--- /dev/null
+/****************************************************************************************
+*
+* Disclaimer This software code and all associated documentation, comments or other
+* of Warranty: information (collectively "Software") is provided "AS IS" without
+* warranty of any kind. MICRON TECHNOLOGY, INC. ("MTI") EXPRESSLY
+* DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
+* TO, NONINFRINGEMENT OF THIRD PARTY RIGHTS, AND ANY IMPLIED WARRANTIES
+* OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. MTI DOES NOT
+* WARRANT THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE
+* OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE.
+* FURTHERMORE, MTI DOES NOT MAKE ANY REPRESENTATIONS REGARDING THE USE OR
+* THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS,
+* ACCURACY, RELIABILITY, OR OTHERWISE. THE ENTIRE RISK ARISING OUT OF USE
+* OR PERFORMANCE OF THE SOFTWARE REMAINS WITH YOU. IN NO EVENT SHALL MTI,
+* ITS AFFILIATED COMPANIES OR THEIR SUPPLIERS BE LIABLE FOR ANY DIRECT,
+* INDIRECT, CONSEQUENTIAL, INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING,
+* WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION,
+* OR LOSS OF INFORMATION) ARISING OUT OF YOUR USE OF OR INABILITY TO USE
+* THE SOFTWARE, EVEN IF MTI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
+* DAMAGES. Because some jurisdictions prohibit the exclusion or
+* limitation of liability for consequential or incidental damages, the
+* above limitation may not apply to you.
+*
+* Copyright 2003 Micron Technology, Inc. All rights reserved.
+*
+****************************************************************************************/
+
+ // Timing parameters based on 2Gb_DDR3_SDRAM.pdf - Rev. P 2/12 EN
+
+ // SYMBOL UNITS DESCRIPTION
+ // ------ ----- -----------
+`ifdef sg093 // sg093 is equivalent to the JEDEC DDR3-2133 (14-14-14) speed bin
+ parameter TCK_MIN = 938; // tCK ps Minimum Clock Cycle Time
+ parameter TJIT_PER = 50; // tJIT(per) ps Period JItter
+ parameter TJIT_CC = 100; // tJIT(cc) ps Cycle to Cycle jitter
+ parameter TERR_2PER = 74; // tERR(2per) ps Accumulated Error (2-cycle)
+ parameter TERR_3PER = 87; // tERR(3per) ps Accumulated Error (3-cycle)
+ parameter TERR_4PER = 97; // tERR(4per) ps Accumulated Error (4-cycle)
+ parameter TERR_5PER = 105; // tERR(5per) ps Accumulated Error (5-cycle)
+ parameter TERR_6PER = 111; // tERR(6per) ps Accumulated Error (6-cycle)
+ parameter TERR_7PER = 116; // tERR(7per) ps Accumulated Error (7-cycle)
+ parameter TERR_8PER = 121; // tERR(8per) ps Accumulated Error (8-cycle)
+ parameter TERR_9PER = 125; // tERR(9per) ps Accumulated Error (9-cycle)
+ parameter TERR_10PER = 128; // tERR(10per)ps Accumulated Error (10-cycle)
+ parameter TERR_11PER = 132; // tERR(11per)ps Accumulated Error (11-cycle)
+ parameter TERR_12PER = 134; // tERR(12per)ps Accumulated Error (12-cycle)
+ parameter TDS = 5; // tDS ps DQ and DM input setup time relative to DQS
+ parameter TDH = 20; // tDH ps DQ and DM input hold time relative to DQS
+ parameter TDQSQ = 70; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
+ parameter TDQSS = 0.27; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
+ parameter TDSS = 0.18; // tDSS tCK DQS falling edge to CLK rising (setup time)
+ parameter TDSH = 0.18; // tDSH tCK DQS falling edge from CLK rising (hold time)
+ parameter TDQSCK = 180; // tDQSCK ps DQS output access time from CK/CK#
+ parameter TQSH = 0.40; // tQSH tCK DQS Output High Pulse Width
+ parameter TQSL = 0.40; // tQSL tCK DQS Output Low Pulse Width
+ parameter TDIPW = 280; // tDIPW ps DQ and DM input Pulse Width
+ parameter TIPW = 470; // tIPW ps Control and Address input Pulse Width
+ parameter TIS = 35; // tIS ps Input Setup Time
+ parameter TIH = 75; // tIH ps Input Hold Time
+ parameter TRAS_MIN = 33000; // tRAS ps Minimum Active to Precharge command time
+ parameter TRC = 46130; // tRC ps Active to Active/Auto Refresh command time
+ parameter TRCD = 13090; // tRCD ps Active to Read/Write command time
+ parameter TRP = 13090; // tRP ps Precharge command period
+ parameter TXP = 6000; // tXP ps Exit power down to a valid command
+ parameter TCKE = 5000; // tCKE ps CKE minimum high or low pulse width
+ parameter TAON = 180; // tAON ps RTT turn-on from ODTLon reference
+ parameter TWLS = 122; // tWLS ps Setup time for tDQS flop
+ parameter TWLH = 122; // tWLH ps Hold time of tDQS flop
+ parameter TWLO = 7500; // tWLO ps Write levelization output delay
+ parameter TAA_MIN = 13090; // TAA ps Internal READ command to first data
+ parameter CL_TIME = 13090; // CL ps Minimum CAS Latency
+`elsif sg107 // sg107 is equivalent to the JEDEC DDR3-1866 (13-13-13) speed bin
+ parameter TCK_MIN = 1071; // tCK ps Minimum Clock Cycle Time
+ parameter TJIT_PER = 60; // tJIT(per) ps Period JItter
+ parameter TJIT_CC = 120; // tJIT(cc) ps Cycle to Cycle jitter
+ parameter TERR_2PER = 88; // tERR(2per) ps Accumulated Error (2-cycle)
+ parameter TERR_3PER = 105; // tERR(3per) ps Accumulated Error (3-cycle)
+ parameter TERR_4PER = 117; // tERR(4per) ps Accumulated Error (4-cycle)
+ parameter TERR_5PER = 126; // tERR(5per) ps Accumulated Error (5-cycle)
+ parameter TERR_6PER = 133; // tERR(6per) ps Accumulated Error (6-cycle)
+ parameter TERR_7PER = 139; // tERR(7per) ps Accumulated Error (7-cycle)
+ parameter TERR_8PER = 145; // tERR(8per) ps Accumulated Error (8-cycle)
+ parameter TERR_9PER = 150; // tERR(9per) ps Accumulated Error (9-cycle)
+ parameter TERR_10PER = 154; // tERR(10per)ps Accumulated Error (10-cycle)
+ parameter TERR_11PER = 158; // tERR(11per)ps Accumulated Error (11-cycle)
+ parameter TERR_12PER = 161; // tERR(12per)ps Accumulated Error (12-cycle)
+ parameter TDS = 10; // tDS ps DQ and DM input setup time relative to DQS
+ parameter TDH = 20; // tDH ps DQ and DM input hold time relative to DQS
+ parameter TDQSQ = 80; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
+ parameter TDQSS = 0.27; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
+ parameter TDSS = 0.18; // tDSS tCK DQS falling edge to CLK rising (setup time)
+ parameter TDSH = 0.18; // tDSH tCK DQS falling edge from CLK rising (hold time)
+ parameter TDQSCK = 200; // tDQSCK ps DQS output access time from CK/CK#
+ parameter TQSH = 0.40; // tQSH tCK DQS Output High Pulse Width
+ parameter TQSL = 0.40; // tQSL tCK DQS Output Low Pulse Width
+ parameter TDIPW = 320; // tDIPW ps DQ and DM input Pulse Width
+ parameter TIPW = 535; // tIPW ps Control and Address input Pulse Width
+ parameter TIS = 50; // tIS ps Input Setup Time
+ parameter TIH = 100; // tIH ps Input Hold Time
+ parameter TRAS_MIN = 34000; // tRAS ps Minimum Active to Precharge command time
+ parameter TRC = 48910; // tRC ps Active to Active/Auto Refresh command time
+ parameter TRCD = 13910; // tRCD ps Active to Read/Write command time
+ parameter TRP = 13910; // tRP ps Precharge command period
+ parameter TXP = 6000; // tXP ps Exit power down to a valid command
+ parameter TCKE = 5000; // tCKE ps CKE minimum high or low pulse width
+ parameter TAON = 200; // tAON ps RTT turn-on from ODTLon reference
+ parameter TWLS = 140; // tWLS ps Setup time for tDQS flop
+ parameter TWLH = 140; // tWLH ps Hold time of tDQS flop
+ parameter TWLO = 7500; // tWLO ps Write levelization output delay
+ parameter TAA_MIN = 13910; // TAA ps Internal READ command to first data
+ parameter CL_TIME = 13910; // CL ps Minimum CAS Latency
+`elsif sg125 // sg125 is equivalent to the JEDEC DDR3-1600 (11-11-11) speed bin
+ parameter TCK_MIN = 1250; // tCK ps Minimum Clock Cycle Time
+ parameter TJIT_PER = 70; // tJIT(per) ps Period JItter
+ parameter TJIT_CC = 140; // tJIT(cc) ps Cycle to Cycle jitter
+ parameter TERR_2PER = 103; // tERR(2per) ps Accumulated Error (2-cycle)
+ parameter TERR_3PER = 122; // tERR(3per) ps Accumulated Error (3-cycle)
+ parameter TERR_4PER = 136; // tERR(4per) ps Accumulated Error (4-cycle)
+ parameter TERR_5PER = 147; // tERR(5per) ps Accumulated Error (5-cycle)
+ parameter TERR_6PER = 155; // tERR(6per) ps Accumulated Error (6-cycle)
+ parameter TERR_7PER = 163; // tERR(7per) ps Accumulated Error (7-cycle)
+ parameter TERR_8PER = 169; // tERR(8per) ps Accumulated Error (8-cycle)
+ parameter TERR_9PER = 175; // tERR(9per) ps Accumulated Error (9-cycle)
+ parameter TERR_10PER = 180; // tERR(10per)ps Accumulated Error (10-cycle)
+ parameter TERR_11PER = 184; // tERR(11per)ps Accumulated Error (11-cycle)
+ parameter TERR_12PER = 188; // tERR(12per)ps Accumulated Error (12-cycle)
+ parameter TDS = 10; // tDS ps DQ and DM input setup time relative to DQS
+ parameter TDH = 45; // tDH ps DQ and DM input hold time relative to DQS
+ parameter TDQSQ = 100; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
+ parameter TDQSS = 0.27; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
+ parameter TDSS = 0.18; // tDSS tCK DQS falling edge to CLK rising (setup time)
+ parameter TDSH = 0.18; // tDSH tCK DQS falling edge from CLK rising (hold time)
+ parameter TDQSCK = 225; // tDQSCK ps DQS output access time from CK/CK#
+ parameter TQSH = 0.40; // tQSH tCK DQS Output High Pulse Width
+ parameter TQSL = 0.40; // tQSL tCK DQS Output Low Pulse Width
+ parameter TDIPW = 360; // tDIPW ps DQ and DM input Pulse Width
+ parameter TIPW = 560; // tIPW ps Control and Address input Pulse Width
+ parameter TIS = 170; // tIS ps Input Setup Time
+ parameter TIH = 120; // tIH ps Input Hold Time
+ parameter TRAS_MIN = 35000; // tRAS ps Minimum Active to Precharge command time
+ parameter TRC = 48750; // tRC ps Active to Active/Auto Refresh command time
+ parameter TRCD = 13750; // tRCD ps Active to Read/Write command time
+ parameter TRP = 13750; // tRP ps Precharge command period
+ parameter TXP = 6000; // tXP ps Exit power down to a valid command
+ parameter TCKE = 5000; // tCKE ps CKE minimum high or low pulse width
+ parameter TAON = 250; // tAON ps RTT turn-on from ODTLon reference
+ parameter TWLS = 165; // tWLS ps Setup time for tDQS flop
+ parameter TWLH = 165; // tWLH ps Hold time of tDQS flop
+ parameter TWLO = 7500; // tWLO ps Write levelization output delay
+ parameter TAA_MIN = 13750; // TAA ps Internal READ command to first data
+ parameter CL_TIME = 13750; // CL ps Minimum CAS Latency
+`elsif sg15E // sg15E is equivalent to the JEDEC DDR3-1333H (9-9-9) speed bin
+ parameter TCK_MIN = 1500; // tCK ps Minimum Clock Cycle Time
+ parameter TJIT_PER = 80; // tJIT(per) ps Period JItter
+ parameter TJIT_CC = 160; // tJIT(cc) ps Cycle to Cycle jitter
+ parameter TERR_2PER = 118; // tERR(2per) ps Accumulated Error (2-cycle)
+ parameter TERR_3PER = 140; // tERR(3per) ps Accumulated Error (3-cycle)
+ parameter TERR_4PER = 155; // tERR(4per) ps Accumulated Error (4-cycle)
+ parameter TERR_5PER = 168; // tERR(5per) ps Accumulated Error (5-cycle)
+ parameter TERR_6PER = 177; // tERR(6per) ps Accumulated Error (6-cycle)
+ parameter TERR_7PER = 186; // tERR(7per) ps Accumulated Error (7-cycle)
+ parameter TERR_8PER = 193; // tERR(8per) ps Accumulated Error (8-cycle)
+ parameter TERR_9PER = 200; // tERR(9per) ps Accumulated Error (9-cycle)
+ parameter TERR_10PER = 205; // tERR(10per)ps Accumulated Error (10-cycle)
+ parameter TERR_11PER = 210; // tERR(11per)ps Accumulated Error (11-cycle)
+ parameter TERR_12PER = 215; // tERR(12per)ps Accumulated Error (12-cycle)
+ parameter TDS = 30; // tDS ps DQ and DM input setup time relative to DQS
+ parameter TDH = 65; // tDH ps DQ and DM input hold time relative to DQS
+ parameter TDQSQ = 125; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
+ parameter TDQSS = 0.25; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
+ parameter TDSS = 0.20; // tDSS tCK DQS falling edge to CLK rising (setup time)
+ parameter TDSH = 0.20; // tDSH tCK DQS falling edge from CLK rising (hold time)
+ parameter TDQSCK = 255; // tDQSCK ps DQS output access time from CK/CK#
+ parameter TQSH = 0.40; // tQSH tCK DQS Output High Pulse Width
+ parameter TQSL = 0.40; // tQSL tCK DQS Output Low Pulse Width
+ parameter TDIPW = 400; // tDIPW ps DQ and DM input Pulse Width
+ parameter TIPW = 620; // tIPW ps Control and Address input Pulse Width
+ parameter TIS = 190; // tIS ps Input Setup Time
+ parameter TIH = 140; // tIH ps Input Hold Time
+ parameter TRAS_MIN = 36000; // tRAS ps Minimum Active to Precharge command time
+ parameter TRC = 49500; // tRC ps Active to Active/Auto Refresh command time
+ parameter TRCD = 13500; // tRCD ps Active to Read/Write command time
+ parameter TRP = 13500; // tRP ps Precharge command period
+ parameter TXP = 6000; // tXP ps Exit power down to a valid command
+ parameter TCKE = 5625; // tCKE ps CKE minimum high or low pulse width
+ parameter TAON = 250; // tAON ps RTT turn-on from ODTLon reference
+ parameter TWLS = 195; // tWLS ps Setup time for tDQS flop
+ parameter TWLH = 195; // tWLH ps Hold time of tDQS flop
+ parameter TWLO = 9000; // tWLO ps Write levelization output delay
+ parameter TAA_MIN = 13500; // TAA ps Internal READ command to first data
+ parameter CL_TIME = 13500; // CL ps Minimum CAS Latency
+`elsif sg15 // sg15 is equivalent to the JEDEC DDR3-1333J (10-10-10) speed bin
+ parameter TCK_MIN = 1500; // tCK ps Minimum Clock Cycle Time
+ parameter TJIT_PER = 80; // tJIT(per) ps Period JItter
+ parameter TJIT_CC = 160; // tJIT(cc) ps Cycle to Cycle jitter
+ parameter TERR_2PER = 118; // tERR(2per) ps Accumulated Error (2-cycle)
+ parameter TERR_3PER = 140; // tERR(3per) ps Accumulated Error (3-cycle)
+ parameter TERR_4PER = 155; // tERR(4per) ps Accumulated Error (4-cycle)
+ parameter TERR_5PER = 168; // tERR(5per) ps Accumulated Error (5-cycle)
+ parameter TERR_6PER = 177; // tERR(6per) ps Accumulated Error (6-cycle)
+ parameter TERR_7PER = 186; // tERR(7per) ps Accumulated Error (7-cycle)
+ parameter TERR_8PER = 193; // tERR(8per) ps Accumulated Error (8-cycle)
+ parameter TERR_9PER = 200; // tERR(9per) ps Accumulated Error (9-cycle)
+ parameter TERR_10PER = 205; // tERR(10per)ps Accumulated Error (10-cycle)
+ parameter TERR_11PER = 210; // tERR(11per)ps Accumulated Error (11-cycle)
+ parameter TERR_12PER = 215; // tERR(12per)ps Accumulated Error (12-cycle)
+ parameter TDS = 30; // tDS ps DQ and DM input setup time relative to DQS
+ parameter TDH = 65; // tDH ps DQ and DM input hold time relative to DQS
+ parameter TDQSQ = 125; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
+ parameter TDQSS = 0.25; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
+ parameter TDSS = 0.20; // tDSS tCK DQS falling edge to CLK rising (setup time)
+ parameter TDSH = 0.20; // tDSH tCK DQS falling edge from CLK rising (hold time)
+ parameter TDQSCK = 255; // tDQSCK ps DQS output access time from CK/CK#
+ parameter TQSH = 0.40; // tQSH tCK DQS Output High Pulse Width
+ parameter TQSL = 0.40; // tQSL tCK DQS Output Low Pulse Width
+ parameter TDIPW = 400; // tDIPW ps DQ and DM input Pulse Width
+ parameter TIPW = 620; // tIPW ps Control and Address input Pulse Width
+ parameter TIS = 190; // tIS ps Input Setup Time
+ parameter TIH = 140; // tIH ps Input Hold Time
+ parameter TRAS_MIN = 36000; // tRAS ps Minimum Active to Precharge command time
+ parameter TRC = 51000; // tRC ps Active to Active/Auto Refresh command time
+ parameter TRCD = 15000; // tRCD ps Active to Read/Write command time
+ parameter TRP = 15000; // tRP ps Precharge command period
+ parameter TXP = 6000; // tXP ps Exit power down to a valid command
+ parameter TCKE = 5625; // tCKE ps CKE minimum high or low pulse width
+ parameter TAON = 250; // tAON ps RTT turn-on from ODTLon reference
+ parameter TWLS = 195; // tWLS ps Setup time for tDQS flop
+ parameter TWLH = 195; // tWLH ps Hold time of tDQS flop
+ parameter TWLO = 9000; // tWLO ps Write levelization output delay
+ parameter TAA_MIN = 15000; // TAA ps Internal READ command to first data
+ parameter CL_TIME = 15000; // CL ps Minimum CAS Latency
+`elsif sg187E // sg187E is equivalent to the JEDEC DDR3-1066F (7-7-7) speed bin
+ parameter TCK_MIN = 1875; // tCK ps Minimum Clock Cycle Time
+ parameter TJIT_PER = 90; // tJIT(per) ps Period JItter
+ parameter TJIT_CC = 180; // tJIT(cc) ps Cycle to Cycle jitter
+ parameter TERR_2PER = 132; // tERR(2per) ps Accumulated Error (2-cycle)
+ parameter TERR_3PER = 157; // tERR(3per) ps Accumulated Error (3-cycle)
+ parameter TERR_4PER = 175; // tERR(4per) ps Accumulated Error (4-cycle)
+ parameter TERR_5PER = 188; // tERR(5per) ps Accumulated Error (5-cycle)
+ parameter TERR_6PER = 200; // tERR(6per) ps Accumulated Error (6-cycle)
+ parameter TERR_7PER = 209; // tERR(7per) ps Accumulated Error (7-cycle)
+ parameter TERR_8PER = 217; // tERR(8per) ps Accumulated Error (8-cycle)
+ parameter TERR_9PER = 224; // tERR(9per) ps Accumulated Error (9-cycle)
+ parameter TERR_10PER = 231; // tERR(10per)ps Accumulated Error (10-cycle)
+ parameter TERR_11PER = 237; // tERR(11per)ps Accumulated Error (11-cycle)
+ parameter TERR_12PER = 242; // tERR(12per)ps Accumulated Error (12-cycle)
+ parameter TDS = 75; // tDS ps DQ and DM input setup time relative to DQS
+ parameter TDH = 100; // tDH ps DQ and DM input hold time relative to DQS
+ parameter TDQSQ = 150; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
+ parameter TDQSS = 0.25; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
+ parameter TDSS = 0.20; // tDSS tCK DQS falling edge to CLK rising (setup time)
+ parameter TDSH = 0.20; // tDSH tCK DQS falling edge from CLK rising (hold time)
+ parameter TDQSCK = 300; // tDQSCK ps DQS output access time from CK/CK#
+ parameter TQSH = 0.38; // tQSH tCK DQS Output High Pulse Width
+ parameter TQSL = 0.38; // tQSL tCK DQS Output Low Pulse Width
+ parameter TDIPW = 490; // tDIPW ps DQ and DM input Pulse Width
+ parameter TIPW = 780; // tIPW ps Control and Address input Pulse Width
+ parameter TIS = 275; // tIS ps Input Setup Time
+ parameter TIH = 200; // tIH ps Input Hold Time
+ parameter TRAS_MIN = 37500; // tRAS ps Minimum Active to Precharge command time
+ parameter TRC = 50625; // tRC ps Active to Active/Auto Refresh command time
+ parameter TRCD = 13125; // tRCD ps Active to Read/Write command time
+ parameter TRP = 13125; // tRP ps Precharge command period
+ parameter TXP = 7500; // tXP ps Exit power down to a valid command
+ parameter TCKE = 5625; // tCKE ps CKE minimum high or low pulse width
+ parameter TAON = 300; // tAON ps RTT turn-on from ODTLon reference
+ parameter TWLS = 245; // tWLS ps Setup time for tDQS flop
+ parameter TWLH = 245; // tWLH ps Hold time of tDQS flop
+ parameter TWLO = 9000; // tWLO ps Write levelization output delay
+ parameter TAA_MIN = 13125; // TAA ps Internal READ command to first data
+ parameter CL_TIME = 13125; // CL ps Minimum CAS Latency
+`elsif sg187 // sg187 is equivalent to the JEDEC DDR3-1066G (8-8-8) speed bin
+ parameter TCK_MIN = 1875; // tCK ps Minimum Clock Cycle Time
+ parameter TJIT_PER = 90; // tJIT(per) ps Period JItter
+ parameter TJIT_CC = 180; // tJIT(cc) ps Cycle to Cycle jitter
+ parameter TERR_2PER = 132; // tERR(2per) ps Accumulated Error (2-cycle)
+ parameter TERR_3PER = 157; // tERR(3per) ps Accumulated Error (3-cycle)
+ parameter TERR_4PER = 175; // tERR(4per) ps Accumulated Error (4-cycle)
+ parameter TERR_5PER = 188; // tERR(5per) ps Accumulated Error (5-cycle)
+ parameter TERR_6PER = 200; // tERR(6per) ps Accumulated Error (6-cycle)
+ parameter TERR_7PER = 209; // tERR(7per) ps Accumulated Error (7-cycle)
+ parameter TERR_8PER = 217; // tERR(8per) ps Accumulated Error (8-cycle)
+ parameter TERR_9PER = 224; // tERR(9per) ps Accumulated Error (9-cycle)
+ parameter TERR_10PER = 231; // tERR(10per)ps Accumulated Error (10-cycle)
+ parameter TERR_11PER = 237; // tERR(11per)ps Accumulated Error (11-cycle)
+ parameter TERR_12PER = 242; // tERR(12per)ps Accumulated Error (12-cycle)
+ parameter TDS = 75; // tDS ps DQ and DM input setup time relative to DQS
+ parameter TDH = 100; // tDH ps DQ and DM input hold time relative to DQS
+ parameter TDQSQ = 150; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
+ parameter TDQSS = 0.25; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
+ parameter TDSS = 0.20; // tDSS tCK DQS falling edge to CLK rising (setup time)
+ parameter TDSH = 0.20; // tDSH tCK DQS falling edge from CLK rising (hold time)
+ parameter TDQSCK = 300; // tDQSCK ps DQS output access time from CK/CK#
+ parameter TQSH = 0.38; // tQSH tCK DQS Output High Pulse Width
+ parameter TQSL = 0.38; // tQSL tCK DQS Output Low Pulse Width
+ parameter TDIPW = 490; // tDIPW ps DQ and DM input Pulse Width
+ parameter TIPW = 780; // tIPW ps Control and Address input Pulse Width
+ parameter TIS = 275; // tIS ps Input Setup Time
+ parameter TIH = 200; // tIH ps Input Hold Time
+ parameter TRAS_MIN = 37500; // tRAS ps Minimum Active to Precharge command time
+ parameter TRC = 52500; // tRC ps Active to Active/Auto Refresh command time
+ parameter TRCD = 15000; // tRCD ps Active to Read/Write command time
+ parameter TRP = 15000; // tRP ps Precharge command period
+ parameter TXP = 7500; // tXP ps Exit power down to a valid command
+ parameter TCKE = 5625; // tCKE ps CKE minimum high or low pulse width
+ parameter TAON = 300; // tAON ps RTT turn-on from ODTLon reference
+ parameter TWLS = 245; // tWLS ps Setup time for tDQS flop
+ parameter TWLH = 245; // tWLH ps Hold time of tDQS flop
+ parameter TWLO = 9000; // tWLO ps Write levelization output delay
+ parameter TAA_MIN = 15000; // TAA ps Internal READ command to first data
+ parameter CL_TIME = 15000; // CL ps Minimum CAS Latency
+`elsif sg25E // sg25E is equivalent to the JEDEC DDR3-800D (5-5-5) speed bin
+ parameter TCK_MIN = 2500; // tCK ps Minimum Clock Cycle Time
+ parameter TJIT_PER = 100; // tJIT(per) ps Period JItter
+ parameter TJIT_CC = 200; // tJIT(cc) ps Cycle to Cycle jitter
+ parameter TERR_2PER = 147; // tERR(2per) ps Accumulated Error (2-cycle)
+ parameter TERR_3PER = 175; // tERR(3per) ps Accumulated Error (3-cycle)
+ parameter TERR_4PER = 194; // tERR(4per) ps Accumulated Error (4-cycle)
+ parameter TERR_5PER = 209; // tERR(5per) ps Accumulated Error (5-cycle)
