--- /dev/null
+/*
+ * Copyright © 2016 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+#include "ir.h"
+#include "ir_builder.h"
+#include "ir_optimization.h"
+#include "ir_hierarchical_visitor.h"
+#include "program/prog_instruction.h"
+#include "program/prog_statevars.h"
+#include "util/bitscan.h"
+
+using namespace ir_builder;
+
+#define imm1(x) new(mem_ctx) ir_constant((float) (x), 1)
+#define imm3(x) new(mem_ctx) ir_constant((float) (x), 3)
+
+static ir_rvalue *
+blend_multiply(ir_variable *src, ir_variable *dst)
+{
+ /* f(Cs,Cd) = Cs*Cd */
+ return mul(src, dst);
+}
+
+static ir_rvalue *
+blend_screen(ir_variable *src, ir_variable *dst)
+{
+ /* f(Cs,Cd) = Cs+Cd-Cs*Cd */
+ return sub(add(src, dst), mul(src, dst));
+}
+
+static ir_rvalue *
+blend_overlay(ir_variable *src, ir_variable *dst)
+{
+ void *mem_ctx = ralloc_parent(src);
+
+ /* f(Cs,Cd) = 2*Cs*Cd, if Cd <= 0.5
+ * 1-2*(1-Cs)*(1-Cd), otherwise
+ */
+ ir_rvalue *rule_1 = mul(imm3(2), mul(src, dst));
+ ir_rvalue *rule_2 =
+ sub(imm3(1), mul(imm3(2), mul(sub(imm3(1), src), sub(imm3(1), dst))));
+ return csel(lequal(dst, imm3(0.5f)), rule_1, rule_2);
+}
+
+static ir_rvalue *
+blend_darken(ir_variable *src, ir_variable *dst)
+{
+ /* f(Cs,Cd) = min(Cs,Cd) */
+ return min2(src, dst);
+}
+
+static ir_rvalue *
+blend_lighten(ir_variable *src, ir_variable *dst)
+{
+ /* f(Cs,Cd) = max(Cs,Cd) */
+ return max2(src, dst);
+}
+
+static ir_rvalue *
+blend_colordodge(ir_variable *src, ir_variable *dst)
+{
+ void *mem_ctx = ralloc_parent(src);
+
+ /* f(Cs,Cd) =
+ * 0, if Cd <= 0
+ * min(1,Cd/(1-Cs)), if Cd > 0 and Cs < 1
+ * 1, if Cd > 0 and Cs >= 1
+ */
+ return csel(lequal(dst, imm3(0)), imm3(0),
+ csel(gequal(src, imm3(1)), imm3(1),
+ min2(imm3(1), div(dst, sub(imm3(1), src)))));
+}
+
+static ir_rvalue *
+blend_colorburn(ir_variable *src, ir_variable *dst)
+{
+ void *mem_ctx = ralloc_parent(src);
+
+ /* f(Cs,Cd) =
+ * 1, if Cd >= 1
+ * 1 - min(1,(1-Cd)/Cs), if Cd < 1 and Cs > 0
+ * 0, if Cd < 1 and Cs <= 0
+ */
+ return csel(gequal(dst, imm3(1)), imm3(1),
+ csel(lequal(src, imm3(0)), imm3(0),
+ sub(imm3(1), min2(imm3(1), div(sub(imm3(1), dst), src)))));
+}
+
+static ir_rvalue *
+blend_hardlight(ir_variable *src, ir_variable *dst)
+{
+ void *mem_ctx = ralloc_parent(src);
+
+ /* f(Cs,Cd) = 2*Cs*Cd, if Cs <= 0.5
+ * 1-2*(1-Cs)*(1-Cd), otherwise
+ */
+ ir_rvalue *rule_1 = mul(imm3(2), mul(src, dst));
+ ir_rvalue *rule_2 =
+ sub(imm3(1), mul(imm3(2), mul(sub(imm3(1), src), sub(imm3(1), dst))));
+ return csel(lequal(src, imm3(0.5f)), rule_1, rule_2);
+}
+
+static ir_rvalue *
+blend_softlight(ir_variable *src, ir_variable *dst)
+{
+ void *mem_ctx = ralloc_parent(src);
+
+ /* f(Cs,Cd) =
+ * Cd-(1-2*Cs)*Cd*(1-Cd),
+ * if Cs <= 0.5
+ * Cd+(2*Cs-1)*Cd*((16*Cd-12)*Cd+3),
+ * if Cs > 0.5 and Cd <= 0.25
+ * Cd+(2*Cs-1)*(sqrt(Cd)-Cd),
+ * if Cs > 0.5 and Cd > 0.25
+ *
+ * We can simplify this to
+ *
+ * f(Cs,Cd) = Cd+(2*Cs-1)*g(Cs,Cd) where
