/* Cost of a computation. */
struct comp_cost
{
+ comp_cost (): cost (0), complexity (0), scratch (0)
+ {}
+
+ comp_cost (int cost, unsigned complexity, int scratch = 0)
+ : cost (cost), complexity (complexity), scratch (scratch)
+ {}
+
+ /* Returns true if COST is infinite. */
+ bool infinite_cost_p ();
+
+ /* Adds costs COST1 and COST2. */
+ friend comp_cost operator+ (comp_cost cost1, comp_cost cost2);
+
+ /* Adds COST to the comp_cost. */
+ comp_cost operator+= (comp_cost cost);
+
+ /* Adds constant C to this comp_cost. */
+ comp_cost operator+= (HOST_WIDE_INT c);
+
+ /* Subtracts constant C to this comp_cost. */
+ comp_cost operator-= (HOST_WIDE_INT c);
+
+ /* Divide the comp_cost by constant C. */
+ comp_cost operator/= (HOST_WIDE_INT c);
+
+ /* Multiply the comp_cost by constant C. */
+ comp_cost operator*= (HOST_WIDE_INT c);
+
+ /* Subtracts costs COST1 and COST2. */
+ friend comp_cost operator- (comp_cost cost1, comp_cost cost2);
+
+ /* Subtracts COST from this comp_cost. */
+ comp_cost operator-= (comp_cost cost);
+
+ /* Returns true if COST1 is smaller than COST2. */
+ friend bool operator< (comp_cost cost1, comp_cost cost2);
+
+ /* Returns true if COST1 and COST2 are equal. */
+ friend bool operator== (comp_cost cost1, comp_cost cost2);
+
+ /* Returns true if COST1 is smaller or equal than COST2. */
+ friend bool operator<= (comp_cost cost1, comp_cost cost2);
+
int cost; /* The runtime cost. */
- unsigned complexity; /* The estimate of the complexity of the code for
+ unsigned complexity; /* The estimate of the complexity of the code for
the computation (in no concrete units --
complexity field should be larger for more
complex expressions and addressing modes). */
int scratch; /* Scratch used during cost computation. */
};
-static const comp_cost no_cost = {0, 0, 0};
-static const comp_cost infinite_cost = {INFTY, INFTY, INFTY};
+static const comp_cost no_cost;
+static const comp_cost infinite_cost (INFTY, INFTY, INFTY);
+
+bool
+comp_cost::infinite_cost_p ()
+{
+ return cost == INFTY;
+}
+
+comp_cost
+operator+ (comp_cost cost1, comp_cost cost2)
+{
+ if (cost1.infinite_cost_p () || cost2.infinite_cost_p ())
+ return infinite_cost;
+
+ cost1.cost += cost2.cost;
+ cost1.complexity += cost2.complexity;
+
+ return cost1;
+}
+
+comp_cost
+operator- (comp_cost cost1, comp_cost cost2)
+{
+ if (cost1.infinite_cost_p ())
+ return infinite_cost;
+
+ gcc_assert (!cost2.infinite_cost_p ());
+
+ cost1.cost -= cost2.cost;
+ cost1.complexity -= cost2.complexity;
+
+ return cost1;
+}
+
+comp_cost
+comp_cost::operator+= (comp_cost cost)
+{
+ *this = *this + cost;
+ return *this;
+}
+
+comp_cost
+comp_cost::operator+= (HOST_WIDE_INT c)
+{
+ if (infinite_cost_p ())
+ return *this;
+
+ this->cost += c;
+
+ return *this;
+}
+
+comp_cost
+comp_cost::operator-= (HOST_WIDE_INT c)
+{
+ if (infinite_cost_p ())
+ return *this;
+
+ this->cost -= c;
+
+ return *this;
+}
+
+comp_cost
+comp_cost::operator/= (HOST_WIDE_INT c)
+{
+ if (infinite_cost_p ())
+ return *this;
+
+ this->cost /= c;
+
+ return *this;
+}
+