+ parameter TERR_6PER = 222; // tERR(6per) ps Accumulated Error (6-cycle)
+ parameter TERR_7PER = 232; // tERR(7per) ps Accumulated Error (7-cycle)
+ parameter TERR_8PER = 241; // tERR(8per) ps Accumulated Error (8-cycle)
+ parameter TERR_9PER = 249; // tERR(9per) ps Accumulated Error (9-cycle)
+ parameter TERR_10PER = 257; // tERR(10per)ps Accumulated Error (10-cycle)
+ parameter TERR_11PER = 263; // tERR(11per)ps Accumulated Error (11-cycle)
+ parameter TERR_12PER = 269; // tERR(12per)ps Accumulated Error (12-cycle)
+ parameter TDS = 125; // tDS ps DQ and DM input setup time relative to DQS
+ parameter TDH = 150; // tDH ps DQ and DM input hold time relative to DQS
+ parameter TDQSQ = 200; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
+ parameter TDQSS = 0.25; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
+ parameter TDSS = 0.20; // tDSS tCK DQS falling edge to CLK rising (setup time)
+ parameter TDSH = 0.20; // tDSH tCK DQS falling edge from CLK rising (hold time)
+ parameter TDQSCK = 400; // tDQSCK ps DQS output access time from CK/CK#
+ parameter TQSH = 0.38; // tQSH tCK DQS Output High Pulse Width
+ parameter TQSL = 0.38; // tQSL tCK DQS Output Low Pulse Width
+ parameter TDIPW = 600; // tDIPW ps DQ and DM input Pulse Width
+ parameter TIPW = 900; // tIPW ps Control and Address input Pulse Width
+ parameter TIS = 350; // tIS ps Input Setup Time
+ parameter TIH = 275; // tIH ps Input Hold Time
+ parameter TRAS_MIN = 37500; // tRAS ps Minimum Active to Precharge command time
+ parameter TRC = 50000; // tRC ps Active to Active/Auto Refresh command time
+ parameter TRCD = 12500; // tRCD ps Active to Read/Write command time
+ parameter TRP = 12500; // tRP ps Precharge command period
+ parameter TXP = 7500; // tXP ps Exit power down to a valid command
+ parameter TCKE = 7500; // tCKE ps CKE minimum high or low pulse width
+ parameter TAON = 400; // tAON ps RTT turn-on from ODTLon reference
+ parameter TWLS = 325; // tWLS ps Setup time for tDQS flop
+ parameter TWLH = 325; // tWLH ps Hold time of tDQS flop
+ parameter TWLO = 9000; // tWLO ps Write levelization output delay
+ parameter TAA_MIN = 12500; // TAA ps Internal READ command to first data
+ parameter CL_TIME = 12500; // CL ps Minimum CAS Latency
+`else
+ `define sg25 // sg25 is equivalent to the JEDEC DDR3-800E (6-6-6) speed bin
+ parameter TCK_MIN = 2500; // tCK ps Minimum Clock Cycle Time
+ parameter TJIT_PER = 100; // tJIT(per) ps Period JItter
+ parameter TJIT_CC = 200; // tJIT(cc) ps Cycle to Cycle jitter
+ parameter TERR_2PER = 147; // tERR(2per) ps Accumulated Error (2-cycle)
+ parameter TERR_3PER = 175; // tERR(3per) ps Accumulated Error (3-cycle)
+ parameter TERR_4PER = 194; // tERR(4per) ps Accumulated Error (4-cycle)
+ parameter TERR_5PER = 209; // tERR(5per) ps Accumulated Error (5-cycle)
+ parameter TERR_6PER = 222; // tERR(6per) ps Accumulated Error (6-cycle)
+ parameter TERR_7PER = 232; // tERR(7per) ps Accumulated Error (7-cycle)
+ parameter TERR_8PER = 241; // tERR(8per) ps Accumulated Error (8-cycle)
+ parameter TERR_9PER = 249; // tERR(9per) ps Accumulated Error (9-cycle)
+ parameter TERR_10PER = 257; // tERR(10per)ps Accumulated Error (10-cycle)
+ parameter TERR_11PER = 263; // tERR(11per)ps Accumulated Error (11-cycle)
+ parameter TERR_12PER = 269; // tERR(12per)ps Accumulated Error (12-cycle)
+ parameter TDS = 125; // tDS ps DQ and DM input setup time relative to DQS
+ parameter TDH = 150; // tDH ps DQ and DM input hold time relative to DQS
+ parameter TDQSQ = 200; // tDQSQ ps DQS-DQ skew, DQS to last DQ valid, per group, per access
+ parameter TDQSS = 0.25; // tDQSS tCK Rising clock edge to DQS/DQS# latching transition
+ parameter TDSS = 0.20; // tDSS tCK DQS falling edge to CLK rising (setup time)
+ parameter TDSH = 0.20; // tDSH tCK DQS falling edge from CLK rising (hold time)
+ parameter TDQSCK = 400; // tDQSCK ps DQS output access time from CK/CK#
+ parameter TQSH = 0.38; // tQSH tCK DQS Output High Pulse Width
+ parameter TQSL = 0.38; // tQSL tCK DQS Output Low Pulse Width
+ parameter TDIPW = 600; // tDIPW ps DQ and DM input Pulse Width
+ parameter TIPW = 900; // tIPW ps Control and Address input Pulse Width
+ parameter TIS = 350; // tIS ps Input Setup Time
+ parameter TIH = 275; // tIH ps Input Hold Time
+ parameter TRAS_MIN = 37500; // tRAS ps Minimum Active to Precharge command time
+ parameter TRC = 52500; // tRC ps Active to Active/Auto Refresh command time
+ parameter TRCD = 15000; // tRCD ps Active to Read/Write command time
+ parameter TRP = 15000; // tRP ps Precharge command period
+ parameter TXP = 7500; // tXP ps Exit power down to a valid command
+ parameter TCKE = 7500; // tCKE ps CKE minimum high or low pulse width
+ parameter TAON = 400; // tAON ps RTT turn-on from ODTLon reference
+ parameter TWLS = 325; // tWLS ps Setup time for tDQS flop
+ parameter TWLH = 325; // tWLH ps Hold time of tDQS flop
+ parameter TWLO = 9000; // tWLO ps Write levelization output delay
+ parameter TAA_MIN = 15000; // TAA ps Internal READ command to first data
+ parameter CL_TIME = 15000; // CL ps Minimum CAS Latency
+`endif
+
+ parameter TDQSCK_DLLDIS = TDQSCK; // tDQSCK ps for DLLDIS mode, timing not guaranteed
+
+`ifdef x16
+ `ifdef sg093
+ parameter TRRD = 6000; // tRRD ps (2KB page size) Active bank a to Active bank b command time
+ parameter TFAW = 35000; // tFAW ps (2KB page size) Four Bank Activate window
+ `elsif sg107
+ parameter TRRD = 6000; // tRRD ps (2KB page size) Active bank a to Active bank b command time
+ parameter TFAW = 35000; // tFAW ps (2KB page size) Four Bank Activate window
+ `elsif sg125
+ parameter TRRD = 7500; // tRRD ps (2KB page size) Active bank a to Active bank b command time
+ parameter TFAW = 40000; // tFAW ps (2KB page size) Four Bank Activate window
+ `elsif sg15E
+ parameter TRRD = 7500; // tRRD ps (2KB page size) Active bank a to Active bank b command time
+ parameter TFAW = 45000; // tFAW ps (2KB page size) Four Bank Activate window
+ `elsif sg15
+ parameter TRRD = 7500; // tRRD ps (2KB page size) Active bank a to Active bank b command time
+ parameter TFAW = 45000; // tFAW ps (2KB page size) Four Bank Activate window
+ `else // sg187E, sg187, sg25, sg25E
+ parameter TRRD = 10000; // tRRD ps (2KB page size) Active bank a to Active bank b command time
+ parameter TFAW = 50000; // tFAW ps (2KB page size) Four Bank Activate window
+ `endif
+`else // x4, x8
+ `ifdef sg093
+ parameter TRRD = 5000; // tRRD ps (1KB page size) Active bank a to Active bank b command time
+ parameter TFAW = 25000; // tFAW ps (1KB page size) Four Bank Activate window
+ `elsif sg107
+ parameter TRRD = 5000; // tRRD ps (1KB page size) Active bank a to Active bank b command time
+ parameter TFAW = 25000; // tFAW ps (1KB page size) Four Bank Activate window
+ `elsif sg125
+ parameter TRRD = 6000; // tRRD ps (1KB page size) Active bank a to Active bank b command time
+ parameter TFAW = 30000; // tFAW ps (1KB page size) Four Bank Activate window
+ `elsif sg15E
+ parameter TRRD = 6000; // tRRD ps (1KB page size) Active bank a to Active bank b command time
+ parameter TFAW = 30000; // tFAW ps (1KB page size) Four Bank Activate window
+ `elsif sg15
+ parameter TRRD = 6000; // tRRD ps (1KB page size) Active bank a to Active bank b command time
+ parameter TFAW = 30000; // tFAW ps (1KB page size) Four Bank Activate window
+ `elsif sg187E
+ parameter TRRD = 7500; // tRRD ps (1KB page size) Active bank a to Active bank b command time
+ parameter TFAW = 37500; // tFAW ps (1KB page size) Four Bank Activate window
+ `elsif sg187
+ parameter TRRD = 7500; // tRRD ps (1KB page size) Active bank a to Active bank b command time
+ parameter TFAW = 37500; // tFAW ps (1KB page size) Four Bank Activate window
+ `else // sg25, sg25E
+ parameter TRRD = 10000; // tRRD ps (1KB page size) Active bank a to Active bank b command time
+ parameter TFAW = 40000; // tFAW ps (1KB page size) Four Bank Activate window
+ `endif
+`endif
+
+ // Timing Parameters
+
+ // Mode Register
+ parameter CL_MIN = 5; // CL tCK Minimum CAS Latency
+ parameter CL_MAX = 14; // CL tCK Maximum CAS Latency
+ parameter AL_MIN = 0; // AL tCK Minimum Additive Latency
+ parameter AL_MAX = 2; // AL tCK Maximum Additive Latency
+ parameter WR_MIN = 5; // WR tCK Minimum Write Recovery
+ parameter WR_MAX = 16; // WR tCK Maximum Write Recovery
+ parameter BL_MIN = 4; // BL tCK Minimum Burst Length
+ parameter BL_MAX = 8; // BL tCK Minimum Burst Length
+ parameter CWL_MIN = 5; // CWL tCK Minimum CAS Write Latency
+ parameter CWL_MAX = 10; // CWL tCK Maximum CAS Write Latency
+
+ // Clock
+ parameter TCK_MAX = 3300; // tCK ps Maximum Clock Cycle Time
+ parameter TCH_AVG_MIN = 0.47; // tCH tCK Minimum Clock High-Level Pulse Width
+ parameter TCL_AVG_MIN = 0.47; // tCL tCK Minimum Clock Low-Level Pulse Width
+ parameter TCH_AVG_MAX = 0.53; // tCH tCK Maximum Clock High-Level Pulse Width
+ parameter TCL_AVG_MAX = 0.53; // tCL tCK Maximum Clock Low-Level Pulse Width
+ parameter TCH_ABS_MIN = 0.43; // tCH tCK Minimum Clock High-Level Pulse Width
+ parameter TCL_ABS_MIN = 0.43; // tCL tCK Maximum Clock Low-Level Pulse Width
+ parameter TCKE_TCK = 3; // tCKE tCK CKE minimum high or low pulse width
+ parameter TAA_MAX = 20000; // TAA ps Internal READ command to first data
+
+ // Data OUT
+ parameter TQH = 0.38; // tQH ps DQ output hold time from DQS, DQS#
+ // Data Strobe OUT
+ parameter TRPRE = 0.90; // tRPRE tCK DQS Read Preamble
+ parameter TRPST = 0.30; // tRPST tCK DQS Read Postamble
+ // Data Strobe IN
+ parameter TDQSH = 0.45; // tDQSH tCK DQS input High Pulse Width
+ parameter TDQSL = 0.45; // tDQSL tCK DQS input Low Pulse Width
+ parameter TWPRE = 0.90; // tWPRE tCK DQS Write Preamble
+ parameter TWPST = 0.30; // tWPST tCK DQS Write Postamble
+ // Command and Address
+ integer TZQCS = max( 64, ceil( 80000/TCK_MIN)); // tZQCS tCK ZQ Cal (Short) time
+ integer TZQINIT = max(512, ceil(640000/TCK_MIN)); // tZQinit tCK ZQ Cal (Long) time
+ integer TZQOPER = max(256, ceil(320000/TCK_MIN)); // tZQoper tCK ZQ Cal (Long) time
+ parameter TCCD = 4; // tCCD tCK Cas to Cas command delay
+ parameter TCCD_DG = 2; // tCCD_DG tCK Cas to Cas command delay to different group
+ parameter TRAS_MAX = 60e9; // tRAS ps Maximum Active to Precharge command time
+ parameter TWR = 15000; // tWR ps Write recovery time
+ parameter TMRD = 4; // tMRD tCK Load Mode Register command cycle time
+ parameter TMOD = 15000; // tMOD ps LOAD MODE to non-LOAD MODE command cycle time
+ parameter TMOD_TCK = 12; // tMOD tCK LOAD MODE to non-LOAD MODE command cycle time
+ parameter TRRD_TCK = 4; // tRRD tCK Active bank a to Active bank b command time
+ parameter TRRD_DG = 3000; // tRRD_DG ps Active bank a to Active bank b command time to different group
+ parameter TRRD_DG_TCK = 2; // tRRD_DG tCK Active bank a to Active bank b command time to different group
+ parameter TRTP = 7500; // tRTP ps Read to Precharge command delay
+ parameter TRTP_TCK = 4; // tRTP tCK Read to Precharge command delay
+ parameter TWTR = 7500; // tWTR ps Write to Read command delay
+ parameter TWTR_DG = 3750; // tWTR_DG ps Write to Read command delay to different group
+ parameter TWTR_TCK = 4; // tWTR tCK Write to Read command delay
+ parameter TWTR_DG_TCK = 2; // tWTR_DG tCK Write to Read command delay to different group
+ parameter TDLLK = 512; // tDLLK tCK DLL locking time
+ // Refresh - 2Gb
+ parameter TRFC_MIN = 160000; // tRFC ps Refresh to Refresh Command interval minimum value
+ parameter TRFC_MAX =70200000; // tRFC ps Refresh to Refresh Command Interval maximum value
+ // Power Down
+ parameter TXP_TCK = 3; // tXP tCK Exit power down to a valid command
+ parameter TXPDLL = 24000; // tXPDLL ps Exit precharge power down to READ or WRITE command (DLL-off mode)
+ parameter TXPDLL_TCK = 10; // tXPDLL tCK Exit precharge power down to READ or WRITE command (DLL-off mode)
+ parameter TACTPDEN = 1; // tACTPDEN tCK Timing of last ACT command to power down entry
+ parameter TPRPDEN = 1; // tPREPDEN tCK Timing of last PRE command to power down entry
+ parameter TREFPDEN = 1; // tARPDEN tCK Timing of last REFRESH command to power down entry
+ parameter TCPDED = 1; // tCPDED tCK Command pass disable/enable delay
+ parameter TPD_MAX =TRFC_MAX; // tPD ps Power-down entry-to-exit timing
+ parameter TXPR = 170000; // tXPR ps Exit Reset from CKE assertion to a valid command
+ parameter TXPR_TCK = 5; // tXPR tCK Exit Reset from CKE assertion to a valid command
+ // Self Refresh
+ parameter TXS = 170000; // tXS ps Exit self refesh to a non-read or write command
+ parameter TXS_TCK = 5; // tXS tCK Exit self refesh to a non-read or write command
+ parameter TXSDLL = TDLLK; // tXSRD tCK Exit self refresh to a read or write command
+ parameter TISXR = TIS; // tISXR ps CKE setup time during self refresh exit.
+ parameter TCKSRE = 10000; // tCKSRE ps Valid Clock requirement after self refresh entry (SRE)
+ parameter TCKSRE_TCK = 5; // tCKSRE tCK Valid Clock requirement after self refresh entry (SRE)
+ parameter TCKSRX = 10000; // tCKSRX ps Valid Clock requirement prior to self refresh exit (SRX)
+ parameter TCKSRX_TCK = 5; // tCKSRX tCK Valid Clock requirement prior to self refresh exit (SRX)
+ parameter TCKESR_TCK = 4; // tCKESR tCK Minimum CKE low width for Self Refresh entry to exit timing
+ // ODT
+ parameter TAOF = 0.7; // tAOF tCK RTT turn-off from ODTLoff reference
+ parameter TAONPD = 8500; // tAONPD ps Asynchronous RTT turn-on delay (Power-Down with DLL frozen)
+ parameter TAOFPD = 8500; // tAONPD ps Asynchronous RTT turn-off delay (Power-Down with DLL frozen)
+ parameter ODTH4 = 4; // ODTH4 tCK ODT minimum HIGH time after ODT assertion or write (BL4)
+ parameter ODTH8 = 6; // ODTH8 tCK ODT minimum HIGH time after write (BL8)
+ parameter TADC = 0.7; // tADC tCK RTT dynamic change skew
+ // Write Levelization
+ parameter TWLMRD = 40; // tWLMRD tCK First DQS pulse rising edge after tDQSS margining mode is programmed
+ parameter TWLDQSEN = 25; // tWLDQSEN tCK DQS/DQS delay after tDQSS margining mode is programmed
+ parameter TWLOE = 2000; // tWLOE ps Write levelization output error
+
+ // Size Parameters based on Part Width
+
+`ifdef x4
+ parameter DM_BITS = 1; // Set this parameter to control how many Data Mask bits are used
+ parameter ADDR_BITS = 15; // MAX Address Bits
+ parameter ROW_BITS = 15; // Set this parameter to control how many Address bits are used
+ parameter COL_BITS = 11; // Set this parameter to control how many Column bits are used
+ parameter DQ_BITS = 4; // Set this parameter to control how many Data bits are used **Same as part bit width**
+ parameter DQS_BITS = 1; // Set this parameter to control how many Dqs bits are used
+`elsif x8
+ parameter DM_BITS = 1; // Set this parameter to control how many Data Mask bits are used
+ parameter ADDR_BITS = 15; // MAX Address Bits
+ parameter ROW_BITS = 15; // Set this parameter to control how many Address bits are used
+ parameter COL_BITS = 10; // Set this parameter to control how many Column bits are used
+ parameter DQ_BITS = 8; // Set this parameter to control how many Data bits are used **Same as part bit width**
+ parameter DQS_BITS = 1; // Set this parameter to control how many Dqs bits are used
+`else
+ `define x16
+ parameter DM_BITS = 2; // Set this parameter to control how many Data Mask bits are used
+ parameter ADDR_BITS = 14; // MAX Address Bits
+ parameter ROW_BITS = 14; // Set this parameter to control how many Address bits are used
+ parameter COL_BITS = 10; // Set this parameter to control how many Column bits are used
+ parameter DQ_BITS = 16; // Set this parameter to control how many Data bits are used **Same as part bit width**
+ parameter DQS_BITS = 2; // Set this parameter to control how many Dqs bits are used
+`endif
+
+ // Size Parameters
+ parameter BA_BITS = 3; // Set this parmaeter to control how many Bank Address bits are used
+ parameter MEM_BITS = 10; // Set this parameter to control how many write data bursts can be stored in memory. The default is 2^10=1024.
+ parameter AP = 10; // the address bit that controls auto-precharge and precharge-all
+ parameter BC = 12; // the address bit that controls burst chop
+ parameter BL_BITS = 3; // the number of bits required to count to BL_MAX
+ parameter BO_BITS = 2; // the number of Burst Order Bits
+
+`ifdef QUAD_RANK
+ parameter CS_BITS = 4; // Number of Chip Select Bits
+ parameter RANKS = 4; // Number of Chip Selects
+`elsif DUAL_RANK
+ parameter CS_BITS = 2; // Number of Chip Select Bits
+ parameter RANKS = 2; // Number of Chip Selects
+`else
+ parameter CS_BITS = 1; // Number of Chip Select Bits
+ parameter RANKS = 1; // Number of Chip Selects
+`endif
+
+ // Simulation parameters
+ parameter RZQ = 240; // termination resistance
+ parameter PRE_DEF_PAT = 8'hAA; // value returned during mpr pre-defined pattern readout
+ parameter STOP_ON_ERROR = 1; // If set to 1, the model will halt on command sequence/major errors
+ parameter DEBUG = 1; // Turn on Debug messages
+ parameter BUS_DELAY = 0; // delay in nanoseconds
+ parameter RANDOM_OUT_DELAY = 0; // If set to 1, the model will put a random amount of delay on DQ/DQS during reads
+ parameter RANDOM_SEED = 31913; //seed value for random generator.
+
+ parameter RDQSEN_PRE = 2; // DQS driving time prior to first read strobe
+ parameter RDQSEN_PST = 1; // DQS driving time after last read strobe
+ parameter RDQS_PRE = 2; // DQS low time prior to first read strobe
+ parameter RDQS_PST = 1; // DQS low time after last read strobe
+ parameter RDQEN_PRE = 0; // DQ/DM driving time prior to first read data
+ parameter RDQEN_PST = 0; // DQ/DM driving time after last read data
+ parameter WDQS_PRE = 2; // DQS half clock periods prior to first write strobe
+ parameter WDQS_PST = 1; // DQS half clock periods after last write strobe
+
+// check for legal cas latency based on the cas write latency
+function valid_cl;
+ input [3:0] cl;
+ input [3:0] cwl;
+
+ case ({cwl, cl})
+`ifdef sg093
+ {4'd5 , 4'd5 },
+ {4'd5 , 4'd6 },
+ {4'd6 , 4'd7 },
+ {4'd6 , 4'd8 },
+ {4'd7 , 4'd9 },
+ {4'd7 , 4'd10},
+ {4'd8 , 4'd11},
+ {4'd9 , 4'd13},
+ {4'd10, 4'd14}: valid_cl = 1;
+`elsif sg107
+ {4'd5, 4'd5 },
+ {4'd5, 4'd6 },
+ {4'd6, 4'd7 },
+ {4'd6, 4'd8 },
+ {4'd7, 4'd9 },
+ {4'd7, 4'd10},
+ {4'd8, 4'd11},
+ {4'd9, 4'd13}: valid_cl = 1;
+`elsif sg125
+ {4'd5, 4'd5 },
+ {4'd5, 4'd6 },
+ {4'd6, 4'd7 },
+ {4'd6, 4'd8 },
+ {4'd7, 4'd9 },
+ {4'd7, 4'd10},
+ {4'd8, 4'd11}: valid_cl = 1;
+`elsif sg15E
+ {4'd5, 4'd5 },
+ {4'd5, 4'd6 },
+ {4'd6, 4'd7 },
+ {4'd6, 4'd8 },
+ {4'd7, 4'd9 },
+ {4'd7, 4'd10}: valid_cl = 1;
+`elsif sg15
+ {4'd5, 4'd5 },
+ {4'd5, 4'd6 },
+ {4'd6, 4'd8 },
+ {4'd7, 4'd10}: valid_cl = 1;
+`elsif sg187E
+ {4'd5, 4'd5 },
+ {4'd5, 4'd6 },
+ {4'd6, 4'd7 },
+ {4'd6, 4'd8 }: valid_cl = 1;
+`elsif sg187
+ {4'd5, 4'd5 },
+ {4'd5, 4'd6 },
+ {4'd6, 4'd8 }: valid_cl = 1;
+`elsif sg25E
+ {4'd5, 4'd5 },
+ {4'd5, 4'd6 }: valid_cl = 1;
+`elsif sg25
+ {4'd5, 4'd5 },
+ {4'd5, 4'd6 }: valid_cl = 1;
+`endif
+ default : valid_cl = 0;
+ endcase
+endfunction
+
+// find the minimum valid cas write latency
+function [3:0] min_cwl;
+ input period;
+ real period;
+ min_cwl = (period >= 2500.0) ? 5:
+ (period >= 1875.0) ? 6:
+ (period >= 1500.0) ? 7:
+ (period >= 1250.0) ? 8:
+ (period >= 1071.0) ? 9:
+ 10; // (period >= 938)
+endfunction
+
+// find the minimum valid cas latency
+function [3:0] min_cl;
+ input period;
+ real period;
+ reg [3:0] cwl;
+ reg [3:0] cl;
+ begin
+ cwl = min_cwl(period);
+ for (cl=CL_MAX; cl>=CL_MIN; cl=cl-1) begin
+ if (valid_cl(cl, cwl)) begin
+ min_cl = cl;
+ end
+ end
+ end
+endfunction
--- /dev/null
+`define MAX_MEM
+
+/****************************************************************************************
+*
+* File Name: ddr3.v
+* Version: 1.70
+* Model: BUS Functional
+*
+* Dependencies: ddr3_parameters.vh
+*
+* Description: Micron SDRAM DDR3 (Double Data Rate 3)
+*
+* Limitation: - doesn't check for average refresh timings
+* - positive ck and ck_n edges are used to form internal clock
+* - positive dqs and dqs_n edges are used to latch data
+* - test mode is not modeled
+* - Duty Cycle Corrector is not modeled
+* - Temperature Compensated Self Refresh is not modeled
+* - DLL off mode is not modeled.
+*
+* Note: - Set simulator resolution to "ps" accuracy
+* - Set DEBUG = 0 to disable $display messages
+*
+* Disclaimer This software code and all associated documentation, comments or other
+* of Warranty: information (collectively "Software") is provided "AS IS" without
+* warranty of any kind. MICRON TECHNOLOGY, INC. ("MTI") EXPRESSLY
+* DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
+* TO, NONINFRINGEMENT OF THIRD PARTY RIGHTS, AND ANY IMPLIED WARRANTIES
+* OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. MTI DOES NOT
+* WARRANT THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE
+* OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE.
+* FURTHERMORE, MTI DOES NOT MAKE ANY REPRESENTATIONS REGARDING THE USE OR
+* THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS,
+* ACCURACY, RELIABILITY, OR OTHERWISE. THE ENTIRE RISK ARISING OUT OF USE
+* OR PERFORMANCE OF THE SOFTWARE REMAINS WITH YOU. IN NO EVENT SHALL MTI,
+* ITS AFFILIATED COMPANIES OR THEIR SUPPLIERS BE LIABLE FOR ANY DIRECT,
+* INDIRECT, CONSEQUENTIAL, INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING,
+* WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION,
+* OR LOSS OF INFORMATION) ARISING OUT OF YOUR USE OF OR INABILITY TO USE
+* THE SOFTWARE, EVEN IF MTI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
+* DAMAGES. Because some jurisdictions prohibit the exclusion or
+* limitation of liability for consequential or incidental damages, the
+* above limitation may not apply to you.
+*
+* Copyright 2003 Micron Technology, Inc. All rights reserved.
+*
+* Rev Author Date Changes
+* ---------------------------------------------------------------------------------------
+* 0.41 JMK 05/12/06 Removed auto-precharge to power down error check.
+* 0.42 JMK 08/25/06 Created internal clock using ck and ck_n.
+* TDQS can only be enabled in EMR for x8 configurations.