+ * g(Cs,Cd) = Cd*Cd-Cd if Cs <= 0.5
+ * Cd*((16*Cd-12)*Cd+3) if Cs > 0.5 and Cd <= 0.25
+ * sqrt(Cd)-Cd, otherwise
+ */
+ ir_rvalue *factor_1 = mul(dst, sub(imm3(1), dst));
+ ir_rvalue *factor_2 =
+ mul(dst, add(mul(sub(mul(imm3(16), dst), imm3(12)), dst), imm3(3)));
+ ir_rvalue *factor_3 = sub(sqrt(dst), dst);
+ ir_rvalue *factor = csel(lequal(src, imm3(0.5f)), factor_1,
+ csel(lequal(dst, imm3(0.25f)),
+ factor_2, factor_3));
+ return add(dst, mul(sub(mul(imm3(2), src), imm3(1)), factor));
+}
+
+static ir_rvalue *
+blend_difference(ir_variable *src, ir_variable *dst)
+{
+ return abs(sub(dst, src));
+}
+
+static ir_rvalue *
+blend_exclusion(ir_variable *src, ir_variable *dst)
+{
+ void *mem_ctx = ralloc_parent(src);
+
+ return add(src, sub(dst, mul(imm3(2), mul(src, dst))));
+}
+
+/* Return the minimum of a vec3's components */
+static ir_rvalue *
+minv3(ir_variable *v)
+{
+ return min2(min2(swizzle_x(v), swizzle_y(v)), swizzle_z(v));
+}
+
+/* Return the maximum of a vec3's components */
+static ir_rvalue *
+maxv3(ir_variable *v)
+{
+ return max2(max2(swizzle_x(v), swizzle_y(v)), swizzle_z(v));
+}
+
+static ir_rvalue *
+lumv3(ir_variable *c)
+{
+ ir_constant_data data;
+ data.f[0] = 0.30;
+ data.f[1] = 0.59;
+ data.f[2] = 0.11;
+
+ void *mem_ctx = ralloc_parent(c);
+
+ /* dot(c, vec3(0.30, 0.59, 0.11)) */
+ return dot(c, new(mem_ctx) ir_constant(glsl_type::vec3_type, &data));
+}
+
+static ir_rvalue *
+satv3(ir_variable *c)
+{
+ return sub(maxv3(c), minv3(c));
+}
+
+/* Take the base RGB color <cbase> and override its luminosity with that
+ * of the RGB color <clum>.
+ *
+ * This follows the equations given in the ES 3.2 (June 15th, 2016)
+ * specification. Revision 16 of GL_KHR_blend_equation_advanced and
+ * revision 9 of GL_NV_blend_equation_advanced specify a different set
+ * of equations. Older revisions match ES 3.2's text, and dEQP expects
+ * the ES 3.2 rules implemented here.
+ */
+static void
+set_lum(ir_factory *f,
+ ir_variable *color,
+ ir_variable *cbase,
+ ir_variable *clum)
+{
+ void *mem_ctx = f->mem_ctx;
+ f->emit(assign(color, add(cbase, sub(lumv3(clum), lumv3(cbase)))));
+
+ ir_variable *llum = f->make_temp(glsl_type::float_type, "__blend_lum");
+ ir_variable *mincol = f->make_temp(glsl_type::float_type, "__blend_mincol");
+ ir_variable *maxcol = f->make_temp(glsl_type::float_type, "__blend_maxcol");
+
+ f->emit(assign(llum, lumv3(color)));
+ f->emit(assign(mincol, minv3(color)));
+ f->emit(assign(maxcol, maxv3(color)));
+
+ f->emit(if_tree(less(mincol, imm1(0)),
+ assign(color, add(llum, div(mul(sub(color, llum), llum),
+ sub(llum, mincol)))),
+ if_tree(greater(maxcol, imm1(1)),
+ assign(color, add(llum, div(mul(sub(color, llum),
+ sub(imm3(1), llum)),
+ sub(maxcol, llum)))))));
+
+}
+
+/* Take the base RGB color <cbase> and override its saturation with
+ * that of the RGB color <csat>. The override the luminosity of the
+ * result with that of the RGB color <clum>.
