTE WELL!!!!! This is not an "else if" clause!!!
- That's because some *&^%$ things get passed on the stack
- AND in the registers! */
- if (int_argreg <= ARGLAST_REGNUM)
- {
- /* There's room in a register. */
- regval = extract_unsigned_integer (val, argreg_size,
- byte_order);
- regcache_cooked_write_unsigned (regcache,
- int_argreg, regval);
- }
- /* Store the value 8 bytes at a time. This means that
- things larger than 8 bytes may go partly in registers
- and partly on the stack. FIXME: argreg is incremented
- before we use its size. */
- len -= argreg_size;
- val += argreg_size;
- int_argreg++;
- }
- }
- else
- {
- val = value_contents (args[argnum]);
- if (len == 4)
- {
- /* Where is it going to be stored? */
- while (fp_args[float_arg_index])
- float_arg_index ++;
-
- /* Now float_argreg points to the register where it
- should be stored. Are we still within the allowed
- register set? */
- if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
- {
- /* Goes in FR0...FR11 */
- regcache_cooked_write (regcache,
- gdbarch_fp0_regnum (gdbarch)
- + float_arg_index,
- val);
- fp_args[float_arg_index] = 1;
- /* Skip the corresponding general argument register. */
- int_argreg ++;
- }
- else
- {
- /* Store it as the integers, 8 bytes at the time, if
- necessary spilling on the stack. */
- }
- }
- else if (len == 8)
- {
- /* Where is it going to be stored? */
- while (fp_args[double_arg_index])
- double_arg_index += 2;
- /* Now double_argreg points to the register
- where it should be stored.
- Are we still within the allowed register set? */
- if (double_arg_index < FLOAT_ARGLAST_REGNUM)
- {
- /* Goes in DR0...DR10 */
- /* The numbering of the DRi registers is consecutive,
- i.e. includes odd numbers. */
- int double_register_offset = double_arg_index / 2;
- int regnum = DR0_REGNUM + double_register_offset;
- regcache_cooked_write (regcache, regnum, val);
- fp_args[double_arg_index] = 1;
- fp_args[double_arg_index + 1] = 1;
- /* Skip the corresponding general argument register. */
- int_argreg ++;
- }
- else
- {
- /* Store it as the integers, 8 bytes at the time, if
- necessary spilling on the stack. */
- }
- }
- }
- }
- /* Store return address. */
- regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
-
- /* Update stack pointer. */
- regcache_cooked_write_unsigned (regcache,
- gdbarch_sp_regnum (gdbarch), sp);
-
- return sp;
-}
-
-/* Find a function's return value in the appropriate registers (in
- regbuf), and copy it into valbuf. Extract from an array REGBUF
- containing the (raw) register state a function return value of type
- TYPE, and copy that, in virtual format, into VALBUF. */
-static void
-sh64_extract_return_value (struct type *type, struct regcache *regcache,
- gdb_byte *valbuf)
-{
- struct gdbarch *gdbarch = regcache->arch ();
- int len = TYPE_LENGTH (type);
-
- if (TYPE_CODE (type) == TYPE_CODE_FLT)
- {
- if (len == 4)
- {
- /* Return value stored in gdbarch_fp0_regnum. */
- regcache_raw_read (regcache,
- gdbarch_fp0_regnum (gdbarch), valbuf);
- }
- else if (len == 8)
- {
- /* return value stored in DR0_REGNUM. */
- gdb_byte buf[8];
- regcache_cooked_read (regcache, DR0_REGNUM, buf);
-
- target_float_convert (buf, sh64_littlebyte_bigword_type (gdbarch),
- valbuf, type);
- }
- }
- else
- {
- if (len <= 8)
- {
- int offset;
- gdb_byte buf[8];
- /* Result is in register 2. If smaller than 8 bytes, it is padded
- at the most significant end. */
- regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
-
- if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
- offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
- - len;
- else
- offset = 0;
- memcpy (valbuf, buf + offset, len);
- }
- else
- error (_("bad size for return value"));
- }
-}
-
-/* Write into appropriate registers a function return value
- of type TYPE, given in virtual format.