+* CAS latency is checked vs frequency when DLL locks.
+* Improved checking of DQS during writes.
+* Added true BL4 operation.
+* 0.43 JMK 08/14/06 Added checking for setting reserved bits in Mode Registers.
+* Added ODTS Readout.
+* Replaced tZQCL with tZQinit and tZQoper
+* Fixed tWRPDEN and tWRAPDEN during BC4MRS and BL4MRS.
+* Added tRFC checking for Refresh to Power-Down Re-Entry.
+* Added tXPDLL checking for Power-Down Exit to Refresh to Power-Down Entry
+* Added Clock Frequency Change during Precharge Power-Down.
+* Added -125x speed grades.
+* Fixed tRCD checking during Write.
+* 1.00 JMK 05/11/07 Initial release
+* 1.10 JMK 06/26/07 Fixed ODTH8 check during BLOTF
+* Removed temp sensor readout from MPR
+* Updated initialization sequence
+* Updated timing parameters
+* 1.20 JMK 09/05/07 Updated clock frequency change
+* Added ddr3_dimm module
+* 1.30 JMK 01/23/08 Updated timing parameters
+* 1.40 JMK 12/02/08 Added support for DDR3-1866 and DDR3-2133
+* renamed ddr3_dimm.v to ddr3_module.v and added SODIMM support.
+* Added multi-chip package model support in ddr3_mcp.v
+* 1.50 JMK 05/04/08 Added 1866 and 2133 speed grades.
+* 1.60 MYY 07/10/09 Merging of 1.50 version and pre-1.0 version changes
+* 1.61 SPH 12/10/09 Only check tIH for cmd_addr if CS# LOW
+* 1.62 SPH 10/26/10 Added 4Gb DDR3 SDRAM support
+* 1.63 MYY 11/09/10 Added Dll Disable mode
+* 1.64 MYY 07/28/11 Check dqs_in for dqs timing check
+* 1.65 MYY 09/19/11 Widen internal bus width
+* 1.66 MYY 01/20/12 Support ODT tied high feature
+* 1.67 MYY 02/03/12 Added TJIT_PER margin for timing checks
+* 1.68 SPH 04/02/12 Added memory preload
+* 1.69 SPH 03/19/13 Update tZQCS, tZQinit, tZQoper timing parameters
+* 1.70 SPH 04/08/14 Update tRFC to PRECARGE check
+*****************************************************************************************/
+// DO NOT CHANGE THE TIMESCALE
+// MAKE SURE YOUR SIMULATOR USES "PS" RESOLUTION
+`timescale 1ps / 1ps
+
+module ddr3 (
+ rst_n,
+ ck,
+ ck_n,
+ cke,
+ cs_n,
+ ras_n,
+ cas_n,
+ we_n,
+ dm_tdqs,
+ ba,
+ addr,
+ dq,
+ dqs,
+ dqs_n,
+ tdqs_n,
+ odt
+);
+
+`include "dram_model/2048Mb_ddr3_parameters.vh"
+
+ initial begin
+ $display ("TCK_MIN = %d", TCK_MIN);
+`ifdef sg15E
+ $display ("sg15E = `sg15E");
+`endif
+
+`ifdef sg093 // sg093 is equivalent to the JEDEC DDR3-2133 (14-14-14) speed bin
+ $display ("sg093");
+`elsif sg15E
+ $display ("sg15E");
+`endif
+ end
+
+ parameter check_strict_mrbits = 1;
+ parameter check_strict_timing = 1;
+ parameter feature_pasr = 1;
+ parameter feature_truebl4 = 0;
+ parameter feature_odt_hi = 0;
+ parameter PERTCKAVG=TDLLK;
+
+ // text macros
+ `define DQ_PER_DQS DQ_BITS/DQS_BITS
+ `define BANKS (1<<BA_BITS)
+ `define MAX_BITS (BA_BITS+ROW_BITS+COL_BITS-BL_BITS)
+ `define MAX_SIZE (1<<(BA_BITS+ROW_BITS+COL_BITS-BL_BITS))
+ `define MEM_SIZE (1<<MEM_BITS)
+ `define MAX_PIPE 4*CL_MAX
+
+ // Declare Ports
+ input rst_n;
+ input ck;
+ input ck_n;
+ input cke;
+ input cs_n;
+ input ras_n;
+ input cas_n;
+ input we_n;
+ inout [DM_BITS-1:0] dm_tdqs;
+ input [BA_BITS-1:0] ba;
+ input [ADDR_BITS-1:0] addr;
+ inout [DQ_BITS-1:0] dq;
+ inout [DQS_BITS-1:0] dqs;
+ inout [DQS_BITS-1:0] dqs_n;
+ output [DQS_BITS-1:0] tdqs_n;
+ input odt;
+
+ // clock jitter
+ real tck_avg;
+ time tck_sample [PERTCKAVG-1:0];
+ time tch_sample [PERTCKAVG:0];
+ time tcl_sample [PERTCKAVG:0];
+ time tck_i;
+ time tch_i;
+ time tcl_i;
+ real tch_avg;
+ real tcl_avg;
+ time tm_ck_pos;
+ time tm_ck_neg;
+ real tjit_per_rtime;
+ integer tjit_cc_time;
+ real terr_nper_rtime;
+
+ //DDR3 clock jitter variables
+ real tjit_ch_rtime;
+ real duty_cycle;
+
+ // clock skew
+ integer out_delay;
+ integer dqsck [DQS_BITS-1:0];
+ integer dqsck_min;
+ integer dqsck_max;
+ integer dqsq_min;
+ integer dqsq_max;
+ integer seed;
+
+ // Mode Registers
+ reg [ADDR_BITS-1:0] mode_reg [`BANKS-1:0];
+ reg burst_order;
+ reg [BL_BITS:0] burst_length;
+ reg blotf;
+ reg truebl4;
+ integer cas_latency;
+ reg dll_reset;
+ reg dll_locked;
+ integer write_recovery;
+ reg low_power;
+ reg dll_en;
+ reg [2:0] odt_rtt_nom;
+ reg [1:0] odt_rtt_wr;
+ reg odt_en;
+ reg dyn_odt_en;
+ reg [1:0] al;
+ integer additive_latency;
+ reg write_levelization;
+ reg duty_cycle_corrector;
+ reg tdqs_en;
+ reg out_en;
+ reg [2:0] pasr;
+ integer cas_write_latency;
+ reg asr; // auto self refresh
+ reg srt; // self refresh temperature range
+ reg [1:0] mpr_select;
+ reg mpr_en;
+ reg odts_readout;
+ integer read_latency;
+ integer write_latency;
+
+ // cmd encoding
+ parameter // {cs, ras, cas, we}
+ LOAD_MODE = 4'b0000,
+ REFRESH = 4'b0001,
+ PRECHARGE = 4'b0010,
+ ACTIVATE = 4'b0011,
+ WRITE = 4'b0100,
+ READ = 4'b0101,
+ ZQ = 4'b0110,
+ NOP = 4'b0111,
+ // DESEL = 4'b1xxx,
+ PWR_DOWN = 4'b1000,
+ SELF_REF = 4'b1001
+ ;
+
+ reg [8*9-1:0] cmd_string [9:0];
+ initial begin
+ cmd_string[LOAD_MODE] = "Load Mode";
+ cmd_string[REFRESH ] = "Refresh ";
+ cmd_string[PRECHARGE] = "Precharge";
+ cmd_string[ACTIVATE ] = "Activate ";
+ cmd_string[WRITE ] = "Write ";
+ cmd_string[READ ] = "Read ";
+ cmd_string[ZQ ] = "ZQ ";
+ cmd_string[NOP ] = "No Op ";
+ cmd_string[PWR_DOWN ] = "Pwr Down ";
+ cmd_string[SELF_REF ] = "Self Ref ";
+ end
+
+ // command state
+ reg [`BANKS-1:0] active_bank;
+ reg [`BANKS-1:0] auto_precharge_bank;
+ reg [`BANKS-1:0] write_precharge_bank;
+ reg [`BANKS-1:0] read_precharge_bank;
+ reg [ROW_BITS-1:0] active_row [`BANKS-1:0];
+ reg in_power_down;
+ reg in_self_refresh;
+ reg [3:0] init_mode_reg;
+ reg init_dll_reset;
+ reg init_done;
+ integer init_step;
+ reg zq_set;
+ reg er_trfc_max;
+ reg odt_state;
+ reg odt_state_dly;
+ reg dyn_odt_state;
+ reg dyn_odt_state_dly;
+ reg prev_odt;
+ wire [7:0] calibration_pattern = 8'b10101010; // value returned during mpr pre-defined pattern readout
+ wire [7:0] temp_sensor = 8'h01; // value returned during mpr temp sensor readout
+ reg [1:0] mr_chk;
+ reg rd_bc;
+ integer banki;
+
+ // cmd timers/counters
+ integer ref_cntr;
+ integer odt_cntr;
+ integer ck_cntr;
+ integer ck_txpr;
+ integer ck_load_mode;
+ integer ck_refresh;
+ integer ck_precharge;
+ integer ck_activate;
+ integer ck_write;
+ integer ck_read;
+ integer ck_zqinit;
+ integer ck_zqoper;
+ integer ck_zqcs;
+ integer ck_power_down;
+ integer ck_slow_exit_pd;
+ integer ck_self_refresh;
+ integer ck_freq_change;
+ integer ck_odt;
+ integer ck_odth8;
+ integer ck_dll_reset;
+ integer ck_cke_cmd;
+ integer ck_bank_write [`BANKS-1:0];
+ integer ck_bank_read [`BANKS-1:0];
+ integer ck_group_activate [1:0];
+ integer ck_group_write [1:0];
+ integer ck_group_read [1:0];
+ time tm_txpr;
+ time tm_load_mode;
+ time tm_refresh;
+ time tm_precharge;
+ time tm_activate;
+ time tm_write_end;
+ time tm_power_down;
+ time tm_slow_exit_pd;
+ time tm_self_refresh;
+ time tm_freq_change;
+ time tm_cke_cmd;
+ time tm_ttsinit;
+ time tm_bank_precharge [`BANKS-1:0];
+ time tm_bank_activate [`BANKS-1:0];
+ time tm_bank_write_end [`BANKS-1:0];
+ time tm_bank_read_end [`BANKS-1:0];
+ time tm_group_activate [1:0];
+ time tm_group_write_end [1:0];
+
+ // pipelines
+ reg [`MAX_PIPE:0] al_pipeline;
+ reg [`MAX_PIPE:0] wr_pipeline;
+ reg [`MAX_PIPE:0] rd_pipeline;
+ reg [`MAX_PIPE:0] odt_pipeline;
+ reg [`MAX_PIPE:0] dyn_odt_pipeline;
+ reg [BL_BITS:0] bl_pipeline [`MAX_PIPE:0];
+ reg [BA_BITS-1:0] ba_pipeline [`MAX_PIPE:0];
+ reg [ROW_BITS-1:0] row_pipeline [`MAX_PIPE:0];
+ reg [COL_BITS-1:0] col_pipeline [`MAX_PIPE:0];
+ reg prev_cke;
+
+ reg [5:0] cmd_tran_index, cmd_tran_i;
+ reg [63:0] cmd_tran_pipeline;
+ reg [2:0] cmd_n_in_pipeline [63:0];
+ reg [BA_BITS-1:0] ba_in_pipeline [63:0];
+ reg [ADDR_BITS-1:0] addr_in_pipeline [63:0];
+
+ // data state
+ reg [BL_MAX*DQ_BITS-1:0] memory_data;
+ reg [BL_MAX*DQ_BITS-1:0] bit_mask;
+ reg [BL_BITS-1:0] burst_position;
+ reg [BL_BITS:0] burst_cntr;
+ reg [DQ_BITS-1:0] dq_temp;
+ reg [63:0] check_write_postamble;
+ reg [63:0] check_write_preamble;
+ reg [63:0] check_write_dqs_high;
+ reg [63:0] check_write_dqs_low;
+ reg [31:0] check_dm_tdipw;
+ reg [127:0] check_dq_tdipw;
+
+ // data timers/counters
+ time tm_rst_n;
+ time tm_cke;
+ time tm_odt;
+ time tm_tdqss;
+ time tm_dm [31:0];
+ time tm_dqs [31:0];
+ time tm_dqs_pos [63:0];
+ time tm_dqss_pos [63:0];
+ time tm_dqs_neg [63:0];
+ time tm_dq [127:0];
+ time tm_cmd_addr [23:0];
+ reg [8*7-1:0] cmd_addr_string [23:0];
+ initial begin
+ cmd_addr_string[ 0] = "CS_N ";
+ cmd_addr_string[ 1] = "RAS_N ";
+ cmd_addr_string[ 2] = "CAS_N ";
+ cmd_addr_string[ 3] = "WE_N ";
+ cmd_addr_string[ 4] = "BA 0 ";
+ cmd_addr_string[ 5] = "BA 1 ";
+ cmd_addr_string[ 6] = "BA 2 ";
+ cmd_addr_string[ 7] = "ADDR 0";
+ cmd_addr_string[ 8] = "ADDR 1";
+ cmd_addr_string[ 9] = "ADDR 2";
+ cmd_addr_string[10] = "ADDR 3";
+ cmd_addr_string[11] = "ADDR 4";
+ cmd_addr_string[12] = "ADDR 5";
+ cmd_addr_string[13] = "ADDR 6";
+ cmd_addr_string[14] = "ADDR 7";
+ cmd_addr_string[15] = "ADDR 8";
+ cmd_addr_string[16] = "ADDR 9";
+ cmd_addr_string[17] = "ADDR 10";
+ cmd_addr_string[18] = "ADDR 11";
+ cmd_addr_string[19] = "ADDR 12";
+ cmd_addr_string[20] = "ADDR 13";
+ cmd_addr_string[21] = "ADDR 14";
+ cmd_addr_string[22] = "ADDR 15";
+ cmd_addr_string[23] = "ADDR 16";
+ end
+
+ reg [8*5-1:0] dqs_string [1:0];
+ initial begin
+ dqs_string[0] = "DQS ";
+ dqs_string[1] = "DQS_N";
+ end
+
+ // Memory Storage
+`ifdef MAX_MEM
+ parameter RFF_BITS = DQ_BITS*BL_MAX;
+ // %z format uses 8 bytes for every 32 bits or less.
+ parameter RFF_CHUNK = 8 * (RFF_BITS/32 + (RFF_BITS%32 ? 1 : 0));
+ reg [1024:1] tmp_model_dir;
+ integer memfd[`BANKS-1:0];
+
+
+ initial
+ begin : file_io_open
+ reg [BA_BITS - 1 : 0] bank;
+ reg [ROW_BITS - 1 : 0] row;
+ reg [COL_BITS - 1 : 0] col;
+ reg [BA_BITS + ROW_BITS + COL_BITS - 1 : 0] addr;
+ reg [BL_MAX * DQ_BITS - 1 : 0] data;
+ //TODO: replace string and $fscanf
+// string char;
+ reg [127:0] char;
+ integer in, fio_status;
+ integer i;
+
+ if (!$value$plusargs("model_data+%s", tmp_model_dir))
+ begin
+ tmp_model_dir = "/tmp";
+ $display(
+ "%m: at time %t WARNING: no +model_data option specified, using /tmp.",
+ $time
+ );
+ end
+
+// for (integer i = 0; i < `BANKS; i = i + 1)
+ for ( i = 0; i < `BANKS; i = i + 1)
+ memfd[i] = open_bank_file(i);
+
+ // Preload section
+ `ifdef mem_init
+ in = $fopen("mem_init.txt","r");
+ while (! $feof(in)) begin
+ fio_status = $fscanf(in, "%h %s %h", addr, char, data); // TODO:replace
+ if (fio_status != -1) begin // Check for blank line or EOF
+ bank = addr [BA_BITS + ROW_BITS + COL_BITS - 1 : ROW_BITS + COL_BITS];
+ row = addr [ROW_BITS + COL_BITS - 1 : COL_BITS];
+ col = addr [COL_BITS - 1 : 0];
+ memory_write (bank, row, col, data);
+ // Next 4 lines are for debug only
+ $display ("MEMORY_WRITE: Bank = %h, Row = %h, Col = %h, Data = %h", bank, row, col, data);
+ data = 'hx; // This is to reset data to verify memory_read
+ memory_read(bank, row, col, data);
+ $display ("MEMORY_READ: Bank = %h, Row = %h, Col = %h, Data = %h", bank, row, col, data);
+ end
+ end
+ $fclose(in);
+ //$finish;
+ `endif
+ end
+`else
+ reg [BL_MAX*DQ_BITS-1:0] memory [0:`MEM_SIZE-1];
+ reg [`MAX_BITS-1:0] address [0:`MEM_SIZE-1];
+ reg [MEM_BITS:0] memory_index;
+ reg [MEM_BITS:0] memory_used = 0;
+`endif
+
+ // receive
+ reg rst_n_in;
+ reg ck_in;
+ reg ck_n_in;
+ reg cke_in;
+ reg cs_n_in;
+ reg ras_n_in;
+ reg cas_n_in;
+ reg we_n_in;
+ reg [31:0] dm_in;
+ reg [2:0] ba_in;
+ reg [16:0] addr_in;
+ reg [127:0] dq_in;
+ reg [63:0] dqs_in;
+ reg odt_in;
+
+ reg [31:0] dm_in_pos;
+ reg [31:0] dm_in_neg;
+ reg [127:0] dq_in_pos;
+ reg [127:0] dq_in_neg;
+ reg dq_in_valid;
+ reg dqs_in_valid;
+ integer wdqs_cntr;
+ integer wdq_cntr;
+ integer wdqs_pos_cntr [63:0];
+ reg b2b_write;
+ reg [BL_BITS:0] wr_burst_length;
+ reg [63:0] prev_dqs_in;
+ reg diff_ck;
+
+ always @(rst_n ) rst_n_in <= #BUS_DELAY rst_n;
+ always @(ck ) ck_in <= #BUS_DELAY ck;
+ always @(ck_n ) ck_n_in <= #BUS_DELAY ck_n;
+
+ always @(cke )
+ cke_in <= #BUS_DELAY cke;
+
+ always @(cs_n ) cs_n_in <= #BUS_DELAY cs_n;
+ always @(ras_n ) ras_n_in <= #BUS_DELAY ras_n;
+ always @(cas_n ) cas_n_in <= #BUS_DELAY cas_n;
+ always @(we_n ) we_n_in <= #BUS_DELAY we_n;
+ always @(dm_tdqs) dm_in <= #BUS_DELAY dm_tdqs;
+ always @(ba ) ba_in <= #BUS_DELAY ba;
+ always @(addr ) addr_in <= #BUS_DELAY addr;
+ always @(dq ) dq_in <= #BUS_DELAY dq;
+ always @(dqs or dqs_n) dqs_in <= #BUS_DELAY (dqs_n<<32) | dqs;
+ always @(odt ) if (!feature_odt_hi) odt_in <= #BUS_DELAY odt;
+ // create internal clock
+ always @(posedge ck_in) diff_ck <= ck_in;
+ always @(posedge ck_n_in) diff_ck <= ~ck_n_in;
+
+
+ wire [31:0] dqs_even = dqs_in[31:0];
+ wire [31:0] dqs_odd = dqs_in[63:32];
+
+ // wire [3:0] cmd_n_in = !cs_n_in ? {ras_n_in, cas_n_in, we_n_in} : NOP; //deselect = nop
+ reg [3:0] cmd_n_in;
+ always @(cs_n_in or ras_n_in or cas_n_in or we_n_in)
+ cmd_n_in = !cs_n_in ? {ras_n_in, cas_n_in, we_n_in} : NOP;
+
+ // transmit
+ reg dqs_out_en;
+ reg [DQS_BITS-1:0] dqs_out_en_dly;
+ reg dqs_out;
+ reg [DQS_BITS-1:0] dqs_out_dly;
+ reg dq_out_en;
+ reg [DQ_BITS-1:0] dq_out_en_dly;
+ reg [DQ_BITS-1:0] dq_out;
+ reg [DQ_BITS-1:0] dq_out_dly;
+ integer rdqsen_cntr;
+ integer rdqs_cntr;
+ integer rdqen_cntr;
+ integer rdq_cntr;
+
+`ifdef CVC
+ wire [DQS_BITS-1:0] dqs_in0 = dqs_out_dly;
+ wire [DQS_BITS-1:0] dqs_in1 = ~dqs_out_dly;
+ wire [DQ_BITS-1:0] dq_in2 = dq_out_dly;
+ wire [DQS_BITS-1:0] dqs_en0 = dqs_out_en_dly & {DQS_BITS{out_en}};
+ wire [DQS_BITS-1:0] dqs_en1 = dqs_out_en_dly & {DQS_BITS{out_en}};
+ wire [DQ_BITS-1:0] dq_en2 = dq_out_en_dly & {DQS_BITS{out_en}};
+ bufif1 buf_dqs [DQS_BITS-1:0] (dqs, dqs_in0 ,dqs_en0 );
+ bufif1 buf_dqs_n [DQS_BITS-1:0] (dqs_n, dqs_in1 ,dqs_en1 );
+ bufif1 buf_dq [DQ_BITS-1:0] (dq, dq_in2 , dq_en2 );
+`else
+ bufif1 buf_dqs [DQS_BITS-1:0] (dqs, dqs_out_dly, dqs_out_en_dly & {DQS_BITS{out_en} });
+ bufif1 buf_dqs_n [DQS_BITS-1:0] (dqs_n, ~dqs_out_dly, dqs_out_en_dly & {DQS_BITS{out_en} });
+ bufif1 buf_dq [DQ_BITS-1:0] (dq, dq_out_dly, dq_out_en_dly & {DQ_BITS {out_en} });
+`endif
+ assign tdqs_n = {DQS_BITS{1'bz}};
+
+ initial begin
+ if (BL_MAX < 2)
+ $display("%m ERROR: BL_MAX parameter must be >= 2. \nBL_MAX = %d", BL_MAX);
+ if ((1<<BO_BITS) > BL_MAX)
+ $display("%m ERROR: 2^BO_BITS cannot be greater than BL_MAX parameter.");
+`ifdef CVC
+ $timeformat (-12, 1, " ps", 10);
+`else
+ $timeformat (-12, 1, " ps", 1);
+`endif
+ seed = RANDOM_SEED;
+
+ ck_cntr = 0;
+ end
+
+ function integer get_rtt_wr;
+ input [1:0] rtt;
+ begin
+ get_rtt_wr = RZQ/{rtt[0], rtt[1], 1'b0};
+ end
+ endfunction
+
+ function integer get_rtt_nom;
+ input [2:0] rtt;
+ begin
+ case (rtt)
+ 1: get_rtt_nom = RZQ/4;
+ 2: get_rtt_nom = RZQ/2;
+ 3: get_rtt_nom = RZQ/6;
+ 4: get_rtt_nom = RZQ/12;
+ 5: get_rtt_nom = RZQ/8;
+ default : get_rtt_nom = 0;
+ endcase
+ end
+ endfunction
+
+ // calculate the absolute value of a real number
+ function real abs_value;
+ input arg;
+ real arg;
+ begin
+ if (arg < 0.0)
+ abs_value = -1.0 * arg;
+ else
+ abs_value = arg;
+ end
+ endfunction
+
+ function integer ceil;
+ input number;
+ real number;
+
+ // LMR 4.1.7
+ // When either operand of a relational expression is a real operand then the other operand shall be converted
+ // to an equivalent real value, and the expression shall be interpreted as a comparison between two real values.
+ if (number > $rtoi(number))
+ ceil = $rtoi(number) + 1;
+ else
+ ceil = number;
+ endfunction
+
+ function integer floor;
+ input number;
+ real number;
+
+ // LMR 4.1.7
+ // When either operand of a relational expression is a real operand then the other operand shall be converted
+ // to an equivalent real value, and the expression shall be interpreted as a comparison between two real values.
+ if (number < $rtoi(number))
+ floor = $rtoi(number) - 1;
+ else
+ floor = number;
+ endfunction
+
+ function integer max( input integer a, input integer b );
+ max = (a < b) ? b : a;
+ endfunction
+
+ function integer min( input integer a, input integer b );
+ min = (a > b) ? b : a;
+ endfunction
+
+`ifdef MAX_MEM
+
+ function integer open_bank_file( input integer bank );
+ integer fd;
+ reg [2048:1] filename;
+ begin
+ $sformat( filename, "%0s/%m.%0d", tmp_model_dir, bank );
+
+ fd = $fopen(filename, "wb+");
+ if (fd == 0)
+ begin
+ $display("%m: at time %0t ERROR: failed to open %0s.", $time, filename);
+ $finish;
+ end
+ else
+ begin
+ if (DEBUG) $display("%m: at time %0t INFO: opening %0s.", $time, filename);
+ open_bank_file = fd;
+ end
+
+ end
+ endfunction
+
+ function [RFF_BITS:1] read_from_file(
+ input integer fd,
+ input integer index
+ );
+ integer code;
+ integer offset;
+ reg [1024:1] msg;
+ reg [RFF_BITS:1] read_value;
+`ifdef CVC
+ reg [RFF_BITS*2+8:1] read_str;
+`endif
+
+ begin
+ offset = index * RFF_CHUNK;
+ code = $fseek( fd, offset, 0 );
+ // $fseek returns 0 on success, -1 on failure
+ if (code != 0)
+ begin
+ $display("%m: at time %t ERROR: fseek to %d failed index=%d ", $time, offset, index);
+// $finish;
+ end
+`ifdef CVC
+ code = $fgets(read_str, fd);
+ code = $sscanf(read_str, "%h", read_value);
+`else
+ code = $fscanf(fd, "%z", read_value);
+`endif
+ // $fscanf returns number of items read
+ if (code != 1)
+ begin
+ if ($ferror(fd,msg) != 0)
+ begin
+ $display("%m: at time %t ERROR: fscanf failed at %d", $time, index);
+ $display(msg);
+ $finish;
+ end
+ else
+ read_value = 'hx;
+ end
+
+ /* when reading from unwritten portions of the file, 0 will be returned.
+ * Use 0 in bit 1 as indicator that invalid data has been read.
+ * A true 0 is encoded as Z.