+ */
+static void
+set_lum_sat(ir_factory *f,
+ ir_variable *color,
+ ir_variable *cbase,
+ ir_variable *csat,
+ ir_variable *clum)
+{
+ void *mem_ctx = f->mem_ctx;
+
+ ir_rvalue *minbase = minv3(cbase);
+ ir_rvalue *ssat = satv3(csat);
+
+ ir_variable *sbase = f->make_temp(glsl_type::float_type, "__blend_sbase");
+ f->emit(assign(sbase, satv3(cbase)));
+
+ /* Equivalent (modulo rounding errors) to setting the
+ * smallest (R,G,B) component to 0, the largest to <ssat>,
+ * and interpolating the "middle" component based on its
+ * original value relative to the smallest/largest.
+ */
+ f->emit(if_tree(greater(sbase, imm1(0)),
+ assign(color, div(mul(sub(cbase, minbase), ssat), sbase)),
+ assign(color, imm3(0))));
+ set_lum(f, color, color, clum);
+}
+
+static ir_rvalue *
+is_mode(ir_variable *mode, enum gl_advanced_blend_mode q)
+{
+ return equal(mode, new(ralloc_parent(mode)) ir_constant(unsigned(q)));
+}
+
+static ir_variable *
+calc_blend_result(ir_factory f,
+ ir_variable *mode,
+ ir_variable *fb,
+ ir_rvalue *blend_src,
+ GLbitfield blend_qualifiers)
+{
+ void *mem_ctx = f.mem_ctx;
+ ir_variable *result = f.make_temp(glsl_type::vec4_type, "__blend_result");
+
+ /* Save blend_src to a temporary so we can reference it multiple times. */
+ ir_variable *src = f.make_temp(glsl_type::vec4_type, "__blend_src");
+ f.emit(assign(src, blend_src));
+
+ /* If we're not doing advanced blending, just write the original value. */
+ ir_if *if_blending = new(mem_ctx) ir_if(is_mode(mode, BLEND_NONE));
+ f.emit(if_blending);
+ if_blending->then_instructions.push_tail(assign(result, src));
+
+ f.instructions = &if_blending->else_instructions;
+
+ /* (Rs', Gs', Bs') =
+ * (0, 0, 0), if As == 0
+ * (Rs/As, Gs/As, Bs/As), otherwise
+ */
+ ir_variable *src_rgb = f.make_temp(glsl_type::vec3_type, "__blend_src_rgb");
+ ir_variable *src_alpha = f.make_temp(glsl_type::float_type, "__blend_src_a");
+
+ /* (Rd', Gd', Bd') =
+ * (0, 0, 0), if Ad == 0
+ * (Rd/Ad, Gd/Ad, Bd/Ad), otherwise
+ */
+ ir_variable *dst_rgb = f.make_temp(glsl_type::vec3_type, "__blend_dst_rgb");
+ ir_variable *dst_alpha = f.make_temp(glsl_type::float_type, "__blend_dst_a");
+
+ f.emit(assign(dst_alpha, swizzle_w(fb)));
+ f.emit(if_tree(equal(dst_alpha, imm1(0)),
+ assign(dst_rgb, imm3(0)),
+ assign(dst_rgb, div(swizzle_xyz(fb), dst_alpha))));
+
+ f.emit(assign(src_alpha, swizzle_w(src)));
+ f.emit(if_tree(equal(src_alpha, imm1(0)),
+ assign(src_rgb, imm3(0)),
+ assign(src_rgb, div(swizzle_xyz(src), src_alpha))));
+
+ ir_variable *factor = f.make_temp(glsl_type::vec3_type, "__blend_factor");
+
+ ir_factory casefactory = f;
+
+ unsigned choices = blend_qualifiers;
+ while (choices) {
+ enum gl_advanced_blend_mode choice = (enum gl_advanced_blend_mode)
+ (1u << u_bit_scan(&choices));
+
+ ir_if *iff = new(mem_ctx) ir_if(is_mode(mode, choice));
+ casefactory.emit(iff);
+ casefactory.instructions = &iff->then_instructions;
+
+ ir_rvalue *val = NULL;
+
+ switch (choice) {
+ case BLEND_MULTIPLY:
+ val = blend_multiply(src_rgb, dst_rgb);