+comp_cost
+comp_cost::operator*= (HOST_WIDE_INT c)
+{
+ if (infinite_cost_p ())
+ return *this;
+
+ this->cost *= c;
+
+ return *this;
+}
+
+comp_cost
+comp_cost::operator-= (comp_cost cost)
+{
+ *this = *this - cost;
+ return *this;
+}
+
+bool
+operator< (comp_cost cost1, comp_cost cost2)
+{
+ if (cost1.cost == cost2.cost)
+ return cost1.complexity < cost2.complexity;
+
+ return cost1.cost < cost2.cost;
+}
+
+bool
+operator== (comp_cost cost1, comp_cost cost2)
+{
+ return cost1.cost == cost2.cost
+ && cost1.complexity == cost2.complexity;
+}
+
+bool
+operator<= (comp_cost cost1, comp_cost cost2)
+{
+ return cost1 < cost2 || cost1 == cost2;
+}
struct iv_inv_expr_ent;
}
}
-/* Returns description of computation cost of expression whose runtime
- cost is RUNTIME and complexity corresponds to COMPLEXITY. */
-
-static comp_cost
-new_cost (unsigned runtime, unsigned complexity)
-{
- comp_cost cost;
-
- cost.cost = runtime;
- cost.complexity = complexity;
-
- return cost;
-}
-
-/* Returns true if COST is infinite. */
-
-static bool
-infinite_cost_p (comp_cost cost)
-{
- return cost.cost == INFTY;
-}
-
-/* Adds costs COST1 and COST2. */
-
-static comp_cost
-add_costs (comp_cost cost1, comp_cost cost2)
-{
- if (infinite_cost_p (cost1) || infinite_cost_p (cost2))
- return infinite_cost;
-
- cost1.cost += cost2.cost;
- cost1.complexity += cost2.complexity;
-
- return cost1;
-}
-/* Subtracts costs COST1 and COST2. */
-
-static comp_cost
-sub_costs (comp_cost cost1, comp_cost cost2)
-{
- cost1.cost -= cost2.cost;
- cost1.complexity -= cost2.complexity;
-
- return cost1;
-}
-
-/* Returns a negative number if COST1 < COST2, a positive number if
- COST1 > COST2, and 0 if COST1 = COST2. */
-
-static int
-compare_costs (comp_cost cost1, comp_cost cost2)
-{
- if (cost1.cost == cost2.cost)
- return cost1.complexity - cost2.complexity;
-
- return cost1.cost - cost2.cost;
-}
-
/* Sets cost of (GROUP, CAND) pair to COST and record that it depends
on invariants DEPENDS_ON and that the value used in expressing it
is VALUE, and in case of iv elimination the comparison operator is COMP. */
{
unsigned i, s;
- if (infinite_cost_p (cost))
+ if (cost.infinite_cost_p ())
{
BITMAP_FREE (depends_on);
return;
else
acost = data->costs[symbol_present][var_present][offset_p][ratio_p];
complexity = (symbol_present != 0) + (var_present != 0) + offset_p + ratio_p;
- return new_cost (cost + acost, complexity);
+ return comp_cost (cost + acost, complexity);
}
/* Calculate the SPEED or size cost of shiftadd EXPR in MODE. MULT is the
? shiftsub1_cost (speed, mode, m)
: shiftsub0_cost (speed, mode, m)));
- res = new_cost (MIN (as_cost, sa_cost), 0);
- res = add_costs (res, mult_in_op1 ? cost0 : cost1);
+ res = comp_cost (MIN (as_cost, sa_cost), 0);
+ res += (mult_in_op1 ? cost0 : cost1);
STRIP_NOPS (multop);
if (!is_gimple_val (multop))
- res = add_costs (res, force_expr_to_var_cost (multop, speed));
+ res += force_expr_to_var_cost (multop, speed);
*cost = res;
return true;
if (is_gimple_min_invariant (expr))
{
if (TREE_CODE (expr) == INTEGER_CST)