+ */
+`ifdef CVC
+ if (read_value[4:1] === 4'bzzzz)
+ // true 0 encoded as Z, data is valid
+ read_value[4:1] = 4'b0000;
+ else if (read_value[4:1] === 4'b0000)
+ // read from file section that has not been written
+ read_value = 'hx;
+`else
+ if (read_value[1] === 1'bz)
+ // true 0 encoded as Z, data is valid
+ read_value[1] = 1'b0;
+ else if (read_value[1] === 1'b0)
+ // read from file section that has not been written
+ read_value = 'hx;
+`endif
+
+ read_from_file = read_value;
+ end
+ endfunction
+/*
+ task write_to_file(
+ input integer fd,
+ input integer index,
+ input [RFF_BITS:1] data
+ );
+*/
+ task write_to_file;
+ input integer fd;
+ input integer index;
+ input [RFF_BITS:1] data;
+
+
+ integer code;
+ integer offset;
+
+ begin
+ offset = index * RFF_CHUNK;
+ code = $fseek( fd, offset, 0 );
+ if (code != 0)
+ begin
+ $display("%m: at time %t ERROR: fseek to %d failed", $time, offset);
+ $finish;
+ end
+
+`ifdef CVC
+ // encode a valid data
+ if (data[4:1] === 4'bzzzz)
+ data[4:1] = 4'bxxxx;
+ else if (data[4:1] === 4'b0000)
+ data[4:1] = 4'bzzzz;
+
+ $fwrite( fd, "%h", data );
+`else
+ // encode a valid data
+ if (data[1] === 1'bz)
+ data[1] = 1'bx;
+ else if (data[1] === 1'b0)
+ data[1] = 1'bz;
+
+ $fwrite( fd, "%z", data );
+`endif
+ end
+ endtask
+`else
+ function get_index;
+ input [`MAX_BITS-1:0] addr;
+ begin : index
+ get_index = 0;
+ for (memory_index=0; memory_index<memory_used; memory_index=memory_index+1) begin
+ if (address[memory_index] == addr) begin
+ get_index = 1;
+ disable index;
+ end
+ end
+ end
+ endfunction
+`endif
+
+ task memory_write;
+ input [BA_BITS-1:0] bank;
+ input [ROW_BITS-1:0] row;
+ input [COL_BITS-1:0] col;
+ input [BL_MAX*DQ_BITS-1:0] data;
+ reg [`MAX_BITS-1:0] addr;
+ begin
+`ifdef MAX_MEM
+ addr = {row, col}/BL_MAX;
+ write_to_file( memfd[bank], addr, data );
+`else
+ // chop off the lowest address bits
+ addr = {bank, row, col}/BL_MAX;
+ if (get_index(addr)) begin
+ address[memory_index] = addr;
+ memory[memory_index] = data;
+ end else if (memory_used == `MEM_SIZE) begin
+ $display ("%m: at time %t ERROR: Memory overflow. Write to Address %h with Data %h will be lost.\nYou must increase the MEM_BITS parameter or define MAX_MEM.", $time, addr, data);
+ if (STOP_ON_ERROR) $stop(0);
+ end else begin
+ address[memory_used] = addr;
+ memory[memory_used] = data;
+ memory_used = memory_used + 1;
+ end
+`endif
+ end
+ endtask
+
+ task memory_read;
+ input [BA_BITS-1:0] bank;
+ input [ROW_BITS-1:0] row;
+ input [COL_BITS-1:0] col;
+ output [BL_MAX*DQ_BITS-1:0] data;
+ reg [`MAX_BITS-1:0] addr;
+ begin
+`ifdef MAX_MEM
+ addr = {row, col}/BL_MAX;
+ data = read_from_file( memfd[bank], addr );
+`else
+ // chop off the lowest address bits
+ addr = {bank, row, col}/BL_MAX;
+ if (get_index(addr)) begin
+ data = memory[memory_index];
+ end else begin
+ data = {BL_MAX*DQ_BITS{1'bx}};
+ end
+`endif
+ end
+ endtask
+
+ task set_latency;
+ begin
+ if (al == 0) begin
+ additive_latency = 0;
+ end else begin
+ additive_latency = cas_latency - al;
+ end
+ if (dll_en)
+ read_latency = cas_latency + additive_latency;
+ else
+ read_latency = cas_latency + additive_latency - 1;
+ write_latency = cas_write_latency + additive_latency;
+ end
+ endtask
+
+ // this task will erase the contents of 0 or more banks
+ task erase_banks;
+ input [`BANKS-1:0] banks; //one select bit per bank
+ reg [BA_BITS-1:0] ba;
+ reg [`MAX_BITS-1:0] i;
+ integer bank;
+
+ begin
+
+`ifdef MAX_MEM
+ for (bank = 0; bank < `BANKS; bank = bank + 1)
+ if (banks[bank] === 1'b1) begin
+ $fclose(memfd[bank]);
+ memfd[bank] = open_bank_file(bank);
+ end
+`else
+ memory_index = 0;
+ i = 0;
+ // remove the selected banks
+ for (memory_index=0; memory_index<memory_used; memory_index=memory_index+1) begin
+ ba = (address[memory_index]>>(ROW_BITS+COL_BITS-BL_BITS));
+ if (!banks[ba]) begin //bank is selected to keep
+ address[i] = address[memory_index];
+ memory[i] = memory[memory_index];
+ i = i + 1;
+ end
+ end
+ // clean up the unused banks
+ for (memory_index=i; memory_index<memory_used; memory_index=memory_index+1) begin
+ address[memory_index] = 'bx;
+ memory[memory_index] = {8*DQ_BITS{1'bx}};
+ end
+ memory_used = i;
+`endif
+ end
+ endtask
+
+ // Before this task runs, the model must be in a valid state for precharge power down and out of reset.
+ // After this task runs, NOP commands must be issued until TZQINIT has been met
+ task initialize;
+ input [ADDR_BITS-1:0] mode_reg0;
+ input [ADDR_BITS-1:0] mode_reg1;
+ input [ADDR_BITS-1:0] mode_reg2;
+ input [ADDR_BITS-1:0] mode_reg3;
+ begin
+ if (DEBUG) $display ("%m: at time %t INFO: Performing Initialization Sequence", $time);
+ cmd_task(prev_cke, 1, NOP, 'bx, 'bx);
+ cmd_task(prev_cke, 1, ZQ, 'bx, 'h400); //ZQCL
+ cmd_task(prev_cke, 1, LOAD_MODE, 3, mode_reg3);
+ cmd_task(prev_cke, 1, LOAD_MODE, 2, mode_reg2);
+ cmd_task(prev_cke, 1, LOAD_MODE, 1, mode_reg1);
+ cmd_task(prev_cke, 1, LOAD_MODE, 0, mode_reg0 | 'h100); // DLL Reset
+ cmd_task(prev_cke, 0, NOP, 'bx, 'bx);
+ end
+ endtask
+
+ task reset_task;
+ integer i;
+ begin
+ // disable inputs
+ dq_in_valid = 0;
+ dqs_in_valid <= 0;
+ wdqs_cntr = 0;
+ wdq_cntr = 0;
+ for (i=0; i<64; i=i+1) begin
+ wdqs_pos_cntr[i] <= 0;
+ end
+ b2b_write <= 0;
+ // disable outputs
+ out_en = 0;
+ dq_out_en = 0;
+ rdq_cntr = 0;
+ dqs_out_en = 0;
+ rdqs_cntr = 0;
+ // disable ODT
+ odt_en = 0;
+ dyn_odt_en = 0;
+ odt_state = 0;
+ dyn_odt_state = 0;
+ // reset bank state
+ active_bank = 0;
+ auto_precharge_bank = 0;
+ read_precharge_bank = 0;
+ write_precharge_bank = 0;
+ // require initialization sequence
+
+ init_done = 0;
+ mpr_en = 0;
+ init_step = 0;
+ init_mode_reg = 0;
+ init_dll_reset = 0;
+ zq_set = 0;
+ // reset DLL
+ dll_en = 0;
+ dll_reset = 0;
+ dll_locked = 0;
+ // exit power down and self refresh
+ prev_cke = 1'bx;
+ in_power_down = 0;
+ in_self_refresh = 0;
+ // clear pipelines
+ al_pipeline = 0;
+ wr_pipeline = 0;
+ rd_pipeline = 0;
+ odt_pipeline = 0;
+ dyn_odt_pipeline = 0;
+ cmd_tran_pipeline = 0;
+ cmd_tran_index = 0;
+ end
+ endtask
+
+ parameter SAME_BANK = 2'd0; // same bank, same group
+ parameter DIFF_BANK = 2'd1; // different bank, same group
+ parameter DIFF_GROUP = 2'd2; // different bank, different group
+
+// Andrey: Additional parameters to reduce long required delays during simulation
+ parameter SIMUL_500US = 500;
+ parameter SIMUL_200US = 200;
+
+
+
+ task chk_err;
+ input [1:0] relationship;
+ input [BA_BITS-1:0] bank;
+ input [3:0] fromcmd;
+ input [3:0] cmd;
+ reg err;
+ begin
+// $display ("truebl4 = %d, relationship = %d, fromcmd = %h, cmd = %h", truebl4, relationship, fromcmd, cmd);
+ casex ({truebl4, relationship, fromcmd, cmd})
+ // load mode
+ {1'bx, DIFF_BANK , LOAD_MODE, LOAD_MODE} : begin if (ck_cntr - ck_load_mode < TMRD) $display ("%m: at time %t ERROR: tMRD violation during %s", $time, cmd_string[cmd]); end
+ {1'bx, DIFF_BANK , LOAD_MODE, READ } : begin if (($time - tm_load_mode < TMOD-TJIT_PER) || (ck_cntr - ck_load_mode < TMOD_TCK)) $display ("%m: at time %t ERROR: tMOD violation during %s", $time, cmd_string[cmd]); end
+ {1'bx, DIFF_BANK , LOAD_MODE, REFRESH } ,
+ {1'bx, DIFF_BANK , LOAD_MODE, PRECHARGE} ,
+ {1'bx, DIFF_BANK , LOAD_MODE, ACTIVATE } ,
+ {1'bx, DIFF_BANK , LOAD_MODE, ZQ } ,
+ {1'bx, DIFF_BANK , LOAD_MODE, PWR_DOWN } ,
+ {1'bx, DIFF_BANK , LOAD_MODE, SELF_REF } : begin if (($time - tm_load_mode < TMOD-TJIT_PER) || (ck_cntr - ck_load_mode < TMOD_TCK)) $display ("%m: at time %t ERROR: tMOD violation during %s", $time, cmd_string[cmd]); end
+
+ // refresh
+ {1'bx, DIFF_BANK , REFRESH , LOAD_MODE} ,
+ {1'bx, DIFF_BANK , REFRESH , REFRESH } ,
+ {1'bx, DIFF_BANK , REFRESH , PRECHARGE} ,
+ {1'bx, DIFF_BANK , REFRESH , ACTIVATE } ,
+ {1'bx, DIFF_BANK , REFRESH , ZQ } ,
+ {1'bx, DIFF_BANK , REFRESH , SELF_REF } : begin if ($time - tm_refresh < TRFC_MIN) $display ("%m: at time %t ERROR: tRFC violation during %s (%t < %t)", $time, cmd_string[cmd],$time - tm_refresh,TRFC_MIN); end
+ {1'bx, DIFF_BANK , REFRESH , PWR_DOWN } : begin if (ck_cntr - ck_refresh < TREFPDEN) $display ("%m: at time %t ERROR: tREFPDEN violation during %s", $time, cmd_string[cmd]); end
+
+ // precharge
+ {1'bx, SAME_BANK , PRECHARGE, ACTIVATE } : begin if ($time - tm_bank_precharge[bank] < TRP-TJIT_PER) $display ("%m: at time %t ERROR: tRP violation during %s to bank %d", $time, cmd_string[cmd], bank); end
+ {1'bx, DIFF_BANK , PRECHARGE, LOAD_MODE} ,
+ {1'bx, DIFF_BANK , PRECHARGE, REFRESH } ,
+ {1'bx, DIFF_BANK , PRECHARGE, SELF_REF } : begin if ($time - tm_precharge < TRP-TJIT_PER) $display ("%m: at time %t ERROR: tRP violation during %s", $time, cmd_string[cmd]); end
+ {1'bx, DIFF_BANK , PRECHARGE, ZQ } :
+ begin if ($time - tm_precharge < TRP) $display ("%m: at time %t ERROR: tRP violation during %s", $time, cmd_string[cmd]); end
+ {1'bx, DIFF_BANK , PRECHARGE, PWR_DOWN } : ; //tPREPDEN = 1 tCK, can be concurrent with auto precharge
+
+ // activate
+ {1'bx, SAME_BANK , ACTIVATE , PRECHARGE} : begin if ($time - tm_bank_activate[bank] > TRAS_MAX) $display ("%m: at time %t ERROR: tRAS maximum violation during %s to bank %d", $time, cmd_string[cmd], bank);
+ if ($time - tm_bank_activate[bank] < TRAS_MIN-TJIT_PER) $display ("%m: at time %t ERROR: tRAS minimum violation during %s to bank %d", $time, cmd_string[cmd], bank);end
+ {1'bx, SAME_BANK , ACTIVATE , ACTIVATE } : begin if ($time - tm_bank_activate[bank] < TRC-TJIT_PER) $display ("%m: at time %t ERROR: tRC violation during %s to bank %d", $time, cmd_string[cmd], bank); end
+ {1'bx, SAME_BANK , ACTIVATE , WRITE } ,
+ {1'bx, SAME_BANK , ACTIVATE , READ } : ; // tRCD is checked outside this task
+ {1'b0, DIFF_BANK , ACTIVATE , ACTIVATE } : begin if (($time - tm_activate < TRRD) || (ck_cntr - ck_activate < TRRD_TCK)) $display ("%m: at time %t ERROR: tRRD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
+ {1'b1, DIFF_BANK , ACTIVATE , ACTIVATE } : begin if (($time - tm_group_activate[bank[1]] < TRRD) || (ck_cntr - ck_group_activate[bank[1]] < TRRD_TCK)) $display ("%m: at time %t ERROR: tRRD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
+ {1'b1, DIFF_GROUP, ACTIVATE , ACTIVATE } : begin if (($time - tm_activate < TRRD_DG) || (ck_cntr - ck_activate < TRRD_DG_TCK)) $display ("%m: at time %t ERROR: tRRD_DG violation during %s to bank %d", $time, cmd_string[cmd], bank); end
+ {1'bx, DIFF_BANK , ACTIVATE , REFRESH } : begin if ($time - tm_activate < TRC-TJIT_PER) $display ("%m: at time %t ERROR: tRC violation during %s", $time, cmd_string[cmd]); end
+ {1'bx, DIFF_BANK , ACTIVATE , PWR_DOWN } : begin if (ck_cntr - ck_activate < TACTPDEN) $display ("%m: at time %t ERROR: tACTPDEN violation during %s", $time, cmd_string[cmd]); end
+
+ // write
+ {1'bx, SAME_BANK , WRITE , PRECHARGE} : begin if (($time - tm_bank_write_end[bank] < TWR-TJIT_PER) || (ck_cntr - ck_bank_write[bank] <= write_latency + burst_length/2)) $display ("%m: at time %t ERROR: tWR violation during %s to bank %d", $time, cmd_string[cmd], bank); end
+ {1'b0, DIFF_BANK , WRITE , WRITE } : begin if (ck_cntr - ck_write < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
+ {1'b1, DIFF_BANK , WRITE , WRITE } : begin if (ck_cntr - ck_group_write[bank[1]] < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
+ {1'b0, DIFF_BANK , WRITE , READ } : begin if (ck_cntr - ck_write < write_latency + burst_length/2 + TWTR_TCK - additive_latency) $display ("%m: at time %t ERROR: tWTR violation during %s to bank %d", $time, cmd_string[cmd], bank); end
+ {1'b1, DIFF_BANK , WRITE , READ } : begin if (ck_cntr - ck_group_write[bank[1]] < write_latency + burst_length/2 + TWTR_TCK - additive_latency) $display ("%m: at time %t ERROR: tWTR violation during %s to bank %d", $time, cmd_string[cmd], bank); end
+ {1'b1, DIFF_GROUP, WRITE , WRITE } : begin if (ck_cntr - ck_write < TCCD_DG) $display ("%m: at time %t ERROR: tCCD_DG violation during %s to bank %d", $time, cmd_string[cmd], bank); end
+ {1'b1, DIFF_GROUP, WRITE , READ } : begin if (ck_cntr - ck_write < write_latency + burst_length/2 + TWTR_DG_TCK - additive_latency) $display ("%m: at time %t ERROR: tWTR_DG violation during %s to bank %d", $time, cmd_string[cmd], bank); end
+ {1'bx, DIFF_BANK , WRITE , PWR_DOWN } : begin if (($time - tm_write_end < TWR-TJIT_PER) || (ck_cntr - ck_write < write_latency + burst_length/2)) $display ("%m: at time %t ERROR: tWRPDEN violation during %s", $time, cmd_string[cmd]); end
+
+ // read
+ {1'bx, SAME_BANK , READ , PRECHARGE} : begin if (($time - tm_bank_read_end[bank] < TRTP-TJIT_PER) || (ck_cntr - ck_bank_read[bank] < additive_latency + TRTP_TCK)) $display ("%m: at time %t ERROR: tRTP violation during %s to bank %d", $time, cmd_string[cmd], bank); end
+ {1'b0, DIFF_BANK , READ , WRITE } : ; // tRTW is checked outside this task
+ {1'b1, DIFF_BANK , READ , WRITE } : ; // tRTW is checked outside this task
+ {1'b0, DIFF_BANK , READ , READ } : begin if (ck_cntr - ck_read < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
+ {1'b1, DIFF_BANK , READ , READ } : begin if (ck_cntr - ck_group_read[bank[1]] < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
+ {1'b1, DIFF_GROUP, READ , WRITE } : ; // tRTW is checked outside this task
+ {1'b1, DIFF_GROUP, READ , READ } : begin if (ck_cntr - ck_read < TCCD_DG) $display ("%m: at time %t ERROR: tCCD_DG violation during %s to bank %d", $time, cmd_string[cmd], bank); end
+ {1'bx, DIFF_BANK , READ , PWR_DOWN } : begin if (ck_cntr - ck_read < read_latency + 5) $display ("%m: at time %t ERROR: tRDPDEN violation during %s", $time, cmd_string[cmd]); end
+
+ // zq
+ {1'bx, DIFF_BANK , ZQ , LOAD_MODE} : ; // 1 tCK
+ {1'bx, DIFF_BANK , ZQ , REFRESH } ,
+ {1'bx, DIFF_BANK , ZQ , PRECHARGE} ,
+ {1'bx, DIFF_BANK , ZQ , ACTIVATE } ,
+ {1'bx, DIFF_BANK , ZQ , ZQ } ,
+ {1'bx, DIFF_BANK , ZQ , PWR_DOWN } ,
+ {1'bx, DIFF_BANK , ZQ , SELF_REF } : begin if (ck_cntr - ck_zqinit < TZQINIT) $display ("%m: at time %t ERROR: tZQinit violation during %s", $time, cmd_string[cmd]);
+ if (ck_cntr - ck_zqoper < TZQOPER) $display ("%m: at time %t ERROR: tZQoper violation during %s", $time, cmd_string[cmd]);
+ if (ck_cntr - ck_zqcs < TZQCS) $display ("%m: at time %t ERROR: tZQCS violation during %s", $time, cmd_string[cmd]); end
+
+ // power down
+ {1'bx, DIFF_BANK , PWR_DOWN , LOAD_MODE} ,
+ {1'bx, DIFF_BANK , PWR_DOWN , REFRESH } ,
+ {1'bx, DIFF_BANK , PWR_DOWN , PRECHARGE} ,
+ {1'bx, DIFF_BANK , PWR_DOWN , ACTIVATE } ,
+ {1'bx, DIFF_BANK , PWR_DOWN , WRITE } ,
+ {1'bx, DIFF_BANK , PWR_DOWN , ZQ } : begin if (($time - tm_power_down < TXP) || (ck_cntr - ck_power_down < TXP_TCK)) $display ("%m: at time %t ERROR: tXP violation during %s", $time, cmd_string[cmd]); end
+ {1'bx, DIFF_BANK , PWR_DOWN , READ } : begin if (($time - tm_power_down < TXP) || (ck_cntr - ck_power_down < TXP_TCK)) $display ("%m: at time %t ERROR: tXP violation during %s", $time, cmd_string[cmd]);
+ else if (($time - tm_slow_exit_pd < TXPDLL) || (ck_cntr - ck_slow_exit_pd < TXPDLL_TCK)) $display ("%m: at time %t ERROR: tXPDLL violation during %s", $time, cmd_string[cmd]); end
+ {1'bx, DIFF_BANK , PWR_DOWN , PWR_DOWN } ,
+ {1'bx, DIFF_BANK , PWR_DOWN , SELF_REF } : begin if (($time - tm_power_down < TXP) || (ck_cntr - ck_power_down < TXP_TCK)) $display ("%m: at time %t ERROR: tXP violation during %s", $time, cmd_string[cmd]);
+ if ((tm_power_down > tm_refresh) && ($time - tm_refresh < TRFC_MIN)) $display ("%m: at time %t ERROR: tRFC violation during %s", $time, cmd_string[cmd]);
+ if ((tm_refresh > tm_power_down) && (($time - tm_power_down < TXPDLL) || (ck_cntr - ck_power_down < TXPDLL_TCK))) $display ("%m: at time %t ERROR: tXPDLL violation during %s", $time, cmd_string[cmd]);
+ if (($time - tm_cke_cmd < TCKE) || (ck_cntr - ck_cke_cmd < TCKE_TCK)) $display ("%m: at time %t ERROR: tCKE violation on CKE", $time); end
+
+ // self refresh
+ {1'bx, DIFF_BANK , SELF_REF , LOAD_MODE} ,
+ {1'bx, DIFF_BANK , SELF_REF , REFRESH } ,
+ {1'bx, DIFF_BANK , SELF_REF , PRECHARGE} ,
+ {1'bx, DIFF_BANK , SELF_REF , ACTIVATE } ,
+ {1'bx, DIFF_BANK , SELF_REF , WRITE } ,
+ {1'bx, DIFF_BANK , SELF_REF , ZQ } : begin if (($time - tm_self_refresh < TXS) || (ck_cntr - ck_self_refresh < TXS_TCK)) $display ("%m: at time %t ERROR: tXS violation during %s", $time, cmd_string[cmd]); end
+ {1'bx, DIFF_BANK , SELF_REF , READ } : begin if (ck_cntr - ck_self_refresh < TXSDLL) $display ("%m: at time %t ERROR: tXSDLL violation during %s", $time, cmd_string[cmd]); end
+ {1'bx, DIFF_BANK , SELF_REF , PWR_DOWN } ,
+ {1'bx, DIFF_BANK , SELF_REF , SELF_REF } : begin if (($time - tm_self_refresh < TXS) || (ck_cntr - ck_self_refresh < TXS_TCK)) $display ("%m: at time %t ERROR: tXS violation during %s", $time, cmd_string[cmd]);
+ if (($time - tm_cke_cmd < TCKE) || (ck_cntr - ck_cke_cmd < TCKE_TCK)) $display ("%m: at time %t ERROR: tCKE violation on CKE", $time); end
+ endcase
+ end
+ endtask
+
+ task cmd_task;
+ inout prev_cke;
+ input cke;
+ input [2:0] cmd;
+ input [BA_BITS-1:0] bank;
+ input [ADDR_BITS-1:0] addr;
+ reg [`BANKS:0] i;
+ integer j;
+ reg [`BANKS:0] tfaw_cntr;
+ reg [COL_BITS-1:0] col;
+ reg group;
+ begin
+ // tRFC max check
+ if (!er_trfc_max && !in_self_refresh) begin
+ if ($time - tm_refresh > TRFC_MAX && check_strict_timing) begin
+ $display ("%m: at time %t ERROR: tRFC maximum violation during %s", $time, cmd_string[cmd]);
+ er_trfc_max = 1;
+ end
+ end
+ if (cke) begin
+ if ((cmd < NOP) && (cmd != PRECHARGE)) begin
+ if (($time - tm_txpr < TXPR) || (ck_cntr - ck_txpr < TXPR_TCK))
+ $display ("%m: at time %t ERROR: tXPR violation during %s", $time, cmd_string[cmd]);
+ for (j=0; j<=SELF_REF; j=j+1) begin
+ chk_err(SAME_BANK , bank, j, cmd);
+ chk_err(DIFF_BANK , bank, j, cmd);
+ chk_err(DIFF_GROUP, bank, j, cmd);
+ end
+ end
+ case (cmd)
+ LOAD_MODE : begin
+ if (|odt_pipeline)
+ $display ("%m: at time %t ERROR: ODTL violation during %s", $time, cmd_string[cmd]);
+ if (odt_state && !feature_odt_hi)
+ $display ("%m: at time %t ERROR: ODT must be off prior to %s", $time, cmd_string[cmd]);
+
+ if (|active_bank) begin
+ $display ("%m: at time %t ERROR: %s Failure. All banks must be Precharged.", $time, cmd_string[cmd]);
+ if (STOP_ON_ERROR) $stop(0);
+ end else begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d", $time, cmd_string[cmd], bank);
+ if (bank>>2) begin
+ $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved bank bits must be programmed to zero", $time, cmd_string[cmd], bank);
+ end
+ case (bank)
+ 0 : begin
+ // Burst Length
+ if (addr[1:0] == 2'b00) begin
+ burst_length = 8;
+ blotf = 0;
+ truebl4 = 0;
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Length = %d", $time, cmd_string[cmd], bank, burst_length);
+ end else if (addr[1:0] == 2'b01) begin
+ burst_length = 8;
+ blotf = 1;
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Length = Select via A12", $time, cmd_string[cmd], bank);
+ end else if (addr[1:0] == 2'b10) begin
+ burst_length = 4;
+ blotf = 0;
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Length = Fixed %d (chop)", $time, cmd_string[cmd], bank, burst_length);
+ end else begin
+ $display ("%m: at time %t ERROR: %s %d Illegal Burst Length = %d", $time, cmd_string[cmd], bank, addr[1:0]);
+ end
+ // Burst Order
+ burst_order = addr[3];
+ if (!burst_order) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Order = Sequential", $time, cmd_string[cmd], bank);
+ end else if (burst_order) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Order = Interleaved", $time, cmd_string[cmd], bank);
+ end else begin
+ $display ("%m: at time %t ERROR: %s %d Illegal Burst Order = %d", $time, cmd_string[cmd], bank, burst_order);
+ end
+ // CAS Latency
+ cas_latency = {addr[2],addr[6:4]} + 4;
+ set_latency;
+ if ((cas_latency >= CL_MIN) && (cas_latency <= CL_MAX)) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d CAS Latency = %d", $time, cmd_string[cmd], bank, cas_latency);
+ end else begin
+ $display ("%m: at time %t ERROR: %s %d Illegal CAS Latency = %d", $time, cmd_string[cmd], bank, cas_latency);
+ end
+ // Reserved
+ if (addr[7] !== 0 && check_strict_mrbits) begin
+ $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
+ end
+ // DLL Reset
+ dll_reset = addr[8];
+ if (!dll_reset) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Reset = Normal", $time, cmd_string[cmd], bank);
+ end else if (dll_reset) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Reset = Reset DLL", $time, cmd_string[cmd], bank);
+ dll_locked = 0;
+ init_dll_reset = 1;
+ ck_dll_reset <= ck_cntr;