- If the architecture is sh4 or sh3e, store a function's return value
- in the R0 general register or in the FP0 floating point register,
- depending on the type of the return value. In all the other cases
- the result is stored in r0, left-justified. */
-
-static void
-sh64_store_return_value (struct type *type, struct regcache *regcache,
- const gdb_byte *valbuf)
-{
- struct gdbarch *gdbarch = regcache->arch ();
- gdb_byte buf[64]; /* more than enough... */
- int len = TYPE_LENGTH (type);
-
- if (TYPE_CODE (type) == TYPE_CODE_FLT)
- {
- int i, regnum = gdbarch_fp0_regnum (gdbarch);
- for (i = 0; i < len; i += 4)
- if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
- regcache_raw_write (regcache, regnum++,
- valbuf + len - 4 - i);
- else
- regcache_raw_write (regcache, regnum++, valbuf + i);
- }
- else
- {
- int return_register = DEFAULT_RETURN_REGNUM;
- int offset = 0;
-
- if (len <= register_size (gdbarch, return_register))
- {
- /* Pad with zeros. */
- memset (buf, 0, register_size (gdbarch, return_register));
- if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
- offset = 0; /*register_size (gdbarch,
- return_register) - len;*/
- else
- offset = register_size (gdbarch, return_register) - len;
-
- memcpy (buf + offset, valbuf, len);
- regcache_raw_write (regcache, return_register, buf);
- }
- else
- regcache_raw_write (regcache, return_register, valbuf);
- }
-}
-
-static enum return_value_convention
-sh64_return_value (struct gdbarch *gdbarch, struct value *function,
- struct type *type, struct regcache *regcache,
- gdb_byte *readbuf, const gdb_byte *writebuf)
-{
- if (sh64_use_struct_convention (type))
- return RETURN_VALUE_STRUCT_CONVENTION;
- if (writebuf)
- sh64_store_return_value (type, regcache, writebuf);
- else if (readbuf)
- sh64_extract_return_value (type, regcache, readbuf);
- return RETURN_VALUE_REGISTER_CONVENTION;
-}
-
-/* *INDENT-OFF* */
-/*
- SH MEDIA MODE (ISA 32)
- general registers (64-bit) 0-63
-0 r0, r1, r2, r3, r4, r5, r6, r7,
-64 r8, r9, r10, r11, r12, r13, r14, r15,
-128 r16, r17, r18, r19, r20, r21, r22, r23,
-192 r24, r25, r26, r27, r28, r29, r30, r31,
-256 r32, r33, r34, r35, r36, r37, r38, r39,
-320 r40, r41, r42, r43, r44, r45, r46, r47,
-384 r48, r49, r50, r51, r52, r53, r54, r55,
-448 r56, r57, r58, r59, r60, r61, r62, r63,
-
- pc (64-bit) 64
-512 pc,
-
- status reg., saved status reg., saved pc reg. (64-bit) 65-67
-520 sr, ssr, spc,
-
- target registers (64-bit) 68-75
-544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
-
- floating point state control register (32-bit) 76
-608 fpscr,
-
- single precision floating point registers (32-bit) 77-140
-612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
-644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
-676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
-708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
-740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
-772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
-804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
-836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
-
-TOTAL SPACE FOR REGISTERS: 868 bytes
-
-From here on they are all pseudo registers: no memory allocated.
-REGISTER_BYTE returns the register byte for the base register.
-
- double precision registers (pseudo) 141-172
- dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
- dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
- dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
- dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
-
- floating point pairs (pseudo) 173-204
- fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
- fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
- fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
- fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
-
- floating point vectors (4 floating point regs) (pseudo) 205-220
- fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
- fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
-
- SH COMPACT MODE (ISA 16) (all pseudo) 221-272
- r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
- r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
- pc_c,
- gbr_c, mach_c, macl_c, pr_c, t_c,
- fpscr_c, fpul_c,
- fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
- fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
- dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
- fv0_c, fv4_c, fv8_c, fv12_c
-*/
-
-static struct type *
-sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
-{
- return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
- 0, high);
-}
-
-/* Return the GDB type object for the "standard" data type
- of data in register REG_NR. */
-static struct type *
-sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
-{
- if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
- && reg_nr <= FP_LAST_REGNUM)
- || (reg_nr >= FP0_C_REGNUM
- && reg_nr <= FP_LAST_C_REGNUM))
- return builtin_type (gdbarch)->builtin_float;
- else if ((reg_nr >= DR0_REGNUM
- && reg_nr <= DR_LAST_REGNUM)
- || (reg_nr >= DR0_C_REGNUM
- && reg_nr <= DR_LAST_C_REGNUM))
- return builtin_type (gdbarch)->builtin_double;
- else if (reg_nr >= FPP0_REGNUM
- && reg_nr <= FPP_LAST_REGNUM)
- return sh64_build_float_register_type (gdbarch, 1);
- else if ((reg_nr >= FV0_REGNUM
- && reg_nr <= FV_LAST_REGNUM)
- ||(reg_nr >= FV0_C_REGNUM
- && reg_nr <= FV_LAST_C_REGNUM))
- return sh64_build_float_register_type (gdbarch, 3);
- else if (reg_nr == FPSCR_REGNUM)
- return builtin_type (gdbarch)->builtin_int;
- else if (reg_nr >= R0_C_REGNUM
- && reg_nr < FP0_C_REGNUM)
- return builtin_type (gdbarch)->builtin_int;
- else
- return builtin_type (gdbarch)->builtin_long_long;
-}
-
-static void
-sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
- struct type *type, gdb_byte *from, gdb_byte *to)
-{
- if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
- {
- /* It is a no-op. */
- memcpy (to, from, register_size (gdbarch, regnum));
- return;
- }
-
- if ((regnum >= DR0_REGNUM
- && regnum <= DR_LAST_REGNUM)
- || (regnum >= DR0_C_REGNUM
- && regnum <= DR_LAST_C_REGNUM))
- target_float_convert (from, sh64_littlebyte_bigword_type (gdbarch),
- to, type);
- else
- error (_("sh64_register_convert_to_virtual "
- "called with non DR register number"));
-}
-
-static void
-sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
- int regnum, const gdb_byte *from, gdb_byte *to)
-{
- if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
- {
- /* It is a no-op. */
- memcpy (to, from, register_size (gdbarch, regnum));
- return;
- }
-
- if ((regnum >= DR0_REGNUM
- && regnum <= DR_LAST_REGNUM)
- || (regnum >= DR0_C_REGNUM
- && regnum <= DR_LAST_C_REGNUM))
- target_float_convert (from, type,
- to, sh64_littlebyte_bigword_type (gdbarch));
- else
- error (_("sh64_register_convert_to_raw called "
- "with non DR register number"));
-}
-
-/* Concatenate PORTIONS contiguous raw registers starting at
- BASE_REGNUM into BUFFER. */
-
-static enum register_status
-pseudo_register_read_portions (struct gdbarch *gdbarch,
- readable_regcache *regcache,
- int portions,
- int base_regnum, gdb_byte *buffer)
-{
- int portion;
-
- for (portion = 0; portion < portions; portion++)
- {
- enum register_status status;
- gdb_byte *b;
-
- b = buffer + register_size (gdbarch, base_regnum) * portion;
- status = regcache->raw_read (base_regnum + portion, b);
- if (status != REG_VALID)
- return status;
- }
-
- return REG_VALID;
-}
-
-static enum register_status
-sh64_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
- int reg_nr, gdb_byte *buffer)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- int base_regnum;
- int offset = 0;
- enum register_status status;
-
- if (reg_nr >= DR0_REGNUM
- && reg_nr <= DR_LAST_REGNUM)
- {
- gdb_byte temp_buffer[8];
- base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
-
- /* Build the value in the provided buffer. */
- /* DR regs are double precision registers obtained by
- concatenating 2 single precision floating point registers. */
- status = pseudo_register_read_portions (gdbarch, regcache,
- 2, base_regnum, temp_buffer);
- if (status == REG_VALID)
- {
- /* We must pay attention to the endianness. */
- sh64_register_convert_to_virtual (gdbarch, reg_nr,
- register_type (gdbarch, reg_nr),
- temp_buffer, buffer);
- }
-
- return status;
- }
-
- else if (reg_nr >= FPP0_REGNUM
- && reg_nr <= FPP_LAST_REGNUM)
- {
- base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
-
- /* Build the value in the provided buffer. */
- /* FPP regs are pairs of single precision registers obtained by
- concatenating 2 single precision floating point registers. */
- return pseudo_register_read_portions (gdbarch, regcache,
- 2, base_regnum, buffer);
- }
-
- else if (reg_nr >= FV0_REGNUM
- && reg_nr <= FV_LAST_REGNUM)
- {
- base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
-
- /* Build the value in the provided buffer. */
- /* FV regs are vectors of single precision registers obtained by
- concatenating 4 single precision floating point registers. */
- return pseudo_register_read_portions (gdbarch, regcache,
- 4, base_regnum, buffer);
- }
-
- /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
- else if (reg_nr >= R0_C_REGNUM
- && reg_nr <= T_C_REGNUM)
- {
- gdb_byte temp_buffer[8];
- base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
-
- /* Build the value in the provided buffer. */
- status = regcache->raw_read (base_regnum, temp_buffer);
- if (status != REG_VALID)
- return status;
- if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
- offset = 4;
- memcpy (buffer,
- temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
- return REG_VALID;
- }
-
- else if (reg_nr >= FP0_C_REGNUM
- && reg_nr <= FP_LAST_C_REGNUM)
- {
- base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
-
- /* Build the value in the provided buffer. */
- /* Floating point registers map 1-1 to the media fp regs,
- they have the same size and endianness. */
- return regcache->raw_read (base_regnum, buffer);
- }
-
- else if (reg_nr >= DR0_C_REGNUM
- && reg_nr <= DR_LAST_C_REGNUM)
- {
- gdb_byte temp_buffer[8];
- base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
-
- /* DR_C regs are double precision registers obtained by
- concatenating 2 single precision floating point registers. */
- status = pseudo_register_read_portions (gdbarch, regcache,
- 2, base_regnum, temp_buffer);
- if (status == REG_VALID)
- {
- /* We must pay attention to the endianness. */
- sh64_register_convert_to_virtual (gdbarch, reg_nr,
- register_type (gdbarch, reg_nr),
- temp_buffer, buffer);
- }
- return status;
- }
-
- else if (reg_nr >= FV0_C_REGNUM
- && reg_nr <= FV_LAST_C_REGNUM)
- {
- base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
-
- /* Build the value in the provided buffer. */
- /* FV_C regs are vectors of single precision registers obtained by
- concatenating 4 single precision floating point registers. */
- return pseudo_register_read_portions (gdbarch, regcache,
- 4, base_regnum, buffer);
- }
-
- else if (reg_nr == FPSCR_C_REGNUM)
- {
- int fpscr_base_regnum;
- int sr_base_regnum;
- ULONGEST fpscr_value;
- ULONGEST sr_value;
- unsigned int fpscr_c_value;
- unsigned int fpscr_c_part1_value;
- unsigned int fpscr_c_part2_value;
-
- fpscr_base_regnum = FPSCR_REGNUM;
- sr_base_regnum = SR_REGNUM;
-
- /* Build the value in the provided buffer. */
- /* FPSCR_C is a very weird register that contains sparse bits
- from the FPSCR and the SR architectural registers.