- return new_cost (integer_cost [speed], 0);
+ return comp_cost (integer_cost [speed], 0);
if (TREE_CODE (expr) == ADDR_EXPR)
{
if (TREE_CODE (obj) == VAR_DECL
|| TREE_CODE (obj) == PARM_DECL
|| TREE_CODE (obj) == RESULT_DECL)
- return new_cost (symbol_cost [speed], 0);
+ return comp_cost (symbol_cost [speed], 0);
}
- return new_cost (address_cost [speed], 0);
+ return comp_cost (address_cost [speed], 0);
}
switch (TREE_CODE (expr))
default:
/* Just an arbitrary value, FIXME. */
- return new_cost (target_spill_cost[speed], 0);
+ return comp_cost (target_spill_cost[speed], 0);
}
if (op0 == NULL_TREE
case PLUS_EXPR:
case MINUS_EXPR:
case NEGATE_EXPR:
- cost = new_cost (add_cost (speed, mode), 0);
+ cost = comp_cost (add_cost (speed, mode), 0);
if (TREE_CODE (expr) != NEGATE_EXPR)
{
tree mult = NULL_TREE;
tree inner_mode, outer_mode;
outer_mode = TREE_TYPE (expr);
inner_mode = TREE_TYPE (op0);
- cost = new_cost (convert_cost (TYPE_MODE (outer_mode),
+ cost = comp_cost (convert_cost (TYPE_MODE (outer_mode),
TYPE_MODE (inner_mode), speed), 0);
}
break;
case MULT_EXPR:
if (cst_and_fits_in_hwi (op0))
- cost = new_cost (mult_by_coeff_cost (int_cst_value (op0),
+ cost = comp_cost (mult_by_coeff_cost (int_cst_value (op0),
mode, speed), 0);
else if (cst_and_fits_in_hwi (op1))
- cost = new_cost (mult_by_coeff_cost (int_cst_value (op1),
+ cost = comp_cost (mult_by_coeff_cost (int_cst_value (op1),
mode, speed), 0);
else
- return new_cost (target_spill_cost [speed], 0);
+ return comp_cost (target_spill_cost [speed], 0);
break;
default:
gcc_unreachable ();
}
- cost = add_costs (cost, cost0);
- cost = add_costs (cost, cost1);
+ cost += cost0;
+ cost += cost1;
/* Bound the cost by target_spill_cost. The parts of complicated
computations often are either loop invariant or at least can
if (depends_on)
walk_tree (&addr, find_depends, depends_on, NULL);
- return new_cost (target_spill_cost[data->speed], 0);
+ return comp_cost (target_spill_cost[data->speed], 0);
}
*offset += bitpos / BITS_PER_UNIT;
if (integer_zerop (e1))
{
comp_cost cost = force_var_cost (data, e2, depends_on);
- cost.cost += mult_by_coeff_cost (-1, mode, data->speed);
+ cost += mult_by_coeff_cost (-1, mode, data->speed);
return cost;
}
ubase, build_int_cst (utype, 0),
&symbol_present, &var_present, &offset,
depends_on);
- cost.cost /= avg_loop_niter (data->current_loop);
+ cost /= avg_loop_niter (data->current_loop);
}
else if (ratio == 1)
{
ubase, real_cbase,
&symbol_present, &var_present, &offset,
depends_on);
- cost.cost /= avg_loop_niter (data->current_loop);
+ cost /= avg_loop_niter (data->current_loop);
}
else if (address_p
&& !POINTER_TYPE_P (ctype)
ubase, real_cbase,
&symbol_present, &var_present, &offset,
depends_on);
- cost.cost /= avg_loop_niter (data->current_loop);
+ cost /= avg_loop_niter (data->current_loop);
}
else
{
cost = force_var_cost (data, cbase, depends_on);
- cost = add_costs (cost,
- difference_cost (data,
- ubase, build_int_cst (utype, 0),
- &symbol_present, &var_present,
- &offset, depends_on));