+ end else begin
+ $display ("%m: at time %t ERROR: %s %d Illegal DLL Reset = %d", $time, cmd_string[cmd], bank, dll_reset);
+ end
+
+ // Write Recovery
+ if (addr[11:9] == 0) begin
+ write_recovery = 16;
+ end else if (addr[11:9] < 4) begin
+ write_recovery = addr[11:9] + 4;
+ end else begin
+ write_recovery = 2*addr[11:9];
+ end
+
+ if ((write_recovery >= WR_MIN) && (write_recovery <= WR_MAX)) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Write Recovery = %d", $time, cmd_string[cmd], bank, write_recovery);
+ end else begin
+ $display ("%m: at time %t ERROR: %s %d Illegal Write Recovery = %d", $time, cmd_string[cmd], bank, write_recovery);
+ end
+ // Power Down Mode
+ low_power = !addr[12];
+ if (!low_power) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Power Down Mode = DLL on", $time, cmd_string[cmd], bank);
+ end else if (low_power) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Power Down Mode = DLL off", $time, cmd_string[cmd], bank);
+ end else begin
+ $display ("%m: at time %t ERROR: %s %d Illegal Power Down Mode = %d", $time, cmd_string[cmd], bank, low_power);
+ end
+ // Reserved
+ if (ADDR_BITS>13 && addr[13] !== 0 && check_strict_mrbits) begin
+ $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
+ end
+ end
+ 1 : begin
+ // DLL Enable
+ dll_en = !addr[0];
+ if (!dll_en) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Enable = Disabled", $time, cmd_string[cmd], bank);
+ if (check_strict_mrbits) $display ("%m: at time %t WARNING: %s %d DLL off mode is not fully modeled", $time, cmd_string[cmd], bank);
+ end else if (dll_en) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Enable = Enabled", $time, cmd_string[cmd], bank);
+ end else begin
+ $display ("%m: at time %t ERROR: %s %d Illegal DLL Enable = %d", $time, cmd_string[cmd], bank, dll_en);
+ end
+ // Output Drive Strength
+ if ({addr[5], addr[1]} == 2'b00) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Drive Strength = %d Ohm", $time, cmd_string[cmd], bank, RZQ/6);
+ end else if ({addr[5], addr[1]} == 2'b01) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Drive Strength = %d Ohm", $time, cmd_string[cmd], bank, RZQ/7);
+ end else if ({addr[5], addr[1]} == 2'b11) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Drive Strength = %d Ohm", $time, cmd_string[cmd], bank, RZQ/5);
+ end else begin
+ $display ("%m: at time %t ERROR: %s %d Illegal Output Drive Strength = %d", $time, cmd_string[cmd], bank, {addr[5], addr[1]});
+ end
+ // ODT Rtt (Rtt_NOM)
+ odt_rtt_nom = {addr[9], addr[6], addr[2]};
+ if (odt_rtt_nom == 3'b000) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d ODT Rtt = Disabled", $time, cmd_string[cmd], bank);
+ odt_en = 0;
+ end else if ((odt_rtt_nom < 4) || ((!addr[7] || (addr[7] && addr[12])) && (odt_rtt_nom < 6))) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d ODT Rtt = %d Ohm", $time, cmd_string[cmd], bank, get_rtt_nom(odt_rtt_nom));
+ odt_en = 1;
+ end else begin
+ $display ("%m: at time %t ERROR: %s %d Illegal ODT Rtt = %d", $time, cmd_string[cmd], bank, odt_rtt_nom);
+ odt_en = 0;
+ end
+ // Report the additive latency value
+ al = addr[4:3];
+ set_latency;
+ if (al == 0) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Additive Latency = %d", $time, cmd_string[cmd], bank, al);
+ end else if ((al >= AL_MIN) && (al <= AL_MAX)) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Additive Latency = CL - %d", $time, cmd_string[cmd], bank, al);
+ end else begin
+ $display ("%m: at time %t ERROR: %s %d Illegal Additive Latency = %d", $time, cmd_string[cmd], bank, al);
+ end
+ // Write Levelization
+ write_levelization = addr[7];
+ if (!write_levelization) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Write Levelization = Disabled", $time, cmd_string[cmd], bank);
+ end else if (write_levelization) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Write Levelization = Enabled", $time, cmd_string[cmd], bank);
+ end else begin
+ $display ("%m: at time %t ERROR: %s %d Illegal Write Levelization = %d", $time, cmd_string[cmd], bank, write_levelization);
+ end
+ // Reserved
+ if (addr[8] !== 0 && check_strict_mrbits) begin
+ $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
+ end
+ // Reserved
+ if (addr[10] !== 0 && check_strict_mrbits) begin
+ $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
+ end
+ // TDQS Enable
+ tdqs_en = addr[11];
+ if (!tdqs_en) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d TDQS Enable = Disabled", $time, cmd_string[cmd], bank);
+ end else if (tdqs_en) begin
+ if (8 == DQ_BITS) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d TDQS Enable = Enabled", $time, cmd_string[cmd], bank);
+ end
+ else begin
+ $display ("%m: at time %t WARNING: %s %d Illegal TDQS Enable. TDQS only exists on a x8 part", $time, cmd_string[cmd], bank);
+ tdqs_en = 0;
+ end
+ end else begin
+ $display ("%m: at time %t ERROR: %s %d Illegal TDQS Enable = %d", $time, cmd_string[cmd], bank, tdqs_en);
+ end
+ // Output Enable
+ out_en = !addr[12];
+ if (!out_en) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Qoff = Disabled", $time, cmd_string[cmd], bank);
+ end else if (out_en) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Qoff = Enabled", $time, cmd_string[cmd], bank);
+ end else begin
+ $display ("%m: at time %t ERROR: %s %d Illegal Qoff = %d", $time, cmd_string[cmd], bank, out_en);
+ end
+ // Reserved
+ if (ADDR_BITS>13 && addr[13] !== 0 && check_strict_mrbits) begin
+ $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
+ end
+ end
+ 2 : begin
+ if (feature_pasr) begin
+ // Partial Array Self Refresh
+ pasr = addr[2:0];
+ case (pasr)
+ 3'b000 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 0-7", $time, cmd_string[cmd], bank);
+ 3'b001 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 0-3", $time, cmd_string[cmd], bank);
+ 3'b010 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 0-1", $time, cmd_string[cmd], bank);
+ 3'b011 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 0", $time, cmd_string[cmd], bank);
+ 3'b100 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 2-7", $time, cmd_string[cmd], bank);
+ 3'b101 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 4-7", $time, cmd_string[cmd], bank);
+ 3'b110 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 6-7", $time, cmd_string[cmd], bank);
+ 3'b111 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 7", $time, cmd_string[cmd], bank);
+ default : $display ("%m: at time %t ERROR: %s %d Illegal Partial Array Self Refresh = %d", $time, cmd_string[cmd], bank, pasr);
+ endcase
+ end
+ else
+ if (addr[2:0] !== 0 && check_strict_mrbits) begin
+ $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
+ end
+ // CAS Write Latency
+ cas_write_latency = addr[5:3]+5;
+ set_latency;
+ if ((cas_write_latency >= CWL_MIN) && (cas_write_latency <= CWL_MAX)) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d CAS Write Latency = %d", $time, cmd_string[cmd], bank, cas_write_latency);
+ end else begin
+ $display ("%m: at time %t ERROR: %s %d Illegal CAS Write Latency = %d", $time, cmd_string[cmd], bank, cas_write_latency);
+ end
+ // Auto Self Refresh Method
+ asr = addr[6];
+ if (!asr) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Auto Self Refresh = Disabled", $time, cmd_string[cmd], bank);
+ end else if (asr) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Auto Self Refresh = Enabled", $time, cmd_string[cmd], bank);
+ if (check_strict_mrbits) $display ("%m: at time %t WARNING: %s %d Auto Self Refresh is not modeled", $time, cmd_string[cmd], bank);
+ end else begin
+ $display ("%m: at time %t ERROR: %s %d Illegal Auto Self Refresh = %d", $time, cmd_string[cmd], bank, asr);
+ end
+ // Self Refresh Temperature
+ srt = addr[7];
+ if (!srt) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Self Refresh Temperature = Normal", $time, cmd_string[cmd], bank);
+ end else if (srt) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Self Refresh Temperature = Extended", $time, cmd_string[cmd], bank);
+ if (check_strict_mrbits) $display ("%m: at time %t WARNING: %s %d Self Refresh Temperature is not modeled", $time, cmd_string[cmd], bank);
+ end else begin
+ $display ("%m: at time %t ERROR: %s %d Illegal Self Refresh Temperature = %d", $time, cmd_string[cmd], bank, srt);
+ end
+ if (asr && srt)
+ $display ("%m: at time %t ERROR: %s %d SRT must be set to 0 when ASR is enabled.", $time, cmd_string[cmd], bank);
+ // Reserved
+ if (addr[8] !== 0 && check_strict_mrbits) begin
+ $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
+ end
+ // Dynamic ODT (Rtt_WR)
+ odt_rtt_wr = addr[10:9];
+ if (odt_rtt_wr == 2'b00) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Dynamic ODT = Disabled", $time, cmd_string[cmd], bank);
+ dyn_odt_en = 0;
+ end else if ((odt_rtt_wr > 0) && (odt_rtt_wr < 3)) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d Dynamic ODT Rtt = %d Ohm", $time, cmd_string[cmd], bank, get_rtt_wr(odt_rtt_wr));
+ dyn_odt_en = 1;
+ end else begin
+ $display ("%m: at time %t ERROR: %s %d Illegal Dynamic ODT = %d", $time, cmd_string[cmd], bank, odt_rtt_wr);
+ dyn_odt_en = 0;
+ end
+ // Reserved
+ if (ADDR_BITS>13 && addr[13:11] !== 0 && check_strict_mrbits) begin
+ $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
+ end
+ end
+ 3 : begin
+ mpr_select = addr[1:0];
+ // MultiPurpose Register Select
+ if (mpr_select == 2'b00) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d MultiPurpose Register Select = Pre-defined pattern", $time, cmd_string[cmd], bank);
+ end else begin
+ if (check_strict_mrbits) $display ("%m: at time %t ERROR: %s %d Illegal MultiPurpose Register Select = %d", $time, cmd_string[cmd], bank, mpr_select);
+ end
+ // MultiPurpose Register Enable
+ mpr_en = addr[2];
+ if (!mpr_en) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d MultiPurpose Register Enable = Disabled", $time, cmd_string[cmd], bank);
+ end else if (mpr_en) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s %d MultiPurpose Register Enable = Enabled", $time, cmd_string[cmd], bank);
+ end else begin
+ $display ("%m: at time %t ERROR: %s %d Illegal MultiPurpose Register Enable = %d", $time, cmd_string[cmd], bank, mpr_en);
+ end
+
+ if (feature_truebl4 && (addr[11] == 1'b1)) begin
+ if (addr[11] == 1'b1) begin
+ truebl4 = 1;
+ $display(" EMRS3 Set True Bl4 mode only ");
+ end
+ end
+
+ // Reserved
+ if (ADDR_BITS>13 && addr[13:3] !== 0 && check_strict_mrbits) begin
+ $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
+ end
+ end
+ endcase
+ if (dyn_odt_en && write_levelization)
+ $display ("%m: at time %t ERROR: Dynamic ODT is not available during Write Leveling mode.", $time);
+ init_mode_reg[bank] = 1;
+ mode_reg[bank] = addr;
+ // dll_reset bit self clear
+ if(bank==0 && addr[8]==1'b1)
+ mode_reg[0][8] <= #($rtoi(tck_avg)) 1'b0;
+ tm_load_mode <= $time;
+ ck_load_mode <= ck_cntr;
+ end
+ end
+ REFRESH : begin
+ if (mpr_en) begin
+ $display ("%m: at time %t ERROR: %s Failure. Multipurpose Register must be disabled.", $time, cmd_string[cmd]);
+ if (STOP_ON_ERROR) $stop(0);
+ end else if (|active_bank) begin
+ $display ("%m: at time %t ERROR: %s Failure. All banks must be Precharged.", $time, cmd_string[cmd]);
+ if (STOP_ON_ERROR) $stop(0);
+ end else begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s", $time, cmd_string[cmd]);
+ er_trfc_max = 0;
+ ref_cntr = ref_cntr + 1;
+ tm_refresh <= $time;
+ ck_refresh <= ck_cntr;
+ end
+ end
+ PRECHARGE : begin
+ if (addr[AP]) begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s All", $time, cmd_string[cmd]);
+ end
+ // PRECHARGE command will be treated as a NOP if there is no open row in that bank (idle state),
+ // or if the previously open row is already in the process of precharging
+ if (|active_bank) begin
+ if (($time - tm_txpr < TXPR) || (ck_cntr - ck_txpr < TXPR_TCK))
+ $display ("%m: at time %t ERROR: tXPR violation during %s", $time, cmd_string[cmd]);
+ if (mpr_en) begin
+ $display ("%m: at time %t ERROR: %s Failure. Multipurpose Register must be disabled.", $time, cmd_string[cmd]);
+ if (STOP_ON_ERROR) $stop(0);
+ end else begin
+ for (i=0; i<`BANKS; i=i+1) begin
+ if (active_bank[i]) begin
+ if (addr[AP] || (i == bank)) begin
+
+ for (j=0; j<=SELF_REF; j=j+1) begin
+ chk_err(SAME_BANK, i, j, cmd);
+ chk_err(DIFF_BANK, i, j, cmd);
+ end
+
+ if (auto_precharge_bank[i]) begin
+ $display ("%m: at time %t ERROR: %s Failure. Auto Precharge is scheduled to bank %d.", $time, cmd_string[cmd], i);
+ if (STOP_ON_ERROR) $stop(0);
+ end else begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s bank %d", $time, cmd_string[cmd], i);
+ active_bank[i] = 1'b0;
+ tm_bank_precharge[i] <= $time;
+ tm_precharge <= $time;
+ ck_precharge <= ck_cntr;
+ end
+ end
+ end
+ end
+ end
+ end // if (|active_bank)
+ else begin
+ chk_err(DIFF_BANK, 0, REFRESH, PRECHARGE);
+ end
+ end
+ ACTIVATE : begin
+ tfaw_cntr = 0;
+ for (i=0; i<`BANKS; i=i+1) begin
+ if ($time - tm_bank_activate[i] < TFAW) begin
+ tfaw_cntr = tfaw_cntr + 1;
+ end
+ end
+ if (tfaw_cntr > 3) begin
+ $display ("%m: at time %t ERROR: tFAW violation during %s to bank %d", $time, cmd_string[cmd], bank);
+ end
+
+ if (mpr_en) begin
+ $display ("%m: at time %t ERROR: %s Failure. Multipurpose Register must be disabled.", $time, cmd_string[cmd]);
+ if (STOP_ON_ERROR) $stop(0);
+ end else if (!init_done) begin
+ $display ("%m: at time %t ERROR: %s Failure. Initialization sequence is not complete.", $time, cmd_string[cmd]);
+ if (STOP_ON_ERROR) $stop(0);
+ end else if (active_bank[bank]) begin
+ $display ("%m: at time %t ERROR: %s Failure. Bank %d must be Precharged.", $time, cmd_string[cmd], bank);
+ if (STOP_ON_ERROR) $stop(0);
+ end else begin
+ if (addr >= 1<<ROW_BITS) begin
+ $display ("%m: at time %t WARNING: row = %h does not exist. Maximum row = %h", $time, addr, (1<<ROW_BITS)-1);
+ end
+ if (DEBUG) $display ("%m: at time %t INFO: %s bank %d row %h", $time, cmd_string[cmd], bank, addr);
+ active_bank[bank] = 1'b1;
+ active_row[bank] = addr;
+ tm_group_activate[bank[1]] <= $time;
+ tm_activate <= $time;
+ tm_bank_activate[bank] <= $time;
+ ck_group_activate[bank[1]] <= ck_cntr;
+ ck_activate <= ck_cntr;
+ end
+ end
+ WRITE : begin
+ if ((!rd_bc && blotf) || (burst_length == 4)) begin // BL=4
+ if (truebl4) begin
+ if (ck_cntr - ck_group_read[bank[1]] < read_latency + TCCD/2 + 2 - write_latency)
+ $display ("%m: at time %t ERROR: tRTW violation during %s to bank %d", $time, cmd_string[cmd], bank);
+ if (ck_cntr - ck_read < read_latency + TCCD_DG/2 + 2 - write_latency)
+ $display ("%m: at time %t ERROR: tRTW_DG violation during %s to bank %d", $time, cmd_string[cmd], bank);
+ end else begin
+ if (ck_cntr - ck_read < read_latency + TCCD/2 + 2 - write_latency)
+ $display ("%m: at time %t ERROR: tRTW violation during %s to bank %d", $time, cmd_string[cmd], bank);
+ end
+ end else begin // BL=8
+ if (ck_cntr - ck_read < read_latency + TCCD + 2 - write_latency)
+ $display ("%m: at time %t ERROR: tRTW violation during %s to bank %d", $time, cmd_string[cmd], bank);
+ end
+
+ if (mpr_en) begin
+ $display ("%m: at time %t ERROR: %s Failure. Multipurpose Register must be disabled.", $time, cmd_string[cmd]);
+ if (STOP_ON_ERROR) $stop(0);
+ end else if (!init_done) begin
+ $display ("%m: at time %t ERROR: %s Failure. Initialization sequence is not complete.", $time, cmd_string[cmd]);
+ if (STOP_ON_ERROR) $stop(0);
+ end else if (!active_bank[bank]) begin
+ if (check_strict_timing) $display ("%m: at time %t ERROR: %s Failure. Bank %d must be Activated.", $time, cmd_string[cmd], bank);
+ if (STOP_ON_ERROR) $stop(0);
+ end else if (auto_precharge_bank[bank]) begin
+ $display ("%m: at time %t ERROR: %s Failure. Auto Precharge is scheduled to bank %d.", $time, cmd_string[cmd], bank);
+ if (STOP_ON_ERROR) $stop(0);
+ end else if ((ck_cntr - ck_write < burst_length/2) && (truebl4 == 0)) begin
+ $display ("%m: at time %t ERROR: %s Failure. Illegal burst interruption.", $time, cmd_string[cmd]);
+ if (STOP_ON_ERROR) $stop(0);
+ end else begin
+ if (addr[AP]) begin
+ auto_precharge_bank[bank] = 1'b1;
+ write_precharge_bank[bank] = 1'b1;
+ end
+`ifdef CA14PLUS
+ col = {addr[COL_BITS-1:BC+1], addr[BC-1:AP+1], addr[AP-1:0]}; // assume BC > AP
+`else
+ col = {addr[BC-1:AP+1], addr[AP-1:0]}; // assume BC > AP
+`endif
+ if (col >= 1<<COL_BITS) begin
+ $display ("%m: at time %t WARNING: col = %h does not exist. Maximum col = %h", $time, col, (1<<COL_BITS)-1);
+ end
+ if ((!addr[BC] && blotf) || (burst_length == 4)) begin // BL=4
+ col = col & -4;
+ end else begin // BL=8
+ col = col & -8;
+ end
+ if (DEBUG) $display ("%m: at time %t INFO: %s bank %d col %h, auto precharge %d", $time, cmd_string[cmd], bank, col, addr[AP]);
+ wr_pipeline[2*write_latency + 1] = 1;
+ ba_pipeline[2*write_latency + 1] = bank;
+ row_pipeline[2*write_latency + 1] = active_row[bank];
+ col_pipeline[2*write_latency + 1] = col;
+ if ((!addr[BC] && blotf) || (burst_length == 4)) begin // BL=4
+ bl_pipeline[2*write_latency + 1] = 4;
+ if (mpr_en && col%4) begin
+ $display ("%m: at time %t WARNING: col[1:0] must be set to 2'b00 during a BL4 Multipurpose Register read", $time);
+ end
+ end else begin // BL=8
+ bl_pipeline[2*write_latency + 1] = 8;
+ if (odt_in) begin
+ ck_odth8 <= ck_cntr;
+ end
+ end
+ for (j=0; j<(bl_pipeline[2*write_latency + 1] + 4); j=j+1) begin
+ dyn_odt_pipeline[2*(write_latency - 2) + j] = 1'b1; // ODTLcnw = WL - 2, ODTLcwn = BL/2 + 2
+ end
+ ck_bank_write[bank] <= ck_cntr;
+ ck_group_write[bank[1]] <= ck_cntr;
+ ck_write <= ck_cntr;
+ end
+ end
+ READ : begin
+ if (!dll_locked)
+ $display ("%m: at time %t WARNING: tDLLK violation during %s.", $time, cmd_string[cmd]);
+ if (mpr_en && (addr[1:0] != 2'b00)) begin
+ $display ("%m: at time %t ERROR: %s Failure. addr[1:0] must be zero during Multipurpose Register Read.", $time, cmd_string[cmd]);
+ if (STOP_ON_ERROR) $stop(0);
+ end else if (!init_done) begin
+ $display ("%m: at time %t ERROR: %s Failure. Initialization sequence is not complete.", $time, cmd_string[cmd]);
+ if (STOP_ON_ERROR) $stop(0);
+ end else if (!active_bank[bank] && !mpr_en) begin
+ if (check_strict_timing) $display ("%m: at time %t ERROR: %s Failure. Bank %d must be Activated.", $time, cmd_string[cmd], bank);
+ if (STOP_ON_ERROR) $stop(0);
+ end else if (auto_precharge_bank[bank]) begin
+ $display ("%m: at time %t ERROR: %s Failure. Auto Precharge is scheduled to bank %d.", $time, cmd_string[cmd], bank);
+ if (STOP_ON_ERROR) $stop(0);
+ end else if ((ck_cntr - ck_read < burst_length/2) && (truebl4 == 0)) begin
+ $display ("%m: at time %t ERROR: %s Failure. Illegal burst interruption.", $time, cmd_string[cmd]);
+ if (STOP_ON_ERROR) $stop(0);
+ end else begin
+ if (addr[AP] && !mpr_en) begin
+ auto_precharge_bank[bank] = 1'b1;
+ read_precharge_bank[bank] = 1'b1;
+ end
+`ifdef CA14PLUS
+ col = {addr[COL_BITS-1:BC+1], addr[BC-1:AP+1], addr[AP-1:0]}; // assume BC > AP
+`else
+ col = {addr[BC-1:AP+1], addr[AP-1:0]}; // assume BC > AP
+`endif
+ if (col >= 1<<COL_BITS) begin
+ $display ("%m: at time %t WARNING: col = %h does not exist. Maximum col = %h", $time, col, (1<<COL_BITS)-1);
+ end
+ if (DEBUG) $display ("%m: at time %t INFO: %s bank %d col %h, auto precharge %d", $time, cmd_string[cmd], bank, col, addr[AP]);
+ rd_pipeline[2*read_latency - 1] = 1;
+ ba_pipeline[2*read_latency - 1] = bank;
+ row_pipeline[2*read_latency - 1] = active_row[bank];
+ col_pipeline[2*read_latency - 1] = col;
+ if ((!addr[BC] && blotf) || (burst_length == 4)) begin // BL=4
+ bl_pipeline[2*read_latency - 1] = 4;
+ if (mpr_en && col%4) begin
+ $display ("%m: at time %t WARNING: col[1:0] must be set to 2'b00 during a BL4 Multipurpose Register read", $time);
+ end
+ end else begin // BL=8
+ bl_pipeline[2*read_latency - 1] = 8;
+ if (mpr_en && col%8) begin
+ $display ("%m: at time %t WARNING: col[2:0] must be set to 3'b000 during a BL8 Multipurpose Register read", $time);
+ end
+ end
+ rd_bc = addr[BC];
+ ck_bank_read[bank] <= ck_cntr;
+ ck_group_read[bank[1]] <= ck_cntr;
+ ck_read <= ck_cntr;
+ end
+ end
+ ZQ : begin
+ if (mpr_en) begin
+ $display ("%m: at time %t ERROR: %s Failure. Multipurpose Register must be disabled.", $time, cmd_string[cmd]);
+ if (STOP_ON_ERROR) $stop(0);
+ end else if (|active_bank) begin
+ $display ("%m: at time %t ERROR: %s Failure. All banks must be Precharged.", $time, cmd_string[cmd]);
+ if (STOP_ON_ERROR) $stop(0);
+ end else begin
+ if (DEBUG) $display ("%m: at time %t INFO: %s long = %d", $time, cmd_string[cmd], addr[AP]);
