# SV Vector Operations.
-The core OpenPOWER ISA was designed as scalar: SV provides a level of abstraction to add variable-length element-independent parallelism. However, certain classes of instructions only make sense in a Vector context: AVC512 conflictd for example. This section includes such examples. Many of them are from the RISC-V Vector ISA (with thanks to the efforts of RVV's contributors)
+The core OpenPOWER ISA was designed as scalar: SV provides a level of abstraction to add variable-length element-independent parallelism. However, certain classes of instructions only make sense in a Vector context: AVX512 conflictd for example. This section includes such examples. Many of them are from the RISC-V Vector ISA (with thanks to the efforts of RVV's contributors)
However some of these actually could be added to a scalar ISA as bitmanipulation instructions. These are separated out into their own section.
Instructions suited to 3D GPU workloads (dotproduct, crossproduct, normalise) are out of scope: this document is for more general-purpose instructions that underpin and are critical to general-purpose Vector workloads (including GPU and VPU)