- cost.cost /= avg_loop_niter (data->current_loop);
- cost.cost += add_cost (data->speed, TYPE_MODE (ctype));
+ cost += difference_cost (data, ubase, build_int_cst (utype, 0),
+ &symbol_present, &var_present, &offset,
+ depends_on);
+ cost /= avg_loop_niter (data->current_loop);
+ cost += add_cost (data->speed, TYPE_MODE (ctype));
}
- /* Record setup cost in scrach field. */
+ /* Record setup cost in scratch field. */
cost.scratch = cost.cost;
if (inv_expr && depends_on && *depends_on)
(symbol/var1/const parts may be omitted). If we are looking for an
address, find the cost of addressing this. */
if (address_p)
- return add_costs (cost,
- get_address_cost (symbol_present, var_present,
- offset, ratio, cstepi,
- mem_mode,
- TYPE_ADDR_SPACE (TREE_TYPE (utype)),
- speed, stmt_is_after_inc,
- can_autoinc));
+ return cost + get_address_cost (symbol_present, var_present,
+ offset, ratio, cstepi,
+ mem_mode,
+ TYPE_ADDR_SPACE (TREE_TYPE (utype)),
+ speed, stmt_is_after_inc, can_autoinc);
/* Otherwise estimate the costs for computing the expression. */
if (!symbol_present && !var_present && !offset)
{
if (ratio != 1)
- cost.cost += mult_by_coeff_cost (ratio, TYPE_MODE (ctype), speed);
+ cost += mult_by_coeff_cost (ratio, TYPE_MODE (ctype), speed);
return cost;
}
/* Symbol + offset should be compile-time computable so consider that they
are added once to the variable, if present. */
if (var_present && (symbol_present || offset))
- cost.cost += adjust_setup_cost (data,
+ cost += adjust_setup_cost (data,
add_cost (speed, TYPE_MODE (ctype)));
/* Having offset does not affect runtime cost in case it is added to
if (offset)
cost.complexity++;
- cost.cost += add_cost (speed, TYPE_MODE (ctype));
+ cost += add_cost (speed, TYPE_MODE (ctype));
aratio = ratio > 0 ? ratio : -ratio;
if (aratio != 1)
- cost.cost += mult_by_coeff_cost (aratio, TYPE_MODE (ctype), speed);
+ cost += mult_by_coeff_cost (aratio, TYPE_MODE (ctype), speed);
return cost;
fallback:
if (address_p)
comp = build_simple_mem_ref (comp);
- cost = new_cost (computation_cost (comp, speed), 0);
- cost.scratch = 0;
- return cost;
+ return comp_cost (computation_cost (comp, speed), 0);
}
}
set_group_iv_cost (data, group, cand, cost, depends_on,
NULL_TREE, ERROR_MARK, inv_expr);
- return !infinite_cost_p (cost);
+ return !cost.infinite_cost_p ();
}
/* Determines cost of computing uses in GROUP with CAND in addresses. */
&depends_on, &can_autoinc, &inv_expr);
sum_cost = cost;
- if (!infinite_cost_p (sum_cost) && cand->ainc_use == use)
+ if (!sum_cost.infinite_cost_p () && cand->ainc_use == use)
{
if (can_autoinc)
- sum_cost.cost -= cand->cost_step;
+ sum_cost -= cand->cost_step;
/* If we generated the candidate solely for exploiting autoincrement
opportunities, and it turns out it can't be used, set the cost to
infinity to make sure we ignore it. */
}
/* Uses in a group can share setup code, so only add setup cost once. */
- cost.cost -= cost.scratch;
+ cost -= cost.scratch;
/* Compute and add costs for rest uses of this group. */
- for (i = 1; i < group->vuses.length () && !infinite_cost_p (sum_cost); i++)