+ if (addr[AP]) begin
+ zq_set = 1;
+ if (init_done) begin
+ ck_zqoper <= ck_cntr;
+ end else begin
+ ck_zqinit <= ck_cntr;
+ end
+ end else begin
+ ck_zqcs <= ck_cntr;
+ end
+ end
+ end
+ NOP: begin
+ if (in_power_down) begin
+ if (($time - tm_freq_change < TCKSRX) || (ck_cntr - ck_freq_change < TCKSRX_TCK))
+ $display ("%m: at time %t ERROR: tCKSRX violation during Power Down Exit", $time);
+ if ($time - tm_cke_cmd > TPD_MAX)
+ $display ("%m: at time %t ERROR: tPD maximum violation during Power Down Exit", $time);
+ if (DEBUG) $display ("%m: at time %t INFO: Power Down Exit", $time);
+ in_power_down = 0;
+ if ((active_bank == 0) && low_power) begin // precharge power down with dll off
+ if (ck_cntr - ck_odt < write_latency - 1)
+ $display ("%m: at time %t WARNING: tANPD violation during Power Down Exit. Synchronous or asynchronous change in termination resistance is possible.", $time);
+ tm_slow_exit_pd <= $time;
+ ck_slow_exit_pd <= ck_cntr;
+ end
+ tm_power_down <= $time;
+ ck_power_down <= ck_cntr;
+ end
+ if (in_self_refresh) begin
+ if (($time - tm_freq_change < TCKSRX) || (ck_cntr - ck_freq_change < TCKSRX_TCK))
+ $display ("%m: at time %t ERROR: tCKSRX violation during Self Refresh Exit", $time);
+ if (ck_cntr - ck_cke_cmd < TCKESR_TCK)
+ $display ("%m: at time %t ERROR: tCKESR violation during Self Refresh Exit", $time);
+ if ($time - tm_cke < TISXR)
+ $display ("%m: at time %t ERROR: tISXR violation during Self Refresh Exit", $time);
+ if (DEBUG) $display ("%m: at time %t INFO: Self Refresh Exit", $time);
+ in_self_refresh = 0;
+ ck_dll_reset <= ck_cntr;
+ ck_self_refresh <= ck_cntr;
+ tm_self_refresh <= $time;
+ tm_refresh <= $time;
+ end
+ end
+ endcase
+ if ((prev_cke !== 1) && (cmd !== NOP)) begin
+ $display ("%m: at time %t ERROR: NOP or Deselect is required when CKE goes active.", $time);
+ end
+
+ if (!init_done) begin
+ case (init_step)
+ 0 : begin
+// if ($time - tm_rst_n < 500000000 && check_strict_timing)
+// $display ("%m at time %t WARNING: 500 us is required after RST_N goes inactive before CKE goes active.", $time);
+ if ($time - tm_rst_n < (SIMUL_500US * 1000000) && check_strict_timing)
+ $display ("%m at time %t WARNING: %d (actually 500) us is required after RST_N goes inactive before CKE goes active.", $time, SIMUL_500US);
+
+ tm_txpr <= $time;
+ ck_txpr <= ck_cntr;
+ init_step = init_step + 1;
+ end
+ 1 : begin
+ if (dll_en) init_step = init_step + 1;
+ end
+ 2 : begin
+ if (&init_mode_reg && init_dll_reset && zq_set) begin
+ if (DEBUG) $display ("%m: at time %t INFO: Initialization Sequence is complete", $time);
+ init_done = 1;
+ end
+ end
+ endcase
+ end
+ end else if (prev_cke) begin
+ if ((!init_done) && (init_step > 1)) begin
+ $display ("%m: at time %t ERROR: CKE must remain active until the initialization sequence is complete.", $time);
+ if (STOP_ON_ERROR) $stop(0);
+ end
+ case (cmd)
+ REFRESH : begin
+ if ($time - tm_txpr < TXPR)
+ $display ("%m: at time %t ERROR: tXPR violation during %s", $time, cmd_string[SELF_REF]);
+ for (j=0; j<=SELF_REF; j=j+1) begin
+ chk_err(DIFF_BANK, bank, j, SELF_REF);
+ end
+
+ if (mpr_en) begin
+ $display ("%m: at time %t ERROR: Self Refresh Failure. Multipurpose Register must be disabled.", $time);
+ if (STOP_ON_ERROR) $stop(0);
+ end else if (|active_bank) begin
+ $display ("%m: at time %t ERROR: Self Refresh Failure. All banks must be Precharged.", $time);
+ if (STOP_ON_ERROR) $stop(0);
+ end else if (odt_state) begin
+ $display ("%m: at time %t ERROR: Self Refresh Failure. ODT must be off prior to entering Self Refresh", $time);
+ if (STOP_ON_ERROR) $stop(0);
+ end else if (!init_done) begin
+ $display ("%m: at time %t ERROR: Self Refresh Failure. Initialization sequence is not complete.", $time);
+ if (STOP_ON_ERROR) $stop(0);
+ end else begin
+ if (DEBUG) $display ("%m: at time %t INFO: Self Refresh Enter", $time);
+ if (feature_pasr)
+ // Partial Array Self Refresh
+ case (pasr)
+ 3'b000 : ;//keep Bank 0-7
+ 3'b001 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 4-7 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'hF0); end
+ 3'b010 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 2-7 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'hFC); end
+ 3'b011 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 1-7 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'hFE); end
+ 3'b100 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 0-1 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'h03); end
+ 3'b101 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 0-3 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'h0F); end
+ 3'b110 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 0-5 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'h3F); end
+ 3'b111 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 0-6 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'h7F); end
+ endcase
+ in_self_refresh = 1;
+ dll_locked = 0;
+ end
+ end
+ NOP : begin
+ // entering precharge power down with dll off and tANPD has not been satisfied
+ if (low_power && (active_bank == 0) && |odt_pipeline)
+ $display ("%m: at time %t WARNING: tANPD violation during %s. Synchronous or asynchronous change in termination resistance is possible.", $time, cmd_string[PWR_DOWN]);
+ if ($time - tm_txpr < TXPR)
+ $display ("%m: at time %t ERROR: tXPR violation during %s", $time, cmd_string[PWR_DOWN]);
+ for (j=0; j<=SELF_REF; j=j+1) begin
+ chk_err(DIFF_BANK, bank, j, PWR_DOWN);
+ end
+
+ if (mpr_en) begin
+ $display ("%m: at time %t ERROR: Power Down Failure. Multipurpose Register must be disabled.", $time);
+ if (STOP_ON_ERROR) $stop(0);
+ end else if (!init_done) begin
+ $display ("%m: at time %t ERROR: Power Down Failure. Initialization sequence is not complete.", $time);
+ if (STOP_ON_ERROR) $stop(0);
+ end else begin
+ if (DEBUG) begin
+ if (|active_bank) begin
+ $display ("%m: at time %t INFO: Active Power Down Enter", $time);
+ end else begin
+ $display ("%m: at time %t INFO: Precharge Power Down Enter", $time);
+ end
+ end
+ in_power_down = 1;
+ end
+ end
+ default : begin
+ $display ("%m: at time %t ERROR: NOP, Deselect, or Refresh is required when CKE goes inactive.", $time);
+ end
+ endcase
+ end else if (in_self_refresh || in_power_down) begin
+ if ((ck_cntr - ck_cke_cmd <= TCPDED) && (cmd !== NOP))
+ $display ("%m: at time %t ERROR: tCPDED violation during Power Down or Self Refresh Entry. NOP or Deselect is required.", $time);
+ end
+ prev_cke = cke;
+
+ end
+ endtask
+
+ task data_task;
+ reg [BA_BITS-1:0] bank;
+ reg [ROW_BITS-1:0] row;
+ reg [COL_BITS-1:0] col;
+ integer i;
+ integer j;
+ begin
+
+ if (diff_ck) begin
+ for (i=0; i<64; i=i+1) begin
+ if (dq_in_valid && dll_locked && ($time - tm_dqs_neg[i] < $rtoi(TDSS*tck_avg)))
+ $display ("%m: at time %t ERROR: tDSS violation on %s bit %d", $time, dqs_string[i/32], i%32);
+ if (check_write_dqs_high[i])
+ $display ("%m: at time %t ERROR: %s bit %d latching edge required during the preceding clock period.", $time, dqs_string[i/32], i%32);
+ end
+ check_write_dqs_high <= 0;
+ end else begin
+ for (i=0; i<64; i=i+1) begin
+ if (dll_locked && dq_in_valid) begin
+ tm_tdqss = abs_value(1.0*tm_ck_pos - tm_dqss_pos[i]);
+ if ((tm_tdqss < tck_avg/2.0) && (tm_tdqss > TDQSS*tck_avg))
+ $display ("%m: at time %t ERROR: tDQSS violation on %s bit %d", $time, dqs_string[i/32], i%32);
+ end
+ if (check_write_dqs_low[i])
+ $display ("%m: at time %t ERROR: %s bit %d latching edge required during the preceding clock period", $time, dqs_string[i/32], i%32);
+ end
+ check_write_preamble <= 0;
+ check_write_postamble <= 0;
+ check_write_dqs_low <= 0;
+ end
+
+ if (wr_pipeline[0] || rd_pipeline[0]) begin
+ bank = ba_pipeline[0];
+ row = row_pipeline[0];
+ col = col_pipeline[0];
+ burst_cntr = 0;
+ memory_read(bank, row, col, memory_data);
+ end
+
+ // burst counter
+ if (burst_cntr < burst_length) begin
+ burst_position = col ^ burst_cntr;
+ if (!burst_order) begin
+ burst_position[BO_BITS-1:0] = col + burst_cntr;
+ end
+ burst_cntr = burst_cntr + 1;
+ end
+
+ // write dqs counter
+ if (wr_pipeline[WDQS_PRE + 1]) begin
+ wdqs_cntr = WDQS_PRE + bl_pipeline[WDQS_PRE + 1] + WDQS_PST - 1;
+ end
+ // write dqs
+ if ((wr_pipeline[2]) && (wdq_cntr == 0)) begin //write preamble
+ check_write_preamble <= ({DQS_BITS{1'b1}}<<32) | {DQS_BITS{1'b1}};
+ end
+ if (wdqs_cntr > 1) begin // write data
+ if ((wdqs_cntr - WDQS_PST)%2) begin
+ check_write_dqs_high <= ({DQS_BITS{1'b1}}<<32) | {DQS_BITS{1'b1}};
+ end else begin
+ check_write_dqs_low <= ({DQS_BITS{1'b1}}<<32) | {DQS_BITS{1'b1}};
+ end
+ end
+ if (wdqs_cntr == WDQS_PST) begin // write postamble
+ check_write_postamble <= ({DQS_BITS{1'b1}}<<32) | {DQS_BITS{1'b1}};
+ end
+ if (wdqs_cntr > 0) begin
+ wdqs_cntr = wdqs_cntr - 1;
+ end
+
+ // write dq
+ if (dq_in_valid) begin // write data
+ bit_mask = 0;
+ if (diff_ck) begin
+ for (i=0; i<DM_BITS; i=i+1) begin
+ bit_mask = bit_mask | ({`DQ_PER_DQS{~dm_in_neg[i]}}<<(burst_position*DQ_BITS + i*`DQ_PER_DQS));
+ end
+ memory_data = (dq_in_neg<<(burst_position*DQ_BITS) & bit_mask) | (memory_data & ~bit_mask);
+ end else begin
+ for (i=0; i<DM_BITS; i=i+1) begin
+ bit_mask = bit_mask | ({`DQ_PER_DQS{~dm_in_pos[i]}}<<(burst_position*DQ_BITS + i*`DQ_PER_DQS));
+ end
+ memory_data = (dq_in_pos<<(burst_position*DQ_BITS) & bit_mask) | (memory_data & ~bit_mask);
+ end
+ dq_temp = memory_data>>(burst_position*DQ_BITS);
+ if (DEBUG) $display ("%m: at time %t INFO: WRITE @ DQS= bank = %h row = %h col = %h data = %h",$time, bank, row, (-1*BL_MAX & col) + burst_position, dq_temp);
+ if (burst_cntr%BL_MIN == 0) begin
+ memory_write(bank, row, col, memory_data);
+ end
+ end
+ if (wr_pipeline[1]) begin
+ wdq_cntr = bl_pipeline[1];
+ end
+ if (wdq_cntr > 0) begin
+ wdq_cntr = wdq_cntr - 1;
+ dq_in_valid = 1'b1;
+ end else begin
+ dq_in_valid = 1'b0;
+ dqs_in_valid <= 1'b0;
+ for (i=0; i<63; i=i+1) begin
+ wdqs_pos_cntr[i] <= 0;
+ end
+ end
+ if (wr_pipeline[0]) begin
+ b2b_write <= 1'b0;
+ end
+ if (wr_pipeline[2]) begin
+ if (dqs_in_valid) begin
+ b2b_write <= 1'b1;
+ end
+ dqs_in_valid <= 1'b1;
+ wr_burst_length = bl_pipeline[2];
+ end
+
+ // read dqs enable counter
+ if (rd_pipeline[RDQSEN_PRE]) begin
+ rdqsen_cntr = RDQSEN_PRE + bl_pipeline[RDQSEN_PRE] + RDQSEN_PST - 1;
+ end
+ if (rdqsen_cntr > 0) begin
+ rdqsen_cntr = rdqsen_cntr - 1;
+ dqs_out_en = 1'b1;
+ end else begin
+ dqs_out_en = 1'b0;
+ end
+
+ // read dqs counter
+ if (rd_pipeline[RDQS_PRE]) begin
+ rdqs_cntr = RDQS_PRE + bl_pipeline[RDQS_PRE] + RDQS_PST - 1;
+ end
+ // read dqs
+ if (((rd_pipeline>>1 & {RDQS_PRE{1'b1}}) > 0) && (rdq_cntr == 0)) begin //read preamble
+ dqs_out = 1'b0;
+ end else if (rdqs_cntr > RDQS_PST) begin // read data
+ dqs_out = rdqs_cntr - RDQS_PST;
+ end else if (rdqs_cntr > 0) begin // read postamble
+ dqs_out = 1'b0;
+ end else begin
+ dqs_out = 1'b1;
+ end
+ if (rdqs_cntr > 0) begin
+ rdqs_cntr = rdqs_cntr - 1;
+ end
+
+ // read dq enable counter
+ if (rd_pipeline[RDQEN_PRE]) begin
+ rdqen_cntr = RDQEN_PRE + bl_pipeline[RDQEN_PRE] + RDQEN_PST;
+ end
+ if (rdqen_cntr > 0) begin
+ rdqen_cntr = rdqen_cntr - 1;
+ dq_out_en = 1'b1;
+ end else begin
+ dq_out_en = 1'b0;
+ end
+ // read dq
+ if (rd_pipeline[0]) begin
+ rdq_cntr = bl_pipeline[0];
+ end
+ if (rdq_cntr > 0) begin // read data
+ if (mpr_en) begin
+`ifdef MPR_DQ0 // DQ0 output MPR data, other DQ low
+ if (mpr_select == 2'b00) begin // Calibration Pattern
+ dq_temp = {DQS_BITS{{`DQ_PER_DQS-1{1'b0}}, calibration_pattern[burst_position]}};
+ end else if (odts_readout && (mpr_select == 2'b11)) begin // Temp Sensor (ODTS)
+ dq_temp = {DQS_BITS{{`DQ_PER_DQS-1{1'b0}}, temp_sensor[burst_position]}};
+ end else begin // Reserved
+ dq_temp = {DQS_BITS{{`DQ_PER_DQS-1{1'b0}}, 1'bx}};
+ end
+`else // all DQ output MPR data
+ if (mpr_select == 2'b00) begin // Calibration Pattern
+ dq_temp = {DQS_BITS{{`DQ_PER_DQS{calibration_pattern[burst_position]}}}};
+ end else if (odts_readout && (mpr_select == 2'b11)) begin // Temp Sensor (ODTS)
+ dq_temp = {DQS_BITS{{`DQ_PER_DQS{temp_sensor[burst_position]}}}};
+ end else begin // Reserved
+ dq_temp = {DQS_BITS{{`DQ_PER_DQS{1'bx}}}};
+ end
+`endif
+ if (DEBUG) $display ("%m: at time %t READ @ DQS MultiPurpose Register %d, col = %d, data = %b", $time, mpr_select, burst_position, dq_temp[0]);
+ end else begin
+ dq_temp = memory_data>>(burst_position*DQ_BITS);
+ if (DEBUG) $display ("%m: at time %t INFO: READ @ DQS= bank = %h row = %h col = %h data = %h",$time, bank, row, (-1*BL_MAX & col) + burst_position, dq_temp);
+ end
+ dq_out = dq_temp;
+ rdq_cntr = rdq_cntr - 1;
+ end else begin
+ dq_out = {DQ_BITS{1'b1}};
+ end
+
+ // delay signals prior to output
+ if (RANDOM_OUT_DELAY && (dqs_out_en || (|dqs_out_en_dly) || dq_out_en || (|dq_out_en_dly))) begin
+ for (i=0; i<DQS_BITS; i=i+1) begin
+ // DQSCK requirements
+ // 1.) less than tDQSCK
+ // 2.) greater than -tDQSCK
+ // 3.) cannot change more than tQH + tDQSQ from previous DQS edge
+ dqsck_max = TDQSCK;
+ if (dqsck_max > dqsck[i] + TQH*tck_avg + TDQSQ) begin
+ dqsck_max = dqsck[i] + TQH*tck_avg + TDQSQ;
+ end
+ dqsck_min = -1*TDQSCK;
+ if (dqsck_min < dqsck[i] - TQH*tck_avg - TDQSQ) begin
+ dqsck_min = dqsck[i] - TQH*tck_avg - TDQSQ;
+ end
+
+ // DQSQ requirements
+ // 1.) less than tDQSQ
+ // 2.) greater than 0
+ // 3.) greater than tQH from the previous DQS edge
+ dqsq_min = 0;
+ if (dqsq_min < dqsck[i] - TQH*tck_avg) begin
+ dqsq_min = dqsck[i] - TQH*tck_avg;
+ end
+ if (dqsck_min == dqsck_max) begin
+ dqsck[i] = dqsck_min;
+ end else begin
+ dqsck[i] = $dist_uniform(seed, dqsck_min, dqsck_max);
+ end
+ dqsq_max = TDQSQ + dqsck[i];
+
+ dqs_out_en_dly[i] <= #(tck_avg/2) dqs_out_en;
+ dqs_out_dly[i] <= #(tck_avg/2 + dqsck[i]) dqs_out;
+ if (!write_levelization) begin
+ for (j=0; j<`DQ_PER_DQS; j=j+1) begin
+ dq_out_en_dly[i*`DQ_PER_DQS + j] <= #(tck_avg/2) dq_out_en;
+ if (dqsq_min == dqsq_max) begin
+ dq_out_dly [i*`DQ_PER_DQS + j] <= #(tck_avg/2 + dqsq_min) dq_out[i*`DQ_PER_DQS + j];
+ end else begin
+ dq_out_dly [i*`DQ_PER_DQS + j] <= #(tck_avg/2 + $dist_uniform(seed, dqsq_min, dqsq_max)) dq_out[i*`DQ_PER_DQS + j];
+ end
+ end
+ end
+ end
+ end else begin
+ if (dll_en)
+ if(diff_ck)
+ out_delay = ($rtoi(tch_avg) > 50000) ? 0 : $rtoi(tch_avg);
+ else
+ out_delay = ($rtoi(tcl_avg) > 50000) ? 0 : $rtoi(tcl_avg);
+ else
+ if(diff_ck)
+ out_delay = ($rtoi(tch_avg) > 50000) ? 0 : $rtoi(tch_avg) + TDQSCK_DLLDIS;
+ else
+ out_delay = ($rtoi(tcl_avg) > 50000) ? 0 : $rtoi(tcl_avg) + TDQSCK_DLLDIS;
+ dqs_out_en_dly <= #(out_delay) {DQS_BITS{dqs_out_en}};
+ dqs_out_dly <= #(out_delay) {DQS_BITS{dqs_out }};
+ if (write_levelization !== 1'b1) begin
+ dq_out_en_dly <= #(out_delay) {DQ_BITS {dq_out_en }};
+ dq_out_dly <= #(out_delay) {DQ_BITS {dq_out }};
+ end
+ end
+ end
+ endtask
+
+ always @ (posedge rst_n_in) begin : reset
+ integer i;
+ if (rst_n_in) begin
+// if ($time < 200000000 && check_strict_timing)
+// $display ("%m at time %t WARNING: 200 us is required before RST_N goes inactive.", $time);
+ if ($time < (SIMUL_200US * 1000000) && check_strict_timing)
+ $display ("%m at time %t WARNING: %d (actually 200) us is required before RST_N goes inactive.", $time, SIMUL_200US);
+
+ if (cke_in !== 1'b0)
+ $display ("%m: at time %t ERROR: CKE must be inactive when RST_N goes inactive.", $time);
+ if ($time - tm_cke < 10000)
+ $display ("%m: at time %t ERROR: CKE must be maintained inactive for 10 ns before RST_N goes inactive.", $time);
+
+ // clear memory
+`ifdef MAX_MEM
+ // verification group does not erase memory
+ // for (banki = 0; banki < `BANKS; banki = banki + 1) begin
+ // $fclose(memfd[banki]);
+ // memfd[banki] = open_bank_file(banki);
+ // end
+`else
+ memory_used <= 0; //erase memory
+`endif
+
+ end
+ end
+
+ always @(negedge rst_n_in or posedge diff_ck or negedge diff_ck) begin : main
+ integer i;
+ if (!rst_n_in) begin
+ reset_task;
+ end else begin
+ if (!in_self_refresh && (diff_ck !== 1'b0) && (diff_ck !== 1'b1))
+ $display ("%m: at time %t ERROR: CK and CK_N are not allowed to go to an unknown state.", $time);
+ data_task;
+
+ // Clock Frequency Change is legal:
+ // 1.) During Self Refresh
+ // 2.) During Precharge Power Down (DLL on or off)
+ if (in_self_refresh || (in_power_down && (active_bank == 0))) begin
+ if (diff_ck) begin
+ tjit_per_rtime = $time - tm_ck_pos - tck_avg;
+ end else begin
+ tjit_per_rtime = $time - tm_ck_neg - tck_avg;
+ end
+ if (dll_locked && (abs_value(tjit_per_rtime) > TJIT_PER)) begin
+ if ((tm_ck_pos - tm_cke_cmd < TCKSRE) || (ck_cntr - ck_cke_cmd < TCKSRE_TCK))
+ $display ("%m: at time %t ERROR: tCKSRE violation during Self Refresh or Precharge Power Down Entry", $time);
+ if (odt_state) begin
+ $display ("%m: at time %t ERROR: Clock Frequency Change Failure. ODT must be off prior to Clock Frequency Change.", $time);
+ if (STOP_ON_ERROR) $stop(0);
+ end else begin
+ if (DEBUG) $display ("%m: at time %t INFO: Clock Frequency Change detected. DLL Reset is Required.", $time);
+ tm_freq_change <= $time;
+ ck_freq_change <= ck_cntr;
+ dll_locked = 0;
+ end
+ end
+ end
+
+ if (diff_ck) begin
+ // check setup of command signals
+ if ($time > TIS) begin
+ if ($time - tm_cke < TIS)
+ $display ("%m: at time %t ERROR: tIS violation on CKE by %t", $time, tm_cke + TIS - $time);
+ if (cke_in) begin
+ for (i=0; i<23; i=i+1) begin
+ if ($time - tm_cmd_addr[i] < TIS)
+ $display ("%m: at time %t ERROR: tIS violation on %s by %t", $time, cmd_addr_string[i], tm_cmd_addr[i] + TIS - $time);
+ end
+ end
+ end
+
+ // update current state
+ if (dll_locked) begin
+ if (mr_chk == 0) begin
+ mr_chk = 1;
+ end else if (init_mode_reg[0] && (mr_chk == 1)) begin
+ // check CL value against the clock frequency
+ if (cas_latency*tck_avg < CL_TIME && check_strict_timing)
+ $display ("%m: at time %t ERROR: CAS Latency = %d is illegal @tCK(avg) = %f", $time, cas_latency, tck_avg);
+ // check WR value against the clock frequency
+ if (ceil(write_recovery*tck_avg) < TWR)
+ $display ("%m: at time %t ERROR: Write Recovery = %d is illegal @tCK(avg) = %f", $time, write_recovery, tck_avg);
+ // check the CWL value against the clock frequency
+ if (check_strict_timing) begin
+ case (cas_write_latency)
+ 5 : if (tck_avg < 2500.0) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
+ 6 : if ((tck_avg < 1875.0) || (tck_avg >= 2500.0)) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
+ 7 : if ((tck_avg < 1500.0) || (tck_avg >= 1875.0)) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
+ 8 : if ((tck_avg < 1250.0) || (tck_avg >= 1500.0)) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
+ 9 : if ((tck_avg < 15e3/14) || (tck_avg >= 1250.0)) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
+ 10: if ((tck_avg < 937.5) || (tck_avg >= 15e3/14)) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
+ default : $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
+ endcase
+ // check the CL value against the clock frequency
+ if (!valid_cl(cas_latency, cas_write_latency))
+ $display ("%m: at time %t ERROR: CAS Latency = %d is not valid when CAS Write Latency = %d", $time, cas_latency, cas_write_latency);
+ end
+ mr_chk = 2;
+ end
+ end else if (!in_self_refresh) begin
+ mr_chk = 0;
+ if (ck_cntr - ck_dll_reset == TDLLK) begin
+ dll_locked = 1;
+ end
+ end
+
+ if (|auto_precharge_bank) begin
+ for (i=0; i<`BANKS; i=i+1) begin
+ // Write with Auto Precharge Calculation
+ // 1. Meet minimum tRAS requirement
+ // 2. Write Latency PLUS BL/2 cycles PLUS WR after Write command
+ if (write_precharge_bank[i]) begin
+ if ($time - tm_bank_activate[i] >= TRAS_MIN) begin
+ if (ck_cntr - ck_bank_write[i] >= write_latency + burst_length/2 + write_recovery) begin
+ if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", $time, i);
+ write_precharge_bank[i] = 0;
+ active_bank[i] = 0;
+ auto_precharge_bank[i] = 0;
+ tm_bank_precharge[i] = $time;
+ tm_precharge = $time;
+ ck_precharge = ck_cntr;
+ end
+ end
+ end
+ // Read with Auto Precharge Calculation
+ // 1. Meet minimum tRAS requirement
+ // 2. Additive Latency plus 4 cycles after Read command
+ // 3. tRTP after the last 8-bit prefetch
+ if (read_precharge_bank[i]) begin
+ if (($time - tm_bank_activate[i] >= TRAS_MIN) && (ck_cntr - ck_bank_read[i] >= additive_latency + TRTP_TCK)) begin
+ read_precharge_bank[i] = 0;
+ // In case the internal precharge is pushed out by tRTP, tRP starts at the point where
+ // the internal precharge happens (not at the next rising clock edge after this event).