- Specifically: */
- /* *INDENT-OFF* */
- /*
- FPSRC_C bit
- 0 Bit 0 of FPSCR
- 1 reserved
- 2-17 Bit 2-18 of FPSCR
- 18-20 Bits 12,13,14 of SR
- 21-31 reserved
- */
- /* *INDENT-ON* */
- /* Get FPSCR as an int. */
- status = regcache->raw_read (fpscr_base_regnum, &fpscr_value);
- if (status != REG_VALID)
- return status;
- /* Get SR as an int. */
- status = regcache->raw_read (sr_base_regnum, &sr_value);
- if (status != REG_VALID)
- return status;
- /* Build the new value. */
- fpscr_c_part1_value = fpscr_value & 0x3fffd;
- fpscr_c_part2_value = (sr_value & 0x7000) << 6;
- fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
- /* Store that in out buffer!!! */
- store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
- /* FIXME There is surely an endianness gotcha here. */
-
- return REG_VALID;
- }
-
- else if (reg_nr == FPUL_C_REGNUM)
- {
- base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
-
- /* FPUL_C register is floating point register 32,
- same size, same endianness. */
- return regcache->raw_read (base_regnum, buffer);
- }
- else
- gdb_assert_not_reached ("invalid pseudo register number");
-}
-
-static void
-sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
- int reg_nr, const gdb_byte *buffer)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- int base_regnum, portion;
- int offset;
-
- if (reg_nr >= DR0_REGNUM
- && reg_nr <= DR_LAST_REGNUM)
- {
- gdb_byte temp_buffer[8];
- base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
- /* We must pay attention to the endianness. */
- sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
- reg_nr,
- buffer, temp_buffer);
-
- /* Write the real regs for which this one is an alias. */
- for (portion = 0; portion < 2; portion++)
- regcache_raw_write (regcache, base_regnum + portion,
- (temp_buffer
- + register_size (gdbarch,
- base_regnum) * portion));
- }
-
- else if (reg_nr >= FPP0_REGNUM
- && reg_nr <= FPP_LAST_REGNUM)
- {
- base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
-
- /* Write the real regs for which this one is an alias. */
- for (portion = 0; portion < 2; portion++)
- regcache_raw_write (regcache, base_regnum + portion,
- (buffer + register_size (gdbarch,
- base_regnum) * portion));
- }
-
- else if (reg_nr >= FV0_REGNUM
- && reg_nr <= FV_LAST_REGNUM)
- {
- base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
-
- /* Write the real regs for which this one is an alias. */
- for (portion = 0; portion < 4; portion++)
- regcache_raw_write (regcache, base_regnum + portion,
- (buffer + register_size (gdbarch,
- base_regnum) * portion));
- }
-
- /* sh compact general pseudo registers. 1-to-1 with a shmedia
- register but only 4 bytes of it. */
- else if (reg_nr >= R0_C_REGNUM
- && reg_nr <= T_C_REGNUM)
- {
- gdb_byte temp_buffer[8];
- base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
- /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
- if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
- offset = 4;
- else
- offset = 0;
- /* Let's read the value of the base register into a temporary
- buffer, so that overwriting the last four bytes with the new
- value of the pseudo will leave the upper 4 bytes unchanged. */
- regcache_raw_read (regcache, base_regnum, temp_buffer);
- /* Write as an 8 byte quantity. */
- memcpy (temp_buffer + offset, buffer, 4);
- regcache_raw_write (regcache, base_regnum, temp_buffer);
- }
-
- /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
- registers. Both are 4 bytes. */
- else if (reg_nr >= FP0_C_REGNUM
- && reg_nr <= FP_LAST_C_REGNUM)
- {
- base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
- regcache_raw_write (regcache, base_regnum, buffer);
- }
-
- else if (reg_nr >= DR0_C_REGNUM
- && reg_nr <= DR_LAST_C_REGNUM)
- {
- gdb_byte temp_buffer[8];
- base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
- for (portion = 0; portion < 2; portion++)
- {
- /* We must pay attention to the endianness. */
- sh64_register_convert_to_raw (gdbarch,
- register_type (gdbarch, reg_nr),
- reg_nr,
- buffer, temp_buffer);
-
- regcache_raw_write (regcache, base_regnum + portion,