+ for (i = 1; i < group->vuses.length () && !sum_cost.infinite_cost_p (); i++)
{
struct iv_use *next = group->vuses[i];
cost = get_computation_cost (data, next, cand, true,
NULL, &can_autoinc, NULL);
/* Remove setup cost. */
- if (!infinite_cost_p (cost))
- cost.cost -= cost.scratch;
+ if (!cost.infinite_cost_p ())
+ cost -= cost.scratch;
}
- sum_cost = add_costs (sum_cost, cost);
+ sum_cost += cost;
}
set_group_iv_cost (data, group, cand, sum_cost, depends_on,
NULL_TREE, ERROR_MARK, inv_expr);
- return !infinite_cost_p (sum_cost);
+ return !sum_cost.infinite_cost_p ();
}
/* Computes value of candidate CAND at position AT in iteration NITER, and
TODO: The constant that we're subtracting from the cost should
be target-dependent. This information should be added to the
target costs for each backend. */
- if (!infinite_cost_p (elim_cost) /* Do not try to decrease infinite! */
+ if (!elim_cost.infinite_cost_p () /* Do not try to decrease infinite! */
&& integer_zerop (*bound_cst)
&& (operand_equal_p (*control_var, cand->var_after, 0)
|| operand_equal_p (*control_var, cand->var_before, 0)))
- elim_cost.cost -= 1;
+ elim_cost -= 1;
express_cost = get_computation_cost (data, use, cand, false,
&depends_on_express, NULL,
bound_cost.cost = parm_decl_cost (data, *bound_cst);
else if (TREE_CODE (*bound_cst) == INTEGER_CST)
bound_cost.cost = 0;
- express_cost.cost += bound_cost.cost;
+ express_cost += bound_cost;
/* Choose the better approach, preferring the eliminated IV. */
- if (compare_costs (elim_cost, express_cost) <= 0)
+ if (elim_cost <= express_cost)
{
cost = elim_cost;
depends_on = depends_on_elim;
if (depends_on_express)
BITMAP_FREE (depends_on_express);
- return !infinite_cost_p (cost);
+ return !cost.infinite_cost_p ();
}
/* Determines cost of computing uses in GROUP with CAND. Returns false
BITMAP_FREE (depends_on);
- return !infinite_cost_p (cost) && can_autoinc;
+ return !cost.infinite_cost_p () && can_autoinc;
}
/* Examine IP_ORIGINAL candidates to see if they are incremented next to a
for (j = 0; j < group->n_map_members; j++)
{
if (!group->cost_map[j].cand
- || infinite_cost_p (group->cost_map[j].cost))
+ || group->cost_map[j].cost.infinite_cost_p ())
continue;
fprintf (dump_file, " %d\t%d\t%d\t",
static bool
cheaper_cost_pair (struct cost_pair *a, struct cost_pair *b)
{
- int cmp;
-
if (!a)
return false;
if (!b)
return true;
- cmp = compare_costs (a->cost, b->cost);
- if (cmp < 0)
+ if (a->cost < b->cost)
return true;
- if (cmp > 0)
+ if (b->cost < a->cost)
return false;
/* In case the costs are the same, prefer the cheaper candidate. */
{
comp_cost cost = ivs->cand_use_cost;
- cost.cost += ivs->cand_cost;
+ cost += ivs->cand_cost;
- cost.cost += ivopts_global_cost_for_size (data,
- ivs->n_regs
- + ivs->used_inv_exprs->elements ());
+ cost += ivopts_global_cost_for_size (data,
+ ivs->n_regs
+ + ivs->used_inv_exprs->elements ());
ivs->cost = cost;
}
iv_ca_set_remove_invariants (ivs, cp->cand->depends_on);
}
- ivs->cand_use_cost = sub_costs (ivs->cand_use_cost, cp->cost);