+ break;
+ case BLEND_SCREEN:
+ val = blend_screen(src_rgb, dst_rgb);
+ break;
+ case BLEND_OVERLAY:
+ val = blend_overlay(src_rgb, dst_rgb);
+ break;
+ case BLEND_DARKEN:
+ val = blend_darken(src_rgb, dst_rgb);
+ break;
+ case BLEND_LIGHTEN:
+ val = blend_lighten(src_rgb, dst_rgb);
+ break;
+ case BLEND_COLORDODGE:
+ val = blend_colordodge(src_rgb, dst_rgb);
+ break;
+ case BLEND_COLORBURN:
+ val = blend_colorburn(src_rgb, dst_rgb);
+ break;
+ case BLEND_HARDLIGHT:
+ val = blend_hardlight(src_rgb, dst_rgb);
+ break;
+ case BLEND_SOFTLIGHT:
+ val = blend_softlight(src_rgb, dst_rgb);
+ break;
+ case BLEND_DIFFERENCE:
+ val = blend_difference(src_rgb, dst_rgb);
+ break;
+ case BLEND_EXCLUSION:
+ val = blend_exclusion(src_rgb, dst_rgb);
+ break;
+ case BLEND_HSL_HUE:
+ set_lum_sat(&casefactory, factor, src_rgb, dst_rgb, dst_rgb);
+ break;
+ case BLEND_HSL_SATURATION:
+ set_lum_sat(&casefactory, factor, dst_rgb, src_rgb, dst_rgb);
+ break;
+ case BLEND_HSL_COLOR:
+ set_lum(&casefactory, factor, src_rgb, dst_rgb);
+ break;
+ case BLEND_HSL_LUMINOSITY:
+ set_lum(&casefactory, factor, dst_rgb, src_rgb);
+ break;
+ case BLEND_NONE:
+ case BLEND_ALL:
+ unreachable("not real cases");
+ }
+
+ if (val)
+ casefactory.emit(assign(factor, val));
+
+ casefactory.instructions = &iff->else_instructions;
+ }
+
+ /* p0(As,Ad) = As*Ad
+ * p1(As,Ad) = As*(1-Ad)
+ * p2(As,Ad) = Ad*(1-As)
+ */
+ ir_variable *p0 = f.make_temp(glsl_type::float_type, "__blend_p0");
+ ir_variable *p1 = f.make_temp(glsl_type::float_type, "__blend_p1");
+ ir_variable *p2 = f.make_temp(glsl_type::float_type, "__blend_p2");
+
+ f.emit(assign(p0, mul(src_alpha, dst_alpha)));
+ f.emit(assign(p1, mul(src_alpha, sub(imm1(1), dst_alpha))));
+ f.emit(assign(p2, mul(dst_alpha, sub(imm1(1), src_alpha))));
+
+ /* R = f(Rs',Rd')*p0(As,Ad) + Y*Rs'*p1(As,Ad) + Z*Rd'*p2(As,Ad)
+ * G = f(Gs',Gd')*p0(As,Ad) + Y*Gs'*p1(As,Ad) + Z*Gd'*p2(As,Ad)
+ * B = f(Bs',Bd')*p0(As,Ad) + Y*Bs'*p1(As,Ad) + Z*Bd'*p2(As,Ad)
+ * A = X*p0(As,Ad) + Y*p1(As,Ad) + Z*p2(As,Ad)
+ *
+ * <X, Y, Z> is always <1, 1, 1>, so we can ignore it.
+ *
+ * In vector form, this is:
+ * RGB = factor * p0 + Cs * p1 + Cd * p2
+ * A = p0 + p1 + p2
+ */
+ f.emit(assign(result,
+ add(add(mul(factor, p0), mul(src_rgb, p1)), mul(dst_rgb, p2)),
+ WRITEMASK_XYZ));
+ f.emit(assign(result, add(add(p0, p1), p2), WRITEMASK_W));
+
+ return result;
+}
+
+/**
+ * Dereference var, or var[0] if it's an array.
+ */
+static ir_dereference *
+deref_output(ir_variable *var)
+{
+ void *mem_ctx = ralloc_parent(var);
+
+ ir_dereference *val = new(mem_ctx) ir_dereference_variable(var);
+ if (val->type->is_array()) {
+ ir_constant *index = new(mem_ctx) ir_constant(0);
+ val = new(mem_ctx) ir_dereference_array(val, index);
+ }
+
+ return val;
+}
+
+static ir_function_signature *
+get_main(gl_linked_shader *sh)
+{
+ ir_function_signature *sig;
+ /* We can't use _mesa_get_main_function_signature() because we don't
+ * have a symbol table at this point. Just go find main() by hand.