- (temp_buffer
- + register_size (gdbarch,
- base_regnum) * portion));
- }
- }
-
- else if (reg_nr >= FV0_C_REGNUM
- && reg_nr <= FV_LAST_C_REGNUM)
- {
- base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
-
- for (portion = 0; portion < 4; portion++)
- {
- regcache_raw_write (regcache, base_regnum + portion,
- (buffer
- + register_size (gdbarch,
- base_regnum) * portion));
- }
- }
-
- else if (reg_nr == FPSCR_C_REGNUM)
- {
- int fpscr_base_regnum;
- int sr_base_regnum;
- ULONGEST fpscr_value;
- ULONGEST sr_value;
- ULONGEST old_fpscr_value;
- ULONGEST old_sr_value;
- unsigned int fpscr_c_value;
- unsigned int fpscr_mask;
- unsigned int sr_mask;
-
- fpscr_base_regnum = FPSCR_REGNUM;
- sr_base_regnum = SR_REGNUM;
-
- /* FPSCR_C is a very weird register that contains sparse bits
- from the FPSCR and the SR architectural registers.
- Specifically: */
- /* *INDENT-OFF* */
- /*
- FPSRC_C bit
- 0 Bit 0 of FPSCR
- 1 reserved
- 2-17 Bit 2-18 of FPSCR
- 18-20 Bits 12,13,14 of SR
- 21-31 reserved
- */
- /* *INDENT-ON* */
- /* Get value as an int. */
- fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
-
- /* Build the new values. */
- fpscr_mask = 0x0003fffd;
- sr_mask = 0x001c0000;
-
- fpscr_value = fpscr_c_value & fpscr_mask;
- sr_value = (fpscr_value & sr_mask) >> 6;
-
- regcache->raw_read (fpscr_base_regnum, &old_fpscr_value);
- old_fpscr_value &= 0xfffc0002;
- fpscr_value |= old_fpscr_value;
- regcache->raw_write (fpscr_base_regnum, fpscr_value);
-
- regcache->raw_read (sr_base_regnum, &old_sr_value);
- old_sr_value &= 0xffff8fff;
- sr_value |= old_sr_value;
- regcache->raw_write (sr_base_regnum, sr_value);
- }
-
- else if (reg_nr == FPUL_C_REGNUM)
- {
- base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
- regcache_raw_write (regcache, base_regnum, buffer);
- }
-}
-
-/* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
- shmedia REGISTERS. */
-/* Control registers, compact mode. */
-static void
-sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
- int cr_c_regnum)
-{
- switch (cr_c_regnum)
- {
- case PC_C_REGNUM:
- fprintf_filtered (file, "pc_c\t0x%08x\n",
- (int) get_frame_register_unsigned (frame, cr_c_regnum));
- break;
- case GBR_C_REGNUM:
- fprintf_filtered (file, "gbr_c\t0x%08x\n",
- (int) get_frame_register_unsigned (frame, cr_c_regnum));
- break;
- case MACH_C_REGNUM:
- fprintf_filtered (file, "mach_c\t0x%08x\n",
- (int) get_frame_register_unsigned (frame, cr_c_regnum));
- break;
- case MACL_C_REGNUM:
- fprintf_filtered (file, "macl_c\t0x%08x\n",
- (int) get_frame_register_unsigned (frame, cr_c_regnum));
- break;
- case PR_C_REGNUM:
- fprintf_filtered (file, "pr_c\t0x%08x\n",
- (int) get_frame_register_unsigned (frame, cr_c_regnum));
- break;
- case T_C_REGNUM:
- fprintf_filtered (file, "t_c\t0x%08x\n",
- (int) get_frame_register_unsigned (frame, cr_c_regnum));
- break;
- case FPSCR_C_REGNUM:
- fprintf_filtered (file, "fpscr_c\t0x%08x\n",
- (int) get_frame_register_unsigned (frame, cr_c_regnum));
- break;
- case FPUL_C_REGNUM:
- fprintf_filtered (file, "fpul_c\t0x%08x\n",
- (int) get_frame_register_unsigned (frame, cr_c_regnum));
- break;
- }
-}
-
-static void
-sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
- struct frame_info *frame, int regnum)
-{ /* Do values for FP (float) regs. */
- unsigned char *raw_buffer;
-
- /* Allocate space for the float. */
- raw_buffer = (unsigned char *)
- alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
-
- /* Get the data in raw format. */
- if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
- error (_("can't read register %d (%s)"),
- regnum, gdbarch_register_name (gdbarch, regnum));
-
- /* Print the name and some spaces. */
- fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
- print_spaces_filtered (15 - strlen (gdbarch_register_name
- (gdbarch, regnum)), file);
-
- /* Print the value. */
- const struct type *flt_type = builtin_type (gdbarch)->builtin_float;
- std::string str = target_float_to_string (raw_buffer, flt_type, "%-10.9g");
- fprintf_filtered (file, "%s", str.c_str ());