+ if ($time - tm_bank_read_end[i] < TRTP) begin
+ if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", tm_bank_read_end[i] + TRTP, i);
+ active_bank[i] <= #(tm_bank_read_end[i] + TRTP - $time) 0;
+ auto_precharge_bank[i] <= #(tm_bank_read_end[i] + TRTP - $time) 0;
+ tm_bank_precharge[i] <= #(tm_bank_read_end[i] + TRTP - $time) tm_bank_read_end[i] + TRTP;
+ tm_precharge <= #(tm_bank_read_end[i] + TRTP - $time) tm_bank_read_end[i] + TRTP;
+ ck_precharge = ck_cntr;
+ end else begin
+ if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", $time, i);
+ active_bank[i] = 0;
+ auto_precharge_bank[i] = 0;
+ tm_bank_precharge[i] = $time;
+ tm_precharge = $time;
+ ck_precharge = ck_cntr;
+ end
+ end
+ end
+ end
+ end
+
+
+ // respond to incoming command
+ if (cke_in ^ prev_cke) begin
+ tm_cke_cmd <= $time;
+ ck_cke_cmd <= ck_cntr;
+ end
+
+
+ cmd_task(prev_cke, cke_in, cmd_n_in, ba_in, addr_in);
+ if ((cmd_n_in == WRITE) || (cmd_n_in == READ)) begin
+ al_pipeline[2*additive_latency] = 1'b1;
+ end
+ if (al_pipeline[0]) begin
+ // check tRCD after additive latency
+ if ((rd_pipeline[2*cas_latency - 1]) && ($time - tm_bank_activate[ba_pipeline[2*cas_latency - 1]] < TRCD))
+ $display ("%m: at time %t ERROR: tRCD violation during %s", $time, cmd_string[READ]);
+ if ((wr_pipeline[2*cas_write_latency + 1]) && ($time - tm_bank_activate[ba_pipeline[2*cas_write_latency + 1]] < TRCD))
+ $display ("%m: at time %t ERROR: tRCD violation during %s", $time, cmd_string[WRITE]);
+ // check tWTR after additive latency
+ if (rd_pipeline[2*cas_latency - 1]) begin //{
+ if (truebl4) begin //{
+ i = ba_pipeline[2*cas_latency - 1];
+ if ($time - tm_group_write_end[i[1]] < TWTR)
+ $display ("%m: at time %t ERROR: tWTR violation during %s", $time, cmd_string[READ]);
+ if ($time - tm_write_end < TWTR_DG)
+ $display ("%m: at time %t ERROR: tWTR_DG violation during %s", $time, cmd_string[READ]);
+ end else begin
+ if ($time - tm_write_end < TWTR)
+ $display ("%m: at time %t ERROR: tWTR violation during %s", $time, cmd_string[READ]);
+ end
+ end
+ end
+ if (rd_pipeline) begin
+ if (rd_pipeline[2*cas_latency - 1]) begin
+ tm_bank_read_end[ba_pipeline[2*cas_latency - 1]] <= $time;
+ end
+ end
+ for (i=0; i<`BANKS; i=i+1) begin
+ if ((ck_cntr - ck_bank_write[i] > write_latency) && (ck_cntr - ck_bank_write[i] <= write_latency + burst_length/2)) begin
+ tm_bank_write_end[i] <= $time;
+ tm_group_write_end[i[1]] <= $time;
+ tm_write_end <= $time;
+ end
+ end
+
+ // clk pin is disabled during self refresh
+ if (!in_self_refresh && tm_ck_pos ) begin
+ tjit_cc_time = $time - tm_ck_pos - tck_i;
+ tck_i = $time - tm_ck_pos;
+ tck_avg = tck_avg - tck_sample[ck_cntr%PERTCKAVG]/$itor(PERTCKAVG);
+ tck_avg = tck_avg + tck_i/$itor(PERTCKAVG);
+ tck_sample[ck_cntr%PERTCKAVG] = tck_i;
+ tjit_per_rtime = tck_i - tck_avg;
+
+ if (dll_locked && check_strict_timing) begin
+ // check accumulated error
+ terr_nper_rtime = 0;
+ for (i=0; i<12; i=i+1) begin
+ terr_nper_rtime = terr_nper_rtime + tck_sample[i] - tck_avg;
+ terr_nper_rtime = abs_value(terr_nper_rtime);
+ case (i)
+ 0 :;
+ 1 : if (terr_nper_rtime - TERR_2PER >= 1.0) $display ("%m: at time %t ERROR: tERR(2per) violation by %f ps.", $time, terr_nper_rtime - TERR_2PER);
+ 2 : if (terr_nper_rtime - TERR_3PER >= 1.0) $display ("%m: at time %t ERROR: tERR(3per) violation by %f ps.", $time, terr_nper_rtime - TERR_3PER);
+ 3 : if (terr_nper_rtime - TERR_4PER >= 1.0) $display ("%m: at time %t ERROR: tERR(4per) violation by %f ps.", $time, terr_nper_rtime - TERR_4PER);
+ 4 : if (terr_nper_rtime - TERR_5PER >= 1.0) $display ("%m: at time %t ERROR: tERR(5per) violation by %f ps.", $time, terr_nper_rtime - TERR_5PER);
+ 5 : if (terr_nper_rtime - TERR_6PER >= 1.0) $display ("%m: at time %t ERROR: tERR(6per) violation by %f ps.", $time, terr_nper_rtime - TERR_6PER);
+ 6 : if (terr_nper_rtime - TERR_7PER >= 1.0) $display ("%m: at time %t ERROR: tERR(7per) violation by %f ps.", $time, terr_nper_rtime - TERR_7PER);
+ 7 : if (terr_nper_rtime - TERR_8PER >= 1.0) $display ("%m: at time %t ERROR: tERR(8per) violation by %f ps.", $time, terr_nper_rtime - TERR_8PER);
+ 8 : if (terr_nper_rtime - TERR_9PER >= 1.0) $display ("%m: at time %t ERROR: tERR(9per) violation by %f ps.", $time, terr_nper_rtime - TERR_9PER);
+ 9 : if (terr_nper_rtime - TERR_10PER >= 1.0) $display ("%m: at time %t ERROR: tERR(10per) violation by %f ps.", $time, terr_nper_rtime - TERR_10PER);
+ 10 : if (terr_nper_rtime - TERR_11PER >= 1.0) $display ("%m: at time %t ERROR: tERR(11per) violation by %f ps.", $time, terr_nper_rtime - TERR_11PER);
+ 11 : if (terr_nper_rtime - TERR_12PER >= 1.0) $display ("%m: at time %t ERROR: tERR(12per) violation by %f ps.", $time, terr_nper_rtime - TERR_12PER);
+ endcase
+ end
+
+ // check tCK min/max/jitter
+ if (abs_value(tjit_per_rtime) - TJIT_PER >= 1.0)
+ $display ("%m: at time %t ERROR: tJIT(per) violation by %f ps.", $time, abs_value(tjit_per_rtime) - TJIT_PER);
+ if (abs_value(tjit_cc_time) - TJIT_CC >= 1.0)
+ $display ("%m: at time %t ERROR: tJIT(cc) violation by %f ps.", $time, abs_value(tjit_cc_time) - TJIT_CC);
+ if (TCK_MIN - tck_avg >= 1.0)
+ $display ("%m: at time %t ERROR: tCK(avg) minimum violation by %f ps.", $time, TCK_MIN - tck_avg);
+ if (tck_avg - TCK_MAX >= 1.0)
+ $display ("%m: at time %t ERROR: tCK(avg) maximum violation by %f ps.", $time, tck_avg - TCK_MAX);
+
+ // check tCL
+`ifdef CVC
+ if ((tm_ck_neg - $time < TCL_ABS_MIN*tck_avg) && (tm_ck_neg > $time))
+`else
+ if (tm_ck_neg - $time < TCL_ABS_MIN*tck_avg)
+`endif
+ $display ("%m: at time %t ERROR: tCL(abs) minimum violation on CLK by %t", $time, TCL_ABS_MIN*tck_avg - tm_ck_neg + $time);
+ if (tcl_avg < TCL_AVG_MIN*tck_avg)
+ $display ("%m: at time %t ERROR: tCL(avg) minimum violation on CLK by %t", $time, TCL_AVG_MIN*tck_avg - tcl_avg);
+ if (tcl_avg > TCL_AVG_MAX*tck_avg)
+ $display ("%m: at time %t ERROR: tCL(avg) maximum violation on CLK by %t", $time, tcl_avg - TCL_AVG_MAX*tck_avg);
+ end
+
+ // calculate the tch avg jitter
+ tch_avg = tch_avg - tch_sample[ck_cntr%TDLLK]/$itor(TDLLK);
+ tch_avg = tch_avg + tch_i/$itor(TDLLK);
+ tch_sample[ck_cntr%TDLLK] = tch_i;
+ tjit_ch_rtime = tch_i - tch_avg;
+ duty_cycle = tch_avg/tck_avg;
+
+ // update timers/counters
+ tcl_i <= $time - tm_ck_neg;
+ end
+
+ prev_odt <= odt_in;
+ // update timers/counters
+ ck_cntr <= ck_cntr + 1;
+ tm_ck_pos = $time;
+ end else begin
+ // clk pin is disabled during self refresh
+ if (!in_self_refresh) begin
+ if (dll_locked && check_strict_timing) begin
+ if ($time - tm_ck_pos < TCH_ABS_MIN*tck_avg)
+ $display ("%m: at time %t ERROR: tCH(abs) minimum violation on CLK by %t", $time, TCH_ABS_MIN*tck_avg - $time + tm_ck_pos);
+ if (tch_avg < TCH_AVG_MIN*tck_avg)
+ $display ("%m: at time %t ERROR: tCH(avg) minimum violation on CLK by %t", $time, TCH_AVG_MIN*tck_avg - tch_avg);
+ if (tch_avg > TCH_AVG_MAX*tck_avg)
+ $display ("%m: at time %t ERROR: tCH(avg) maximum violation on CLK by %t", $time, tch_avg - TCH_AVG_MAX*tck_avg);
+ end
+
+ // calculate the tcl avg jitter
+ tcl_avg = tcl_avg - tcl_sample[ck_cntr%TDLLK]/$itor(TDLLK);
+ tcl_avg = tcl_avg + tcl_i/$itor(TDLLK);
+ tcl_sample[ck_cntr%TDLLK] = tcl_i;
+
+ // update timers/counters
+ tch_i <= $time - tm_ck_pos;
+ end
+ tm_ck_neg = $time;
+ end
+
+ // on die termination
+ if (odt_en || dyn_odt_en) begin
+ // odt pin is disabled during self refresh
+ if (!in_self_refresh && diff_ck) begin
+ if ($time - tm_odt < TIS)
+ $display ("%m: at time %t ERROR: tIS violation on ODT by %t", $time, tm_odt + TIS - $time);
+ if (prev_odt ^ odt_in) begin
+ if (!dll_locked)
+ $display ("%m: at time %t WARNING: tDLLK violation during ODT transition.", $time);
+ if (($time - tm_load_mode < TMOD) || (ck_cntr - ck_load_mode < TMOD_TCK))
+ $display ("%m: at time %t ERROR: tMOD violation during ODT transition", $time);
+ if (ck_cntr - ck_zqinit < TZQINIT)
+ $display ("%m: at time %t ERROR: TZQinit violation during ODT transition", $time);
+ if (ck_cntr - ck_zqoper < TZQOPER)
+ $display ("%m: at time %t ERROR: TZQoper violation during ODT transition", $time);
+ if (ck_cntr - ck_zqcs < TZQCS)
+ $display ("%m: at time %t ERROR: tZQcs violation during ODT transition", $time);
+ // if (($time - tm_slow_exit_pd < TXPDLL) || (ck_cntr - ck_slow_exit_pd < TXPDLL_TCK))
+ // $display ("%m: at time %t ERROR: tXPDLL violation during ODT transition", $time);
+ if (ck_cntr - ck_self_refresh < TXSDLL)
+ $display ("%m: at time %t ERROR: tXSDLL violation during ODT transition", $time);
+ if (in_self_refresh)
+ $display ("%m: at time %t ERROR: Illegal ODT transition during Self Refresh.", $time);
+ if (!odt_in && (ck_cntr - ck_odt < ODTH4))
+ $display ("%m: at time %t ERROR: ODTH4 violation during ODT transition", $time);
+ if (!odt_in && (ck_cntr - ck_odth8 < ODTH8))
+ $display ("%m: at time %t ERROR: ODTH8 violation during ODT transition", $time);
+ if (($time - tm_slow_exit_pd < TXPDLL) || (ck_cntr - ck_slow_exit_pd < TXPDLL_TCK))
+ $display ("%m: at time %t WARNING: tXPDLL during ODT transition. Synchronous or asynchronous change in termination resistance is possible.", $time);
+
+ // async ODT mode applies:
+ // 1.) during precharge power down with DLL off
+ // 2.) if tANPD has not been satisfied
+ // 3.) until tXPDLL has been satisfied
+ if ((in_power_down && low_power && (active_bank == 0)) || ($time - tm_slow_exit_pd < TXPDLL) || (ck_cntr - ck_slow_exit_pd < TXPDLL_TCK)) begin
+ odt_state = odt_in;
+ if (DEBUG && odt_en) $display ("%m: at time %t INFO: Async On Die Termination Rtt_NOM = %d Ohm", $time, {32{odt_state}} & get_rtt_nom(odt_rtt_nom));
+ if (odt_state) begin
+ odt_state_dly <= #(TAONPD) odt_state;
+ end else begin
+ odt_state_dly <= #(TAOFPD) odt_state;
+ end
+ // sync ODT mode applies:
+ // 1.) during normal operation
+ // 2.) during active power down
+ // 3.) during precharge power down with DLL on
+ end else begin
+ odt_pipeline[2*(write_latency - 2)] = 1'b1; // ODTLon, ODTLoff
+ end
+ ck_odt <= ck_cntr;
+ end
+ end
+ if (odt_pipeline[0]) begin
+ odt_state = ~odt_state;
+ if (DEBUG && odt_en) $display ("%m: at time %t INFO: Sync On Die Termination Rtt_NOM = %d Ohm", $time, {32{odt_state}} & get_rtt_nom(odt_rtt_nom));
+ if (odt_state) begin
+ odt_state_dly <= #(TAON) odt_state;
+ end else begin
+ odt_state_dly <= #(TAOF*tck_avg) odt_state;
+ end
+ end
+ if (rd_pipeline[RDQSEN_PRE]) begin
+ odt_cntr = 1 + RDQSEN_PRE + bl_pipeline[RDQSEN_PRE] + RDQSEN_PST - 1;
+ end
+ if (odt_cntr > 0) begin
+ if ((get_rtt_nom(odt_rtt_nom) > 0) && odt_state) begin
+ $display ("%m: at time %t ERROR: On Die Termination must be OFF during Read data transfer.", $time);
+ end
+ odt_cntr = odt_cntr - 1;
+ end
+ if (dyn_odt_en && ( odt_state || feature_odt_hi) ) begin
+ if (DEBUG && (dyn_odt_state ^ dyn_odt_pipeline[0]))
+ $display ("%m: at time %t INFO: Sync On Die Termination Rtt_WR = %d Ohm", $time, {32{dyn_odt_pipeline[0]}} & get_rtt_wr(odt_rtt_wr));
+ dyn_odt_state = dyn_odt_pipeline[0];
+ end
+ dyn_odt_state_dly <= #(TADC*tck_avg) dyn_odt_state;
+ end
+
+ if (cke_in && write_levelization) begin
+ for (i=0; i<DQS_BITS; i=i+1) begin
+ if ($time - tm_dqs_pos[i] < TWLH)
+ $display ("%m: at time %t WARNING: tWLH violation on DQS bit %d positive edge. Indeterminate CK capture is possible.", $time, i);
+ end
+ end
+
+ // shift pipelines
+ if (|wr_pipeline || |rd_pipeline || |al_pipeline) begin
+ al_pipeline = al_pipeline>>1;
+ wr_pipeline = wr_pipeline>>1;
+ rd_pipeline = rd_pipeline>>1;
+ for (i=0; i<`MAX_PIPE; i=i+1) begin
+ bl_pipeline[i] = bl_pipeline[i+1];
+ ba_pipeline[i] = ba_pipeline[i+1];
+ row_pipeline[i] = row_pipeline[i+1];
+ col_pipeline[i] = col_pipeline[i+1];
+ end
+ end
+ if (|odt_pipeline || |dyn_odt_pipeline) begin
+ odt_pipeline = odt_pipeline>>1;
+ dyn_odt_pipeline = dyn_odt_pipeline>>1;
+ end
+ end
+ end
+
+ // receiver(s)
+ task dqs_even_receiver;
+ input [4:0] i;
+ reg [127:0] bit_mask;
+ begin
+ bit_mask = {`DQ_PER_DQS{1'b1}}<<(i*`DQ_PER_DQS);
+ if (dqs_even[i]) begin
+ if (tdqs_en) begin // tdqs disables dm
+ dm_in_pos[i] = 1'b0;
+ end else begin
+ dm_in_pos[i] = dm_in[i];
+ end
+ dq_in_pos = (dq_in & bit_mask) | (dq_in_pos & ~bit_mask);
+ end
+ end
+ endtask
+
+ always @(posedge dqs_even[ 0]) dqs_even_receiver( 0);
+ always @(posedge dqs_even[ 1]) dqs_even_receiver( 1);
+ always @(posedge dqs_even[ 2]) dqs_even_receiver( 2);
+ always @(posedge dqs_even[ 3]) dqs_even_receiver( 3);
+ always @(posedge dqs_even[ 4]) dqs_even_receiver( 4);
+ always @(posedge dqs_even[ 5]) dqs_even_receiver( 5);
+ always @(posedge dqs_even[ 6]) dqs_even_receiver( 6);
+ always @(posedge dqs_even[ 7]) dqs_even_receiver( 7);
+ always @(posedge dqs_even[ 8]) dqs_even_receiver( 8);
+ always @(posedge dqs_even[ 9]) dqs_even_receiver( 9);
+ always @(posedge dqs_even[10]) dqs_even_receiver(10);
+ always @(posedge dqs_even[11]) dqs_even_receiver(11);
+ always @(posedge dqs_even[12]) dqs_even_receiver(12);
+ always @(posedge dqs_even[13]) dqs_even_receiver(13);
+ always @(posedge dqs_even[14]) dqs_even_receiver(14);
+ always @(posedge dqs_even[15]) dqs_even_receiver(15);
+
+ task dqs_odd_receiver;
+ input [4:0] i;
+ reg [127:0] bit_mask;
+ begin
+ bit_mask = {`DQ_PER_DQS{1'b1}}<<(i*`DQ_PER_DQS);
+ if (dqs_odd[i]) begin
+ if (tdqs_en) begin // tdqs disables dm
+ dm_in_neg[i] = 1'b0;
+ end else begin
+ dm_in_neg[i] = dm_in[i];
+ end
+ dq_in_neg = (dq_in & bit_mask) | (dq_in_neg & ~bit_mask);
+ end
+ end
+ endtask
+
+ always @(posedge dqs_odd[ 0]) dqs_odd_receiver( 0);
+ always @(posedge dqs_odd[ 1]) dqs_odd_receiver( 1);
+ always @(posedge dqs_odd[ 2]) dqs_odd_receiver( 2);
+ always @(posedge dqs_odd[ 3]) dqs_odd_receiver( 3);
+ always @(posedge dqs_odd[ 4]) dqs_odd_receiver( 4);
+ always @(posedge dqs_odd[ 5]) dqs_odd_receiver( 5);
+ always @(posedge dqs_odd[ 6]) dqs_odd_receiver( 6);
+ always @(posedge dqs_odd[ 7]) dqs_odd_receiver( 7);
+ always @(posedge dqs_odd[ 8]) dqs_odd_receiver( 8);
+ always @(posedge dqs_odd[ 9]) dqs_odd_receiver( 9);
+ always @(posedge dqs_odd[10]) dqs_odd_receiver(10);
+ always @(posedge dqs_odd[11]) dqs_odd_receiver(11);
+ always @(posedge dqs_odd[12]) dqs_odd_receiver(12);
+ always @(posedge dqs_odd[13]) dqs_odd_receiver(13);
+ always @(posedge dqs_odd[14]) dqs_odd_receiver(14);
+ always @(posedge dqs_odd[15]) dqs_odd_receiver(15);
+
+ // Processes to check hold and pulse width of control signals
+ always @(posedge rst_n_in) begin
+ if ($time > 100000) begin
+ if (tm_rst_n + 100000 > $time)
+ $display ("%m: at time %t ERROR: RST_N pulse width violation by %t", $time, tm_rst_n + 100000 - $time);
+ end
+ tm_rst_n = $time;
+ end
+ always @(cke_in) begin
+ if (rst_n_in) begin
+ if ($time > TIH) begin
+ if ($time - tm_ck_pos < TIH)
+ $display ("%m: at time %t ERROR: tIH violation on CKE by %t", $time, tm_ck_pos + TIH - $time);
+ end
+ if ($time - tm_cke < TIPW)
+ $display ("%m: at time %t ERROR: tIPW violation on CKE by %t", $time, tm_cke + TIPW - $time);
+ end
+ tm_cke = $time;
+ end
+ always @(odt_in) begin
+ if (rst_n_in && odt_en && !in_self_refresh) begin
+ if ($time - tm_ck_pos < TIH)
+ $display ("%m: at time %t ERROR: tIH violation on ODT by %t", $time, tm_ck_pos + TIH - $time);
+ if ($time - tm_odt < TIPW)
+ $display ("%m: at time %t ERROR: tIPW violation on ODT by %t", $time, tm_odt + TIPW - $time);
+ end
+ tm_odt = $time;
+ end
+
+ task cmd_addr_timing_check;
+ input i;
+ reg [4:0] i;
+ begin
+ if (rst_n_in && prev_cke) begin
+ if ((i == 0) && ($time - tm_ck_pos < TIH)) // always check tIH for CS#
+ $display ("%m: at time %t ERROR: tIH violation on %s by %t", $time, cmd_addr_string[i], tm_ck_pos + TIH - $time);
+ if ((i > 0) && (cs_n_in == 0) &&($time - tm_ck_pos < TIH)) // Only check tIH for cmd_addr if CS# is low
+ $display ("%m: at time %t ERROR: tIH violation on %s by %t", $time, cmd_addr_string[i], tm_ck_pos + TIH - $time);
+ if ((i == 0) && ($time - tm_cmd_addr[i] < TIPW)) // always check tIPW for CS#
+ $display ("%m: at time %t ERROR: tIPW violation on %s by %t", $time, cmd_addr_string[i], tm_cmd_addr[i] + TIPW - $time);
+ if ((i > 0) && (cs_n_in == 0) && ($time - tm_cmd_addr[i] < TIPW))
+ $display ("%m: at time %t ERROR: tIPW violation on %s by %t", $time, cmd_addr_string[i], tm_cmd_addr[i] + TIPW - $time);
+ end
+ tm_cmd_addr[i] = $time;
+ end
+ endtask
+
+ always @(cs_n_in ) cmd_addr_timing_check( 0);
+ always @(ras_n_in ) cmd_addr_timing_check( 1);
+ always @(cas_n_in ) cmd_addr_timing_check( 2);
+ always @(we_n_in ) cmd_addr_timing_check( 3);
+ always @(ba_in [ 0]) cmd_addr_timing_check( 4);
+ always @(ba_in [ 1]) cmd_addr_timing_check( 5);
+ always @(ba_in [ 2]) cmd_addr_timing_check( 6);
+ always @(addr_in[ 0]) cmd_addr_timing_check( 7);
+ always @(addr_in[ 1]) cmd_addr_timing_check( 8);
+ always @(addr_in[ 2]) cmd_addr_timing_check( 9);
+ always @(addr_in[ 3]) cmd_addr_timing_check(10);
+ always @(addr_in[ 4]) cmd_addr_timing_check(11);
+ always @(addr_in[ 5]) cmd_addr_timing_check(12);
+ always @(addr_in[ 6]) cmd_addr_timing_check(13);
+ always @(addr_in[ 7]) cmd_addr_timing_check(14);
+ always @(addr_in[ 8]) cmd_addr_timing_check(15);
+ always @(addr_in[ 9]) cmd_addr_timing_check(16);
+ always @(addr_in[10]) cmd_addr_timing_check(17);
+ always @(addr_in[11]) cmd_addr_timing_check(18);
+ always @(addr_in[12]) cmd_addr_timing_check(19);
+ always @(addr_in[13]) cmd_addr_timing_check(20);
+ always @(addr_in[14]) cmd_addr_timing_check(21);
+ always @(addr_in[15]) cmd_addr_timing_check(22);
+ always @(addr_in[16]) cmd_addr_timing_check(23);
+
+ // Processes to check setup and hold of data signals
+ task dm_timing_check;
+ input i;
+ reg [4:0] i;
+ begin
+ if (dqs_in_valid) begin
+ if ($time - tm_dqs[i] < TDH)
+ $display ("%m: at time %t ERROR: tDH violation on DM bit %d by %t", $time, i, tm_dqs[i] + TDH - $time);
+ if (check_dm_tdipw[i]) begin
+ if ($time - tm_dm[i] < TDIPW)
+ $display ("%m: at time %t ERROR: tDIPW violation on DM bit %d by %t", $time, i, tm_dm[i] + TDIPW - $time);
+ end
+ end
+ check_dm_tdipw[i] <= 1'b0;
+ tm_dm[i] = $time;
+ end
+ endtask
+
+ always @(dm_in[ 0]) dm_timing_check( 0);
+ always @(dm_in[ 1]) dm_timing_check( 1);
+ always @(dm_in[ 2]) dm_timing_check( 2);
+ always @(dm_in[ 3]) dm_timing_check( 3);
+ always @(dm_in[ 4]) dm_timing_check( 4);
+ always @(dm_in[ 5]) dm_timing_check( 5);
+ always @(dm_in[ 6]) dm_timing_check( 6);
+ always @(dm_in[ 7]) dm_timing_check( 7);
+ always @(dm_in[ 8]) dm_timing_check( 8);
+ always @(dm_in[ 9]) dm_timing_check( 9);
+ always @(dm_in[10]) dm_timing_check(10);
+ always @(dm_in[11]) dm_timing_check(11);
+ always @(dm_in[12]) dm_timing_check(12);
+ always @(dm_in[13]) dm_timing_check(13);
+ always @(dm_in[14]) dm_timing_check(14);
+ always @(dm_in[15]) dm_timing_check(15);
+
+ always @(dm_in[16]) dm_timing_check(16);
+ always @(dm_in[17]) dm_timing_check(17);
+ always @(dm_in[18]) dm_timing_check(18);
+ always @(dm_in[19]) dm_timing_check(19);
+ always @(dm_in[20]) dm_timing_check(20);
+ always @(dm_in[21]) dm_timing_check(21);
+ always @(dm_in[22]) dm_timing_check(22);
+ always @(dm_in[23]) dm_timing_check(23);
+ always @(dm_in[24]) dm_timing_check(24);
+ always @(dm_in[25]) dm_timing_check(25);
+ always @(dm_in[26]) dm_timing_check(26);
+ always @(dm_in[27]) dm_timing_check(27);
+ always @(dm_in[28]) dm_timing_check(28);
+ always @(dm_in[29]) dm_timing_check(29);
+ always @(dm_in[30]) dm_timing_check(30);
+ always @(dm_in[31]) dm_timing_check(31);
+
+ task dq_timing_check;
+ input i;
+ reg [6:0] i;
+ begin
+ if (dqs_in_valid) begin
+ if ($time - tm_dqs[i/(`DQ_PER_DQS)] < TDH)
+ $display ("%m: at time %t ERROR: tDH violation on DQ bit %d by %t", $time, i, tm_dqs[i/`DQ_PER_DQS] + TDH - $time);
