negative value by 0 gives -0, not +0. */
(simplify
(mult @0 real_zerop@1)
- (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (element_mode (type)))
+ (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
@1))
/* In IEEE floating point, x*1 is not equivalent to x for snans.
Likewise for complex arithmetic with signed zeros. */
(simplify
(mult @0 real_onep)
- (if (!HONOR_SNANS (element_mode (type))
- && (!HONOR_SIGNED_ZEROS (element_mode (type))
+ (if (!HONOR_SNANS (type)
+ && (!HONOR_SIGNED_ZEROS (type)
|| !COMPLEX_FLOAT_TYPE_P (type)))
(non_lvalue @0)))
/* Transform x * -1.0 into -x. */
(simplify
(mult @0 real_minus_onep)
- (if (!HONOR_SNANS (element_mode (type))
- && (!HONOR_SIGNED_ZEROS (element_mode (type))
+ (if (!HONOR_SNANS (type)
+ && (!HONOR_SIGNED_ZEROS (type)
|| !COMPLEX_FLOAT_TYPE_P (type)))
(negate @0)))
(rdiv @0 @0)
(if (FLOAT_TYPE_P (type)
&& ! HONOR_NANS (type)
- && ! HONOR_INFINITIES (element_mode (type)))
+ && ! HONOR_INFINITIES (type))
{ build_one_cst (type); }))
/* Optimize -A / A to -1.0 if we don't care about
(rdiv:c @0 (negate @0))
(if (FLOAT_TYPE_P (type)
&& ! HONOR_NANS (type)
- && ! HONOR_INFINITIES (element_mode (type)))
+ && ! HONOR_INFINITIES (type))
{ build_minus_one_cst (type); }))
/* In IEEE floating point, x/1 is not equivalent to x for snans. */
(simplify
(rdiv @0 real_onep)
- (if (!HONOR_SNANS (element_mode (type)))
+ (if (!HONOR_SNANS (type))
(non_lvalue @0)))
/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
(simplify
(rdiv @0 real_minus_onep)
- (if (!HONOR_SNANS (element_mode (type)))
+ (if (!HONOR_SNANS (type))
(negate @0)))
/* If ARG1 is a constant, we can convert this to a multiply by the
@1)
/* ~x | x -> -1 */
-(simplify
- (bit_ior:c (convert? @0) (convert? (bit_not @0)))
- (convert { build_all_ones_cst (TREE_TYPE (@0)); }))
+/* ~x ^ x -> -1 */
+/* ~x + x -> -1 */
+(for op (bit_ior bit_xor plus)
+ (simplify
+ (op:c (convert? @0) (convert? (bit_not @0)))
+ (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
/* x ^ x -> 0 */
(simplify
(bit_xor @0 integer_all_onesp@1)
(bit_not @0))
-/* ~X ^ X is -1. */
-(simplify
- (bit_xor:c (bit_not @0) @0)
- { build_all_ones_cst (type); })
-
/* x & ~0 -> x */
(simplify
(bit_and @0 integer_all_onesp)
(simplify
(bit_not (convert? (negate @0)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
- (convert (minus @0 { build_one_cst (TREE_TYPE (@0)); }))))
+ (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
/* Convert ~ (A - 1) or ~ (A + -1) to -A. */
(simplify
- (bit_not (convert? (minus @0 integer_onep)))
+ (bit_not (convert? (minus @0 integer_each_onep)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(convert (negate @0))))
(simplify
return t;
}
+/* Return the constant 1 in type TYPE. If TYPE has several elements, each
+ element is set to 1. In particular, this is 1 + i for complex types. */
+
+tree
+build_each_one_cst (tree type)
+{
+ if (TREE_CODE (type) == COMPLEX_TYPE)
+ {
+ tree scalar = build_one_cst (TREE_TYPE (type));
+ return build_complex (type, scalar, scalar);
+ }
+ else
+ return build_one_cst (type);
+}
+
/* Return a constant of arithmetic type TYPE which is the
multiplicative identity of the set TYPE. */