-
- /* Print the fp register as hex. */
- fprintf_filtered (file, "\t(raw ");
- print_hex_chars (file, raw_buffer,
- register_size (gdbarch, regnum),
- gdbarch_byte_order (gdbarch), true);
- fprintf_filtered (file, ")");
- fprintf_filtered (file, "\n");
-}
-
-static void
-sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
- struct frame_info *frame, int regnum)
-{
- /* All the sh64-compact mode registers are pseudo registers. */
-
- if (regnum < gdbarch_num_regs (gdbarch)
- || regnum >= gdbarch_num_regs (gdbarch)
- + NUM_PSEUDO_REGS_SH_MEDIA
- + NUM_PSEUDO_REGS_SH_COMPACT)
- internal_error (__FILE__, __LINE__,
- _("Invalid pseudo register number %d\n"), regnum);
-
- else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
- {
- int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
- fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
- (unsigned) get_frame_register_unsigned (frame, fp_regnum),
- (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
- }
-
- else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
- {
- int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
- fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
- (unsigned) get_frame_register_unsigned (frame, fp_regnum),
- (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
- }
-
- else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
- {
- int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
- fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
- regnum - FV0_REGNUM,
- (unsigned) get_frame_register_unsigned (frame, fp_regnum),
- (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
- (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
- (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
- }
-
- else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
- {
- int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
- fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
- regnum - FV0_C_REGNUM,
- (unsigned) get_frame_register_unsigned (frame, fp_regnum),
- (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
- (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
- (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
- }
-
- else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
- {
- int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
- fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
- (unsigned) get_frame_register_unsigned (frame, fp_regnum),
- (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
- }
-
- else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
- {
- int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
- fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
- (unsigned) get_frame_register_unsigned (frame, c_regnum));
- }
- else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
- /* This should work also for pseudoregs. */
- sh64_do_fp_register (gdbarch, file, frame, regnum);
- else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
- sh64_do_cr_c_register_info (file, frame, regnum);
-}
-
-static void
-sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
- struct frame_info *frame, int regnum)
-{
- struct value_print_options opts;
- struct value *val;
-
- fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
- print_spaces_filtered (15 - strlen (gdbarch_register_name
- (gdbarch, regnum)), file);
-
- /* Get the data in raw format. */
- val = get_frame_register_value (frame, regnum);
- if (value_optimized_out (val) || !value_entirely_available (val))
- {
- fprintf_filtered (file, "*value not available*\n");
- return;
- }
-
- get_formatted_print_options (&opts, 'x');
- opts.deref_ref = 1;
- val_print (register_type (gdbarch, regnum),
- 0, 0,
- file, 0, val, &opts, current_language);
- fprintf_filtered (file, "\t");
- get_formatted_print_options (&opts, 0);
- opts.deref_ref = 1;
- val_print (register_type (gdbarch, regnum),
- 0, 0,
- file, 0, val, &opts, current_language);
- fprintf_filtered (file, "\n");
-}
-
-static void
-sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
- struct frame_info *frame, int regnum)
-{