+ */
+ foreach_in_list(ir_instruction, ir, sh->ir) {
+ ir_function *f = ir->as_function();
+ if (f && strcmp(f->name, "main") == 0) {
+ exec_list void_parameters;
+ sig = f->matching_signature(NULL, &void_parameters, false);
+ break;
+ }
+ }
+ assert(sig != NULL); /* main() must exist */
+ return sig;
+}
+
+bool
+lower_blend_equation_advanced(struct gl_linked_shader *sh)
+{
+ if (sh->info.BlendSupport == 0)
+ return false;
+
+ /* Lower early returns in main() so there's a single exit point
+ * where we can insert our lowering code.
+ */
+ do_lower_jumps(sh->ir, false, false, true, false, false);
+
+ void *mem_ctx = ralloc_parent(sh->ir);
+
+ ir_variable *fb = new(mem_ctx) ir_variable(glsl_type::vec4_type,
+ "__blend_fb_fetch",
+ ir_var_shader_out);
+ fb->data.location = FRAG_RESULT_DATA0;
+ fb->data.read_only = 1;
+ fb->data.fb_fetch_output = 1;
+ fb->data.how_declared = ir_var_hidden;
+
+ ir_variable *mode = new(mem_ctx) ir_variable(glsl_type::uint_type,
+ "gl_AdvancedBlendModeMESA",
+ ir_var_uniform);
+ mode->data.how_declared = ir_var_hidden;
+ mode->allocate_state_slots(1);
+ ir_state_slot *slot0 = &mode->get_state_slots()[0];
+ slot0->swizzle = SWIZZLE_XXXX;
+ slot0->tokens[0] = STATE_INTERNAL;
+ slot0->tokens[1] = STATE_ADVANCED_BLENDING_MODE;
+ for (int i = 2; i < STATE_LENGTH; i++)
+ slot0->tokens[i] = 0;
+
+ sh->ir->push_head(fb);
+ sh->ir->push_head(mode);
+
+ /* Gather any output variables referring to render target 0.
+ *
+ * ARB_enhanced_layouts irritatingly allows the shader to specify
+ * multiple output variables for the same render target, each of
+ * which writes a subset of the components, starting at location_frac.
+ * The variables can't overlap, thankfully.
+ */
+ ir_variable *outputs[4];
+ foreach_in_list(ir_instruction, ir, sh->ir) {
+ ir_variable *var = ir->as_variable();
+ if (!var || var->data.mode != ir_var_shader_out)
+ continue;
+
+ if (var->data.location == FRAG_RESULT_DATA0 ||
+ var->data.location == FRAG_RESULT_COLOR) {
+ const int components = var->type->without_array()->vector_elements;
+
+ for (int i = 0; i < components; i++) {
+ outputs[var->data.location_frac + i] = var;
+ }
+ }
+ }
+
+ /* Combine values written to outputs into a single RGBA blend source.
+ * We assign <0, 0, 0, 1> to any components with no corresponding output.
+ */
+ ir_rvalue *blend_source;
+ if (outputs[0] && outputs[0]->type->without_array()->vector_elements == 4) {
+ blend_source = deref_output(outputs[0]);
+ } else {
+ ir_rvalue *blend_comps[4];
+ for (int i = 0; i < 4; i++) {
+ ir_variable *var = outputs[i];
+ if (var) {
+ blend_comps[i] = swizzle(deref_output(outputs[i]),
+ i - outputs[i]->data.location_frac, 1);
+ } else {
+ blend_comps[i] = new(mem_ctx) ir_constant(i < 3 ? 0.0f : 1.0f);
+ }
+ }
+
+ blend_source =
+ new(mem_ctx) ir_expression(ir_quadop_vector, glsl_type::vec4_type,
+ blend_comps[0], blend_comps[1],
+ blend_comps[2], blend_comps[3]);
+ }
+
+ ir_function_signature *main = get_main(sh);
+ ir_factory f(&main->body, mem_ctx);
+
+ ir_variable *result_dest =
+ calc_blend_result(f, mode, fb, blend_source, sh->info.BlendSupport);
+
+ /* Copy the result back to the original values. It would be simpler
+ * to demote the program's output variables, and create a new vec4
+ * output for our result, but this pass runs before we create the
+ * ARB_program_interface_query resource list. So we have to leave
+ * the original outputs in place and use them.
+ */
+ for (int i = 0; i < 4; i++) {
+ if (!outputs[i])
+ continue;
+
+ f.emit(assign(deref_output(outputs[i]), swizzle(result_dest, i, 1),
+ 1 << i));
+ }
+
+ validate_ir_tree(sh->ir);
+ return true;
+}