ctx->block->instructions.emplace_back(std::move(sop2));
}
-void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool commutative, bool swap_srcs=false)
+void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
+ bool commutative, bool swap_srcs=false, bool flush_denorms = false)
{
Builder bld(ctx->program, ctx->block);
Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
}
}
- bld.vop2(op, Definition(dst), src0, src1);
+
+ if (flush_denorms && ctx->program->chip_class < GFX9) {
+ assert(dst.size() == 1);
+ Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
+ bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
+ } else {
+ bld.vop2(op, Definition(dst), src0, src1);
+ }
}
-void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
+void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
+ bool flush_denorms = false)
{
Temp src0 = get_alu_src(ctx, instr->src[0]);
Temp src1 = get_alu_src(ctx, instr->src[1]);
src2 = as_vgpr(ctx, src2);
Builder bld(ctx->program, ctx->block);
- bld.vop3(op, Definition(dst), src0, src1, src2);
+ if (flush_denorms && ctx->program->chip_class < GFX9) {
+ assert(dst.size() == 1);
+ Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
+ bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
+ } else {
+ bld.vop3(op, Definition(dst), src0, src1, src2);
+ }
}
void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
}
case nir_op_fmax: {
if (dst.size() == 1) {
- emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true);
+ emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
} else if (dst.size() == 2) {
- bld.vop3(aco_opcode::v_max_f64, Definition(dst),
- get_alu_src(ctx, instr->src[0]),
- as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
+ if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
+ Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
+ get_alu_src(ctx, instr->src[0]),
+ as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
+ bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
+ } else {
+ bld.vop3(aco_opcode::v_max_f64, Definition(dst),
+ get_alu_src(ctx, instr->src[0]),
+ as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
+ }
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
}
case nir_op_fmin: {
if (dst.size() == 1) {
- emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true);
+ emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
} else if (dst.size() == 2) {
- bld.vop3(aco_opcode::v_min_f64, Definition(dst),
- get_alu_src(ctx, instr->src[0]),
- as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
+ if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
+ Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
+ get_alu_src(ctx, instr->src[0]),
+ as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
+ bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
+ } else {
+ bld.vop3(aco_opcode::v_min_f64, Definition(dst),
+ get_alu_src(ctx, instr->src[0]),
+ as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
+ }
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
}
case nir_op_fmax3: {
if (dst.size() == 1) {
- emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst);
+ emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
}
case nir_op_fmin3: {
if (dst.size() == 1) {
- emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst);
+ emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
}
case nir_op_fmed3: {
if (dst.size() == 1) {
- emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst);
+ emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
} else {
fprintf(stderr, "Unimplemented NIR instr bit size: ");
nir_print_instr(&instr->instr, stderr);
Temp src = get_alu_src(ctx, instr->src[0]);
if (dst.size() == 1) {
bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
+ /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
+ // TODO: confirm that this holds under any circumstances
} else if (dst.size() == 2) {
Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);