- if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
- + gdbarch_num_pseudo_regs (gdbarch))
- internal_error (__FILE__, __LINE__,
- _("Invalid register number %d\n"), regnum);
-
- else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
- {
- if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
- sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
- else
- sh64_do_register (gdbarch, file, frame, regnum);
- }
-
- else if (regnum < gdbarch_num_regs (gdbarch)
- + gdbarch_num_pseudo_regs (gdbarch))
- sh64_do_pseudo_register (gdbarch, file, frame, regnum);
-}
-
-static void
-sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
- struct frame_info *frame, int regnum,
- int fpregs)
-{
- if (regnum != -1) /* Do one specified register. */
- {
- if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
- error (_("Not a valid register for the current processor type"));
-
- sh64_print_register (gdbarch, file, frame, regnum);
- }
- else
- /* Do all (or most) registers. */
- {
- regnum = 0;
- while (regnum < gdbarch_num_regs (gdbarch))
- {
- /* If the register name is empty, it is undefined for this
- processor, so don't display anything. */
- if (gdbarch_register_name (gdbarch, regnum) == NULL
- || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
- {
- regnum++;
- continue;
- }
-
- if (TYPE_CODE (register_type (gdbarch, regnum))
- == TYPE_CODE_FLT)
- {
- if (fpregs)
- {
- /* true for "INFO ALL-REGISTERS" command. */
- sh64_do_fp_register (gdbarch, file, frame, regnum);
- regnum ++;
- }
- else
- regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
- /* skip FP regs */
- }
- else
- {
- sh64_do_register (gdbarch, file, frame, regnum);
- regnum++;
- }
- }
-
- if (fpregs)
- while (regnum < gdbarch_num_regs (gdbarch)
- + gdbarch_num_pseudo_regs (gdbarch))
- {
- sh64_do_pseudo_register (gdbarch, file, frame, regnum);
- regnum++;
- }
- }
-}
-
-static void
-sh64_compact_print_registers_info (struct gdbarch *gdbarch,
- struct ui_file *file,
- struct frame_info *frame, int regnum,
- int fpregs)
-{
- if (regnum != -1) /* Do one specified register. */
- {
- if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
- error (_("Not a valid register for the current processor type"));
-
- if (regnum >= 0 && regnum < R0_C_REGNUM)
- error (_("Not a valid register for the current processor mode."));
-
- sh64_print_register (gdbarch, file, frame, regnum);
- }
- else
- /* Do all compact registers. */
- {
- regnum = R0_C_REGNUM;
- while (regnum < gdbarch_num_regs (gdbarch)
- + gdbarch_num_pseudo_regs (gdbarch))
- {
- sh64_do_pseudo_register (gdbarch, file, frame, regnum);
- regnum++;
- }
- }
-}
-
-static void
-sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
- struct frame_info *frame, int regnum, int fpregs)
-{
- if (pc_is_isa32 (get_frame_pc (frame)))
- sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
- else
- sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
-}
-
-static struct sh64_frame_cache *
-sh64_alloc_frame_cache (void)
-{
- struct sh64_frame_cache *cache;
- int i;
-
- cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
-
- /* Base address. */
- cache->base = 0;
- cache->saved_sp = 0;
- cache->sp_offset = 0;
- cache->pc = 0;
-
- /* Frameless until proven otherwise. */
- cache->uses_fp = 0;
-
- /* Saved registers. We initialize these to -1 since zero is a valid
- offset (that's where fp is supposed to be stored). */
- for (i = 0; i < SIM_SH64_NR_REGS; i++)
- {
- cache->saved_regs[i] = -1;
- }
-
- return cache;
-}
-
-static struct sh64_frame_cache *
-sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
-{
- struct gdbarch *gdbarch;
- struct sh64_frame_cache *cache;
- CORE_ADDR current_pc;
- int i;
-
- if (*this_cache)
- return (struct sh64_frame_cache *) *this_cache;
-
- gdbarch = get_frame_arch (this_frame);
- cache = sh64_alloc_frame_cache ();
- *this_cache = cache;
-
- current_pc = get_frame_pc (this_frame);
- cache->media_mode = pc_is_isa32 (current_pc);
-
- /* In principle, for normal frames, fp holds the frame pointer,
- which holds the base address for the current stack frame.