+ if (check_dq_tdipw[i]) begin
+ if ($time - tm_dq[i] < TDIPW)
+ $display ("%m: at time %t ERROR: tDIPW violation on DQ bit %d by %t", $time, i, tm_dq[i] + TDIPW - $time);
+ end
+ end
+ check_dq_tdipw[i] <= 1'b0;
+ tm_dq[i] = $time;
+ end
+ endtask
+
+ always @(dq_in[ 0]) dq_timing_check( 0);
+ always @(dq_in[ 1]) dq_timing_check( 1);
+ always @(dq_in[ 2]) dq_timing_check( 2);
+ always @(dq_in[ 3]) dq_timing_check( 3);
+ always @(dq_in[ 4]) dq_timing_check( 4);
+ always @(dq_in[ 5]) dq_timing_check( 5);
+ always @(dq_in[ 6]) dq_timing_check( 6);
+ always @(dq_in[ 7]) dq_timing_check( 7);
+ always @(dq_in[ 8]) dq_timing_check( 8);
+ always @(dq_in[ 9]) dq_timing_check( 9);
+ always @(dq_in[10]) dq_timing_check(10);
+ always @(dq_in[11]) dq_timing_check(11);
+ always @(dq_in[12]) dq_timing_check(12);
+ always @(dq_in[13]) dq_timing_check(13);
+ always @(dq_in[14]) dq_timing_check(14);
+ always @(dq_in[15]) dq_timing_check(15);
+ always @(dq_in[16]) dq_timing_check(16);
+ always @(dq_in[17]) dq_timing_check(17);
+ always @(dq_in[18]) dq_timing_check(18);
+ always @(dq_in[19]) dq_timing_check(19);
+ always @(dq_in[20]) dq_timing_check(20);
+ always @(dq_in[21]) dq_timing_check(21);
+ always @(dq_in[22]) dq_timing_check(22);
+ always @(dq_in[23]) dq_timing_check(23);
+ always @(dq_in[24]) dq_timing_check(24);
+ always @(dq_in[25]) dq_timing_check(25);
+ always @(dq_in[26]) dq_timing_check(26);
+ always @(dq_in[27]) dq_timing_check(27);
+ always @(dq_in[28]) dq_timing_check(28);
+ always @(dq_in[29]) dq_timing_check(29);
+ always @(dq_in[30]) dq_timing_check(30);
+ always @(dq_in[31]) dq_timing_check(31);
+ always @(dq_in[32]) dq_timing_check(32);
+ always @(dq_in[33]) dq_timing_check(33);
+ always @(dq_in[34]) dq_timing_check(34);
+ always @(dq_in[35]) dq_timing_check(35);
+ always @(dq_in[36]) dq_timing_check(36);
+ always @(dq_in[37]) dq_timing_check(37);
+ always @(dq_in[38]) dq_timing_check(38);
+ always @(dq_in[39]) dq_timing_check(39);
+ always @(dq_in[40]) dq_timing_check(40);
+ always @(dq_in[41]) dq_timing_check(41);
+ always @(dq_in[42]) dq_timing_check(42);
+ always @(dq_in[43]) dq_timing_check(43);
+ always @(dq_in[44]) dq_timing_check(44);
+ always @(dq_in[45]) dq_timing_check(45);
+ always @(dq_in[46]) dq_timing_check(46);
+ always @(dq_in[47]) dq_timing_check(47);
+ always @(dq_in[48]) dq_timing_check(48);
+ always @(dq_in[49]) dq_timing_check(49);
+ always @(dq_in[50]) dq_timing_check(50);
+ always @(dq_in[51]) dq_timing_check(51);
+ always @(dq_in[52]) dq_timing_check(52);
+ always @(dq_in[53]) dq_timing_check(53);
+ always @(dq_in[54]) dq_timing_check(54);
+ always @(dq_in[55]) dq_timing_check(55);
+ always @(dq_in[56]) dq_timing_check(56);
+ always @(dq_in[57]) dq_timing_check(57);
+ always @(dq_in[58]) dq_timing_check(58);
+ always @(dq_in[59]) dq_timing_check(59);
+ always @(dq_in[60]) dq_timing_check(60);
+ always @(dq_in[61]) dq_timing_check(61);
+ always @(dq_in[62]) dq_timing_check(62);
+ always @(dq_in[63]) dq_timing_check(63);
+
+ always @(dq_in[64]) dq_timing_check(64);
+ always @(dq_in[65]) dq_timing_check(65);
+ always @(dq_in[66]) dq_timing_check(66);
+ always @(dq_in[67]) dq_timing_check(67);
+ always @(dq_in[68]) dq_timing_check(68);
+ always @(dq_in[69]) dq_timing_check(69);
+ always @(dq_in[70]) dq_timing_check(70);
+ always @(dq_in[71]) dq_timing_check(71);
+ always @(dq_in[72]) dq_timing_check(72);
+ always @(dq_in[73]) dq_timing_check(73);
+ always @(dq_in[74]) dq_timing_check(74);
+ always @(dq_in[75]) dq_timing_check(75);
+ always @(dq_in[76]) dq_timing_check(76);
+ always @(dq_in[77]) dq_timing_check(77);
+ always @(dq_in[78]) dq_timing_check(78);
+ always @(dq_in[79]) dq_timing_check(79);
+ always @(dq_in[80]) dq_timing_check(80);
+ always @(dq_in[81]) dq_timing_check(81);
+ always @(dq_in[82]) dq_timing_check(82);
+ always @(dq_in[83]) dq_timing_check(83);
+ always @(dq_in[84]) dq_timing_check(84);
+ always @(dq_in[85]) dq_timing_check(85);
+ always @(dq_in[86]) dq_timing_check(86);
+ always @(dq_in[87]) dq_timing_check(87);
+ always @(dq_in[88]) dq_timing_check(88);
+ always @(dq_in[89]) dq_timing_check(89);
+ always @(dq_in[90]) dq_timing_check(90);
+ always @(dq_in[91]) dq_timing_check(91);
+ always @(dq_in[92]) dq_timing_check(92);
+ always @(dq_in[93]) dq_timing_check(93);
+ always @(dq_in[94]) dq_timing_check(94);
+ always @(dq_in[95]) dq_timing_check(95);
+ always @(dq_in[96]) dq_timing_check(96);
+ always @(dq_in[97]) dq_timing_check(97);
+ always @(dq_in[98]) dq_timing_check(98);
+ always @(dq_in[99]) dq_timing_check(99);
+ always @(dq_in[100]) dq_timing_check(100);
+ always @(dq_in[101]) dq_timing_check(101);
+ always @(dq_in[102]) dq_timing_check(102);
+ always @(dq_in[103]) dq_timing_check(103);
+ always @(dq_in[104]) dq_timing_check(104);
+ always @(dq_in[105]) dq_timing_check(105);
+ always @(dq_in[106]) dq_timing_check(106);
+ always @(dq_in[107]) dq_timing_check(107);
+ always @(dq_in[108]) dq_timing_check(108);
+ always @(dq_in[109]) dq_timing_check(109);
+ always @(dq_in[110]) dq_timing_check(110);
+ always @(dq_in[111]) dq_timing_check(111);
+ always @(dq_in[112]) dq_timing_check(112);
+ always @(dq_in[113]) dq_timing_check(113);
+ always @(dq_in[114]) dq_timing_check(114);
+ always @(dq_in[115]) dq_timing_check(115);
+ always @(dq_in[116]) dq_timing_check(116);
+ always @(dq_in[117]) dq_timing_check(117);
+ always @(dq_in[118]) dq_timing_check(118);
+ always @(dq_in[119]) dq_timing_check(119);
+ always @(dq_in[120]) dq_timing_check(120);
+ always @(dq_in[121]) dq_timing_check(121);
+ always @(dq_in[122]) dq_timing_check(122);
+ always @(dq_in[123]) dq_timing_check(123);
+ always @(dq_in[124]) dq_timing_check(124);
+ always @(dq_in[125]) dq_timing_check(125);
+ always @(dq_in[126]) dq_timing_check(126);
+ always @(dq_in[127]) dq_timing_check(127);
+
+ task dqs_pos_timing_check;
+ input i;
+ reg [5:0] i;
+ reg [4:0] j;
+ begin
+ if (write_levelization && i<32) begin
+ if (ck_cntr - ck_load_mode < TWLMRD)
+ $display ("%m: at time %t ERROR: tWLMRD violation on DQS bit %d positive edge.", $time, i);
+ if (($time - tm_ck_pos < TWLS) || ($time - tm_ck_neg < TWLS))
+ $display ("%m: at time %t WARNING: tWLS violation on DQS bit %d positive edge. Indeterminate CK capture is possible.", $time, i);
+ if (DEBUG)
+ $display ("%m: at time %t Write Leveling @ DQS ck = %b", $time, diff_ck);
+ dq_out_en_dly[i*`DQ_PER_DQS] <= #(TWLO) 1'b1;
+ dq_out_dly[i*`DQ_PER_DQS] <= #(TWLO) diff_ck;
+`ifdef WL_ALLDQ
+ for (j=1; j<`DQ_PER_DQS; j=j+1) begin
+ dq_out_en_dly[i*`DQ_PER_DQS+j] <= #(TWLO) 1'b1;
+ dq_out_dly[i*`DQ_PER_DQS+j] <= #(TWLO) diff_ck;
+ end
+`else
+ for (j=1; j<`DQ_PER_DQS; j=j+1) begin
+ dq_out_en_dly[i*`DQ_PER_DQS+j] <= #(TWLO + TWLOE) 1'b1;
+ dq_out_dly[i*`DQ_PER_DQS+j] <= #(TWLO + TWLOE) 1'b0;
+ end
+`endif
+ end
+ if (dqs_in_valid && ((wdqs_pos_cntr[i] < wr_burst_length/2) || b2b_write)) begin
+ if (dqs_in[i] ^ prev_dqs_in[i]) begin
+ if (dll_locked) begin
+ if (check_write_preamble[i]) begin
+ if ($time - tm_dqs_pos[i] < $rtoi(TWPRE*tck_avg))
+ $display ("%m: at time %t ERROR: tWPRE violation on %s bit %d", $time, dqs_string[i/32], i%32);
+ end else if (check_write_postamble[i]) begin
+ if ($time - tm_dqs_neg[i] < $rtoi(TWPST*tck_avg))
+ $display ("%m: at time %t ERROR: tWPST violation on %s bit %d", $time, dqs_string[i/32], i%32);
+ end else begin
+ if ($time - tm_dqs_neg[i] < $rtoi(TDQSL*tck_avg))
+ $display ("%m: at time %t ERROR: tDQSL violation on %s bit %d", $time, dqs_string[i/32], i%32);
+ end
+ end
+ if ($time - tm_dm[i%32] < TDS)
+ $display ("%m: at time %t ERROR: tDS violation on DM bit %d by %t", $time, i, tm_dm[i%32] + TDS - $time);
+ if (!dq_out_en) begin
+ for (j=0; j<`DQ_PER_DQS; j=j+1) begin
+ if ($time - tm_dq[(i%32)*`DQ_PER_DQS+j] < TDS)
+ $display ("%m: at time %t ERROR: tDS violation on DQ bit %d by %t", $time, i*`DQ_PER_DQS+j, tm_dq[(i%32)*`DQ_PER_DQS+j] + TDS - $time);
+ check_dq_tdipw[(i%32)*`DQ_PER_DQS+j] <= 1'b1;
+ end
+ end
+ if ((wdqs_pos_cntr[i] < wr_burst_length/2) && !b2b_write) begin
+ wdqs_pos_cntr[i] <= wdqs_pos_cntr[i] + 1;
+ end else begin
+ wdqs_pos_cntr[i] <= 1;
+ end
+ check_dm_tdipw[i%32] <= 1'b1;
+ check_write_preamble[i] <= 1'b0;
+ check_write_postamble[i] <= 1'b0;
+ check_write_dqs_low[i] <= 1'b0;
+ tm_dqs[i%32] <= $time;
+ end else begin
+ $display ("%m: at time %t ERROR: Invalid latching edge on %s bit %d", $time, dqs_string[i/32], i%32);
+ end
+ end
+ tm_dqss_pos[i] <= $time;
+ tm_dqs_pos[i] = $time;
+ prev_dqs_in[i] <= dqs_in[i];
+ end
+ endtask
+
+ always @(posedge dqs_in[ 0]) if ( dqs_in[ 0]) dqs_pos_timing_check( 0);
+ always @(posedge dqs_in[ 1]) if ( dqs_in[ 1]) dqs_pos_timing_check( 1);
+ always @(posedge dqs_in[ 2]) if ( dqs_in[ 2]) dqs_pos_timing_check( 2);
+ always @(posedge dqs_in[ 3]) if ( dqs_in[ 3]) dqs_pos_timing_check( 3);
+ always @(posedge dqs_in[ 4]) if ( dqs_in[ 4]) dqs_pos_timing_check( 4);
+ always @(posedge dqs_in[ 5]) if ( dqs_in[ 5]) dqs_pos_timing_check( 5);
+ always @(posedge dqs_in[ 6]) if ( dqs_in[ 6]) dqs_pos_timing_check( 6);
+ always @(posedge dqs_in[ 7]) if ( dqs_in[ 7]) dqs_pos_timing_check( 7);
+ always @(posedge dqs_in[ 8]) if ( dqs_in[ 8]) dqs_pos_timing_check( 8);
+ always @(posedge dqs_in[ 9]) if ( dqs_in[ 9]) dqs_pos_timing_check( 9);
+ always @(posedge dqs_in[10]) if ( dqs_in[10]) dqs_pos_timing_check(10);
+ always @(posedge dqs_in[11]) if ( dqs_in[11]) dqs_pos_timing_check(11);
+ always @(posedge dqs_in[12]) if ( dqs_in[12]) dqs_pos_timing_check(12);
+ always @(posedge dqs_in[13]) if ( dqs_in[13]) dqs_pos_timing_check(13);
+ always @(posedge dqs_in[14]) if ( dqs_in[14]) dqs_pos_timing_check(14);
+ always @(posedge dqs_in[15]) if ( dqs_in[15]) dqs_pos_timing_check(15);
+ always @(posedge dqs_in[16]) if ( dqs_in[16]) dqs_pos_timing_check(16);
+ always @(posedge dqs_in[17]) if ( dqs_in[17]) dqs_pos_timing_check(17);
+ always @(posedge dqs_in[18]) if ( dqs_in[18]) dqs_pos_timing_check(18);
+ always @(posedge dqs_in[19]) if ( dqs_in[19]) dqs_pos_timing_check(19);
+ always @(posedge dqs_in[20]) if ( dqs_in[20]) dqs_pos_timing_check(20);
+ always @(posedge dqs_in[21]) if ( dqs_in[21]) dqs_pos_timing_check(21);
+ always @(posedge dqs_in[22]) if ( dqs_in[22]) dqs_pos_timing_check(22);
+ always @(posedge dqs_in[23]) if ( dqs_in[23]) dqs_pos_timing_check(23);
+ always @(posedge dqs_in[24]) if ( dqs_in[24]) dqs_pos_timing_check(24);
+ always @(posedge dqs_in[25]) if ( dqs_in[25]) dqs_pos_timing_check(25);
+ always @(posedge dqs_in[26]) if ( dqs_in[26]) dqs_pos_timing_check(26);
+ always @(posedge dqs_in[27]) if ( dqs_in[27]) dqs_pos_timing_check(27);
+ always @(posedge dqs_in[28]) if ( dqs_in[28]) dqs_pos_timing_check(28);
+ always @(posedge dqs_in[29]) if ( dqs_in[29]) dqs_pos_timing_check(29);
+ always @(posedge dqs_in[30]) if ( dqs_in[30]) dqs_pos_timing_check(30);
+ always @(posedge dqs_in[31]) if ( dqs_in[31]) dqs_pos_timing_check(31);
+
+ always @(negedge dqs_in[32]) if (!dqs_in[32]) dqs_pos_timing_check(32);
+ always @(negedge dqs_in[33]) if (!dqs_in[33]) dqs_pos_timing_check(33);
+ always @(negedge dqs_in[34]) if (!dqs_in[34]) dqs_pos_timing_check(34);
+ always @(negedge dqs_in[35]) if (!dqs_in[35]) dqs_pos_timing_check(35);
+ always @(negedge dqs_in[36]) if (!dqs_in[36]) dqs_pos_timing_check(36);
+ always @(negedge dqs_in[37]) if (!dqs_in[37]) dqs_pos_timing_check(37);
+ always @(negedge dqs_in[38]) if (!dqs_in[38]) dqs_pos_timing_check(38);
+ always @(negedge dqs_in[39]) if (!dqs_in[39]) dqs_pos_timing_check(39);
+ always @(negedge dqs_in[40]) if (!dqs_in[40]) dqs_pos_timing_check(40);
+ always @(negedge dqs_in[41]) if (!dqs_in[41]) dqs_pos_timing_check(41);
+ always @(negedge dqs_in[42]) if (!dqs_in[42]) dqs_pos_timing_check(42);
+ always @(negedge dqs_in[43]) if (!dqs_in[43]) dqs_pos_timing_check(43);
+ always @(negedge dqs_in[44]) if (!dqs_in[44]) dqs_pos_timing_check(44);
+ always @(negedge dqs_in[45]) if (!dqs_in[45]) dqs_pos_timing_check(45);
+ always @(negedge dqs_in[46]) if (!dqs_in[46]) dqs_pos_timing_check(46);
+ always @(negedge dqs_in[47]) if (!dqs_in[47]) dqs_pos_timing_check(47);
+ always @(negedge dqs_in[48]) if (!dqs_in[48]) dqs_pos_timing_check(48);
+ always @(negedge dqs_in[49]) if (!dqs_in[49]) dqs_pos_timing_check(49);
+ always @(negedge dqs_in[50]) if (!dqs_in[50]) dqs_pos_timing_check(50);
+ always @(negedge dqs_in[51]) if (!dqs_in[51]) dqs_pos_timing_check(51);
+ always @(negedge dqs_in[52]) if (!dqs_in[52]) dqs_pos_timing_check(52);
+ always @(negedge dqs_in[53]) if (!dqs_in[53]) dqs_pos_timing_check(53);
+ always @(negedge dqs_in[54]) if (!dqs_in[54]) dqs_pos_timing_check(54);
+ always @(negedge dqs_in[55]) if (!dqs_in[55]) dqs_pos_timing_check(55);
+ always @(negedge dqs_in[56]) if (!dqs_in[56]) dqs_pos_timing_check(56);
+ always @(negedge dqs_in[57]) if (!dqs_in[57]) dqs_pos_timing_check(57);
+ always @(negedge dqs_in[58]) if (!dqs_in[58]) dqs_pos_timing_check(58);
+ always @(negedge dqs_in[59]) if (!dqs_in[59]) dqs_pos_timing_check(59);
+ always @(negedge dqs_in[60]) if (!dqs_in[60]) dqs_pos_timing_check(60);
+ always @(negedge dqs_in[61]) if (!dqs_in[61]) dqs_pos_timing_check(61);
+ always @(negedge dqs_in[62]) if (!dqs_in[62]) dqs_pos_timing_check(62);
+ always @(negedge dqs_in[63]) if (!dqs_in[63]) dqs_pos_timing_check(63);
+
+ task dqs_neg_timing_check;
+ input i;
+ reg [5:0] i;
+ reg [4:0] j;
+ begin
+ if (write_levelization && i<32) begin
+ if (ck_cntr - ck_load_mode < TWLDQSEN)
+ $display ("%m: at time %t ERROR: tWLDQSEN violation on DQS bit %d.", $time, i);
+ if ($time - tm_dqs_pos[i] < $rtoi(TDQSH*tck_avg))
+ $display ("%m: at time %t ERROR: tDQSH violation on DQS bit %d by %t", $time, i, tm_dqs_pos[i] + TDQSH*tck_avg - $time);
+ end
+ if (dqs_in_valid && (wdqs_pos_cntr[i] > 0) && check_write_dqs_high[i]) begin
+ if (dqs_in[i] ^ prev_dqs_in[i]) begin
+ if (dll_locked) begin
+ if ($time - tm_dqs_pos[i] < $rtoi(TDQSH*tck_avg))
+ $display ("%m: at time %t ERROR: tDQSH violation on %s bit %d", $time, dqs_string[i/32], i%32);
+ if ($time - tm_ck_pos < $rtoi(TDSH*tck_avg))
+ $display ("%m: at time %t ERROR: tDSH violation on %s bit %d", $time, dqs_string[i/32], i%32);
+ end
+ if ($time - tm_dm[i%32] < TDS)
+ $display ("%m: at time %t ERROR: tDS violation on DM bit %d by %t", $time, i, tm_dm[i%32] + TDS - $time);
+ if (!dq_out_en) begin
+ for (j=0; j<`DQ_PER_DQS; j=j+1) begin
+ if ($time - tm_dq[(i%32)*`DQ_PER_DQS+j] < TDS)
+ $display ("%m: at time %t ERROR: tDS violation on DQ bit %d by %t", $time, i*`DQ_PER_DQS+j, tm_dq[(i%32)*`DQ_PER_DQS+j] + TDS - $time);
+ check_dq_tdipw[(i%32)*`DQ_PER_DQS+j] <= 1'b1;
+ end
+ end
+ check_dm_tdipw[i%32] <= 1'b1;
+ tm_dqs[i%32] <= $time;
+ end else begin
+ $display ("%m: at time %t ERROR: Invalid latching edge on %s bit %d", $time, dqs_string[i/32], i%32);
+ end
+ end
+ check_write_dqs_high[i] <= 1'b0;
+ tm_dqs_neg[i] = $time;
+ prev_dqs_in[i] <= dqs_in[i];
+ end
+ endtask
+
+ always @(negedge dqs_in[ 0]) if (!dqs_in[ 0]) dqs_neg_timing_check( 0);
+ always @(negedge dqs_in[ 1]) if (!dqs_in[ 1]) dqs_neg_timing_check( 1);
+ always @(negedge dqs_in[ 2]) if (!dqs_in[ 2]) dqs_neg_timing_check( 2);
+ always @(negedge dqs_in[ 3]) if (!dqs_in[ 3]) dqs_neg_timing_check( 3);
+ always @(negedge dqs_in[ 4]) if (!dqs_in[ 4]) dqs_neg_timing_check( 4);
+ always @(negedge dqs_in[ 5]) if (!dqs_in[ 5]) dqs_neg_timing_check( 5);
+ always @(negedge dqs_in[ 6]) if (!dqs_in[ 6]) dqs_neg_timing_check( 6);
+ always @(negedge dqs_in[ 7]) if (!dqs_in[ 7]) dqs_neg_timing_check( 7);
+ always @(negedge dqs_in[ 8]) if (!dqs_in[ 8]) dqs_neg_timing_check( 8);
+ always @(negedge dqs_in[ 9]) if (!dqs_in[ 9]) dqs_neg_timing_check( 9);
+ always @(negedge dqs_in[10]) if (!dqs_in[10]) dqs_neg_timing_check(10);
+ always @(negedge dqs_in[11]) if (!dqs_in[11]) dqs_neg_timing_check(11);
+ always @(negedge dqs_in[12]) if (!dqs_in[12]) dqs_neg_timing_check(12);
+ always @(negedge dqs_in[13]) if (!dqs_in[13]) dqs_neg_timing_check(13);
+ always @(negedge dqs_in[14]) if (!dqs_in[14]) dqs_neg_timing_check(14);
+ always @(negedge dqs_in[15]) if (!dqs_in[15]) dqs_neg_timing_check(15);
+ always @(negedge dqs_in[16]) if (!dqs_in[16]) dqs_neg_timing_check(16);
+ always @(negedge dqs_in[17]) if (!dqs_in[17]) dqs_neg_timing_check(17);
+ always @(negedge dqs_in[18]) if (!dqs_in[18]) dqs_neg_timing_check(18);
+ always @(negedge dqs_in[19]) if (!dqs_in[19]) dqs_neg_timing_check(19);
+ always @(negedge dqs_in[20]) if (!dqs_in[20]) dqs_neg_timing_check(20);
+ always @(negedge dqs_in[21]) if (!dqs_in[21]) dqs_neg_timing_check(21);
+ always @(negedge dqs_in[22]) if (!dqs_in[22]) dqs_neg_timing_check(22);
+ always @(negedge dqs_in[23]) if (!dqs_in[23]) dqs_neg_timing_check(23);
+ always @(negedge dqs_in[24]) if (!dqs_in[24]) dqs_neg_timing_check(24);
+ always @(negedge dqs_in[25]) if (!dqs_in[25]) dqs_neg_timing_check(25);
+ always @(negedge dqs_in[26]) if (!dqs_in[26]) dqs_neg_timing_check(26);
+ always @(negedge dqs_in[27]) if (!dqs_in[27]) dqs_neg_timing_check(27);
+ always @(negedge dqs_in[28]) if (!dqs_in[28]) dqs_neg_timing_check(28);
+ always @(negedge dqs_in[29]) if (!dqs_in[29]) dqs_neg_timing_check(29);
+ always @(negedge dqs_in[30]) if (!dqs_in[30]) dqs_neg_timing_check(30);
+ always @(negedge dqs_in[31]) if (!dqs_in[31]) dqs_neg_timing_check(31);
+
+ always @(posedge dqs_in[32]) if ( dqs_in[32]) dqs_neg_timing_check(32);
+ always @(posedge dqs_in[33]) if ( dqs_in[33]) dqs_neg_timing_check(33);
+ always @(posedge dqs_in[34]) if ( dqs_in[34]) dqs_neg_timing_check(34);
+ always @(posedge dqs_in[35]) if ( dqs_in[35]) dqs_neg_timing_check(35);
+ always @(posedge dqs_in[36]) if ( dqs_in[36]) dqs_neg_timing_check(36);
+ always @(posedge dqs_in[37]) if ( dqs_in[37]) dqs_neg_timing_check(37);
+ always @(posedge dqs_in[38]) if ( dqs_in[38]) dqs_neg_timing_check(38);
+ always @(posedge dqs_in[39]) if ( dqs_in[39]) dqs_neg_timing_check(39);
+ always @(posedge dqs_in[40]) if ( dqs_in[40]) dqs_neg_timing_check(40);
+ always @(posedge dqs_in[41]) if ( dqs_in[41]) dqs_neg_timing_check(41);
+ always @(posedge dqs_in[42]) if ( dqs_in[42]) dqs_neg_timing_check(42);
+ always @(posedge dqs_in[43]) if ( dqs_in[43]) dqs_neg_timing_check(43);
+ always @(posedge dqs_in[44]) if ( dqs_in[44]) dqs_neg_timing_check(44);
+ always @(posedge dqs_in[45]) if ( dqs_in[45]) dqs_neg_timing_check(45);
+ always @(posedge dqs_in[46]) if ( dqs_in[46]) dqs_neg_timing_check(46);
+ always @(posedge dqs_in[47]) if ( dqs_in[47]) dqs_neg_timing_check(47);
+ always @(posedge dqs_in[48]) if ( dqs_in[48]) dqs_neg_timing_check(48);
+ always @(posedge dqs_in[49]) if ( dqs_in[49]) dqs_neg_timing_check(49);
+ always @(posedge dqs_in[50]) if ( dqs_in[50]) dqs_neg_timing_check(50);
+ always @(posedge dqs_in[51]) if ( dqs_in[51]) dqs_neg_timing_check(51);
+ always @(posedge dqs_in[52]) if ( dqs_in[52]) dqs_neg_timing_check(52);
+ always @(posedge dqs_in[53]) if ( dqs_in[53]) dqs_neg_timing_check(53);
+ always @(posedge dqs_in[54]) if ( dqs_in[54]) dqs_neg_timing_check(54);
+ always @(posedge dqs_in[55]) if ( dqs_in[55]) dqs_neg_timing_check(55);
+ always @(posedge dqs_in[56]) if ( dqs_in[56]) dqs_neg_timing_check(56);
+ always @(posedge dqs_in[57]) if ( dqs_in[57]) dqs_neg_timing_check(57);
+ always @(posedge dqs_in[58]) if ( dqs_in[58]) dqs_neg_timing_check(58);
+ always @(posedge dqs_in[59]) if ( dqs_in[59]) dqs_neg_timing_check(59);
+ always @(posedge dqs_in[60]) if ( dqs_in[60]) dqs_neg_timing_check(60);
+ always @(posedge dqs_in[61]) if ( dqs_in[61]) dqs_neg_timing_check(61);
+ always @(posedge dqs_in[62]) if ( dqs_in[62]) dqs_neg_timing_check(62);
+ always @(posedge dqs_in[63]) if ( dqs_in[63]) dqs_neg_timing_check(63);
+
+endmodule