+ ivs->cand_use_cost -= cp->cost;
iv_ca_set_remove_invariants (ivs, cp->depends_on);
iv_ca_set_add_invariants (ivs, cp->cand->depends_on);
}
- ivs->cand_use_cost = add_costs (ivs->cand_use_cost, cp->cost);
+ ivs->cand_use_cost += cp->cost;
iv_ca_set_add_invariants (ivs, cp->depends_on);
if (cp->inv_expr != NULL)
unsigned i;
comp_cost cost = iv_ca_cost (ivs);
- fprintf (file, " cost: %d (complexity %d)\n", cost.cost, cost.complexity);
+ fprintf (file, " cost: %d (complexity %d)\n", cost.cost,
+ cost.complexity);
fprintf (file, " cand_cost: %d\n cand_group_cost: %d (complexity %d)\n",
ivs->cand_cost, ivs->cand_use_cost.cost,
ivs->cand_use_cost.complexity);
struct iv_group *group = data->vgroups[i];
struct cost_pair *cp = iv_ca_cand_for_group (ivs, group);
if (cp)
- fprintf (file, " group:%d --> iv_cand:%d, cost=(%d,%d)\n",
- group->id, cp->cand->id, cp->cost.cost, cp->cost.complexity);
+ fprintf (file, " group:%d --> iv_cand:%d, cost=(%d,%d)\n",
+ group->id, cp->cand->id, cp->cost.cost,
+ cp->cost.complexity);
else
fprintf (file, " group:%d --> ??\n", group->id);
}
iv_ca_set_cp (data, ivs, group, cp);
acost = iv_ca_cost (ivs);
- if (compare_costs (acost, best_cost) < 0)
+ if (acost < best_cost)
{
best_cost = acost;
new_cp = cp;
iv_ca_set_cp (data, ivs, group, cp);
acost = iv_ca_cost (ivs);
- if (compare_costs (acost, best_cost) < 0)
+ if (acost < best_cost)
{
best_cost = acost;
new_cp = cp;
acost = iv_ca_narrow (data, ivs, cand, except_cand, &act_delta);
- if (compare_costs (acost, best_cost) < 0)
+ if (acost < best_cost)
{
best_cost = acost;
iv_ca_delta_free (&best_delta);
iv_ca_delta_commit (data, ivs, act_delta, false);
act_delta = iv_ca_delta_join (act_delta, tmp_delta);
- if (compare_costs (acost, orig_cost) < 0)
+ if (acost < orig_cost)
{
*delta = act_delta;
return acost;
iv_ca_set_no_cp (data, ivs, group);
act_delta = iv_ca_delta_add (group, NULL, cp, act_delta);
- if (compare_costs (act_cost, best_cost) < 0)
+ if (act_cost < best_cost)
{
best_cost = act_cost;
iv_ca_delta_free (&act_delta);
}
- if (infinite_cost_p (best_cost))
+ if (best_cost.infinite_cost_p ())
{
for (i = 0; i < group->n_map_members; i++)
{
iv_ca_cand_for_group (ivs, group),
cp, act_delta);
- if (compare_costs (act_cost, best_cost) < 0)
+ if (act_cost < best_cost)
{
best_cost = act_cost;
iv_ca_delta_commit (data, ivs, best_delta, true);
iv_ca_delta_free (&best_delta);
- return !infinite_cost_p (best_cost);
+ return !best_cost.infinite_cost_p ();
}
/* Finds an initial assignment of candidates to uses. */
act_delta = iv_ca_delta_join (act_delta, tmp_delta);
}
- if (compare_costs (acost, best_cost) < 0)
+ if (acost < best_cost)
{
best_cost = acost;
iv_ca_delta_free (&best_delta);
}
iv_ca_delta_commit (data, ivs, best_delta, true);
- gcc_assert (compare_costs (best_cost, iv_ca_cost (ivs)) == 0);
+ gcc_assert (best_cost == iv_ca_cost (ivs));
iv_ca_delta_free (&best_delta);
return true;
}
}
/* Choose the one with the best cost. */
- if (compare_costs (origcost, cost) <= 0)
+ if (origcost <= cost)
{
if (set)
iv_ca_free (&set);