// 3. The paper ambiguously states: "Moreover, we can find such a cut (X′′, X̅′′) by performing a depth first search starting at the source s,
// and including in X′′ all the nodes which are reachable from s." This actually refers to a specific kind of search, mincut computation.
// Mincut computation involves computing the set of nodes reachable from s by an undirected path with no full (i.e. zero capacity) forward
-// edges or empty (i.e. no flow) backward edges.
+// edges or empty (i.e. no flow) backward edges. In addition, the depth first search is required to compute a max-volume max-flow min-cut
+// specifically, because a max-flow min-cut is not, in general, unique.
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
NodePrime source_prime = {source, true};
NodePrime sink_prime = {sink, false};
- pool<NodePrime> worklist = {source_prime}, visited;
+ pool<NodePrime> visited;
+ vector<NodePrime> worklist = {source_prime};
while (!worklist.empty())
{
- auto node_prime = worklist.pop();
+ auto node_prime = worklist.back();
+ worklist.pop_back();
if (visited[node_prime])
continue;
visited.insert(node_prime);
if (!node_prime.is_bottom) // top
{
if (node_flow[node_prime.node] < MAX_NODE_FLOW)
- worklist.insert(node_prime.as_bottom());
+ worklist.push_back(node_prime.as_bottom());
for (auto node_pred : edges_bw[node_prime.node])
if (edge_flow[{node_pred, node_prime.node}] > 0)
- worklist.insert(NodePrime::bottom(node_pred));
+ worklist.push_back(NodePrime::bottom(node_pred));
}
else // bottom
{
if (node_flow[node_prime.node] > 0)
- worklist.insert(node_prime.as_top());
+ worklist.push_back(node_prime.as_top());
for (auto node_succ : edges_fw[node_prime.node])
if (true /* edge_flow[...] < ∞ */)
- worklist.insert(NodePrime::top(node_succ));
+ worklist.push_back(NodePrime::top(node_succ));
}
}