- However, for functions that don't need it, the frame pointer is
- optional. For these "frameless" functions the frame pointer is
- actually the frame pointer of the calling frame. */
- cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
- if (cache->base == 0)
- return cache;
-
- cache->pc = get_frame_func (this_frame);
- if (cache->pc != 0)
- sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
-
- if (!cache->uses_fp)
- {
- /* We didn't find a valid frame, which means that CACHE->base
- currently holds the frame pointer for our calling frame. If
- we're at the start of a function, or somewhere half-way its
- prologue, the function's frame probably hasn't been fully
- setup yet. Try to reconstruct the base address for the stack
- frame by looking at the stack pointer. For truly "frameless"
- functions this might work too. */
- cache->base = get_frame_register_unsigned
- (this_frame, gdbarch_sp_regnum (gdbarch));
- }
-
- /* Now that we have the base address for the stack frame we can
- calculate the value of sp in the calling frame. */
- cache->saved_sp = cache->base + cache->sp_offset;
-
- /* Adjust all the saved registers such that they contain addresses
- instead of offsets. */
- for (i = 0; i < SIM_SH64_NR_REGS; i++)
- if (cache->saved_regs[i] != -1)
- cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
-
- return cache;
-}
-
-static struct value *
-sh64_frame_prev_register (struct frame_info *this_frame,
- void **this_cache, int regnum)
-{
- struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
-
- gdb_assert (regnum >= 0);
-
- if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
- frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
-
- /* The PC of the previous frame is stored in the PR register of
- the current frame. Frob regnum so that we pull the value from
- the correct place. */
- if (regnum == gdbarch_pc_regnum (gdbarch))
- regnum = PR_REGNUM;
-
- if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
- {
- if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
- && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
- {
- CORE_ADDR val;
- val = read_memory_unsigned_integer (cache->saved_regs[regnum],
- 4, byte_order);
- return frame_unwind_got_constant (this_frame, regnum, val);
- }
-
- return frame_unwind_got_memory (this_frame, regnum,
- cache->saved_regs[regnum]);
- }
-
- return frame_unwind_got_register (this_frame, regnum, regnum);
-}
-
-static void
-sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
- struct frame_id *this_id)
-{
- struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
-
- /* This marks the outermost frame. */
- if (cache->base == 0)
- return;
-
- *this_id = frame_id_build (cache->saved_sp, cache->pc);
-}
-
-static const struct frame_unwind sh64_frame_unwind = {
- NORMAL_FRAME,
- default_frame_unwind_stop_reason,
- sh64_frame_this_id,
- sh64_frame_prev_register,
- NULL,
- default_frame_sniffer
-};
-
-static CORE_ADDR
-sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
-{
- return frame_unwind_register_unsigned (next_frame,
- gdbarch_sp_regnum (gdbarch));
-}
-
-static CORE_ADDR
-sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
-{
- return frame_unwind_register_unsigned (next_frame,
- gdbarch_pc_regnum (gdbarch));
-}
-
-static struct frame_id
-sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
-{
- CORE_ADDR sp = get_frame_register_unsigned (this_frame,
- gdbarch_sp_regnum (gdbarch));
- return frame_id_build (sp, get_frame_pc (this_frame));
-}
-
-static CORE_ADDR
-sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
-{
- struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
-
- return cache->base;
-}
-
-static const struct frame_base sh64_frame_base = {
- &sh64_frame_unwind,
- sh64_frame_base_address,
- sh64_frame_base_address,
- sh64_frame_base_address
-};
-
-
-struct gdbarch *
-sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
-{
- struct gdbarch *gdbarch;
- struct gdbarch_tdep *tdep;
-
- /* If there is already a candidate, use it. */
- arches = gdbarch_list_lookup_by_info (arches, &info);
- if (arches != NULL)
- return arches->gdbarch;
-
- /* None found, create a new architecture from the information
- provided. */
- tdep = XCNEW (struct gdbarch_tdep);
- gdbarch = gdbarch_alloc (&info, tdep);
-
- /* Determine the ABI */
- if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
- {
- /* If the ABI is the 64-bit one, it can only be sh-media. */
- tdep->sh_abi = SH_ABI_64;
- set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
- set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
- }
- else
- {
- /* If the ABI is the 32-bit one it could be either media or
- compact. */
- tdep->sh_abi = SH_ABI_32;
- set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
- set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
- }
-
- set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
- set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
- set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
- set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
- set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
- set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
- set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
-
- /* The number of real registers is the same whether we are in
- ISA16(compact) or ISA32(media). */
- set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
- set_gdbarch_sp_regnum (gdbarch, 15);
- set_gdbarch_pc_regnum (gdbarch, 64);
- set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
- set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
- + NUM_PSEUDO_REGS_SH_COMPACT);
-
- set_gdbarch_register_name (gdbarch, sh64_register_name);
- set_gdbarch_register_type (gdbarch, sh64_register_type);
-
- set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
- set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
-
- set_gdbarch_breakpoint_kind_from_pc (gdbarch, sh64_breakpoint_kind_from_pc);
- set_gdbarch_sw_breakpoint_from_kind (gdbarch, sh64_sw_breakpoint_from_kind);
- set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
-
- set_gdbarch_return_value (gdbarch, sh64_return_value);
-
- set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
- set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
-
- set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
-
- set_gdbarch_believe_pcc_promotion (gdbarch, 1);
-
- set_gdbarch_frame_align (gdbarch, sh64_frame_align);
- set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
- set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
- set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
- frame_base_set_default (gdbarch, &sh64_frame_base);
-
- set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
-
- set_gdbarch_elf_make_msymbol_special (gdbarch,
- sh64_elf_make_msymbol_special);
-
- /* Hook in ABI-specific overrides, if they have been registered. */
- gdbarch_init_osabi (info, gdbarch);
-
- dwarf2_append_unwinders (gdbarch);
- frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
-
- return gdbarch;
-}