+++ /dev/null
-(* techmap_celltype = /*"$shift*/ "$shiftx" *)
-module _80_shift_shiftx (A, B, Y);
- parameter A_SIGNED = 0;
- parameter B_SIGNED = 0;
- parameter A_WIDTH = 1;
- parameter B_WIDTH = 1;
- parameter Y_WIDTH = 1;
-
- input [A_WIDTH-1:0] A;
- input [B_WIDTH-1:0] B;
- output [Y_WIDTH-1:0] Y;
-
- parameter [B_WIDTH-1:0] _TECHMAP_CONSTMSK_B_ = 0;
- parameter [B_WIDTH-1:0] _TECHMAP_CONSTVAL_B_ = 0;
-
- generate
- genvar i;
- localparam CLOG2_Y_WIDTH = $clog2(Y_WIDTH);
-
- if (B_WIDTH <= CLOG2_Y_WIDTH+1)
- wire _TECHMAP_FAIL_ = 1;
- // In order to perform this optimisation, this $shiftx must
- // only shift in units of Y_WIDTH, which we check by ensuring
- // that the appropriate LSBs of B are zero
- else if (_TECHMAP_CONSTMSK_B_[CLOG2_Y_WIDTH-1:0] == {CLOG2_Y_WIDTH{1'b1}} && _TECHMAP_CONSTVAL_B_[CLOG2_Y_WIDTH-1:0] != {CLOG2_Y_WIDTH{1'b0}})
- wire _TECHMAP_FAIL_ = 1;
- else begin
- // Halve the size of $shiftx by $mux-ing A according to
- // the LSB of B, after discarding the zeroed bits
- wire [(A_WIDTH+Y_WIDTH)/2-1:0] AA;
- for (i = 0; i < (A_WIDTH/Y_WIDTH); i=i+2)
- assign AA[(i/2)*Y_WIDTH +: Y_WIDTH] = B[CLOG2_Y_WIDTH] ? A[(i+1)*Y_WIDTH +: Y_WIDTH] : A[(i+0)*Y_WIDTH +: Y_WIDTH];
- $shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH((A_WIDTH+Y_WIDTH)/2'd2), .B_WIDTH(B_WIDTH-1), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(AA), .B({B[B_WIDTH-1:CLOG2_Y_WIDTH+1], {CLOG2_Y_WIDTH{1'b0}}}), .Y(Y));
- end
- endgenerate
-endmodule
-
-
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
- localparam BB_WIDTH = `MIN($clog2(`MAX(A_WIDTH, Y_WIDTH)) + (B_SIGNED ? 2 : 1), B_WIDTH);
- localparam WIDTH = `MAX(A_WIDTH, Y_WIDTH) + (B_SIGNED ? 2**(BB_WIDTH-1) : 0);
-
parameter _TECHMAP_CELLTYPE_ = "";
+ parameter [B_WIDTH-1:0] _TECHMAP_CONSTMSK_B_ = 0;
+ parameter [B_WIDTH-1:0] _TECHMAP_CONSTVAL_B_ = 0;
+
localparam extbit = _TECHMAP_CELLTYPE_ == "$shift" ? 1'b0 : 1'bx;
- wire [1023:0] _TECHMAP_DO_00_ = "proc;;";
- wire [1023:0] _TECHMAP_DO_01_ = "CONSTMAP; opt_muxtree; opt_expr -mux_undef -mux_bool -fine;;;";
+ generate
+`ifndef NO_LSB_FIRST_SHIFT_SHIFTX
+ // If $shift/$shiftx only shifts in units of Y_WIDTH
+ // (a common pattern created by pmux2shiftx)
+ // which is checked by ensuring that all that
+ // the appropriate LSBs of B are constant zero,
+ // then we can decompose LSB first instead of
+ // MSB first
+ localparam CLOG2_Y_WIDTH = $clog2(Y_WIDTH);
+ if (B_WIDTH > CLOG2_Y_WIDTH+1 &&
+ _TECHMAP_CONSTMSK_B_[CLOG2_Y_WIDTH-1:0] == {CLOG2_Y_WIDTH{1'b1}} &&
+ _TECHMAP_CONSTVAL_B_[CLOG2_Y_WIDTH-1:0] == {CLOG2_Y_WIDTH{1'b0}}) begin
+ // Halve the size of $shift/$shiftx by $mux-ing A according to
+ // the LSB of B, after discarding the zeroed bits
+ localparam len = 2**(B_WIDTH-1);
+ wire [len-1:0] T, F;
+ genvar i;
+ for (i = 0; i < A_WIDTH; i=i+Y_WIDTH*2) begin
+ assign F[i/2 +: Y_WIDTH] = A[i +: Y_WIDTH];
+ assign T[i/2 +: Y_WIDTH] = (i + Y_WIDTH < A_WIDTH) ? A[i+Y_WIDTH +: Y_WIDTH] : {Y_WIDTH{extbit}};
+ end
+ wire [len-1:0] AA = B[CLOG2_Y_WIDTH] ? T : F;
+ wire [B_WIDTH-2:0] BB = {B[B_WIDTH-1:CLOG2_Y_WIDTH+1], {CLOG2_Y_WIDTH{1'b0}}};
+ if (_TECHMAP_CELLTYPE_ == "$shift")
+ $shift #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(len), .B_WIDTH(B_WIDTH-1), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(AA), .B(BB), .Y(Y));
+ else
+ $shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(len), .B_WIDTH(B_WIDTH-1), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(AA), .B(BB), .Y(Y));
+ end
+ else
+`endif
+ begin
+ localparam BB_WIDTH = `MIN($clog2(`MAX(A_WIDTH, Y_WIDTH)) + (B_SIGNED ? 2 : 1), B_WIDTH);
+ localparam WIDTH = `MAX(A_WIDTH, Y_WIDTH) + (B_SIGNED ? 2**(BB_WIDTH-1) : 0);
- integer i;
- reg [WIDTH-1:0] buffer;
- reg overflow;
+ wire [1023:0] _TECHMAP_DO_00_ = "proc;;";
+ wire [1023:0] _TECHMAP_DO_01_ = "CONSTMAP; opt_muxtree; opt_expr -mux_undef -mux_bool -fine;;;";
- always @* begin
- overflow = 0;
- buffer = {WIDTH{extbit}};
- buffer[`MAX(A_WIDTH, Y_WIDTH)-1:0] = A;
-
- if (B_WIDTH > BB_WIDTH) begin
- if (B_SIGNED) begin
- for (i = BB_WIDTH; i < B_WIDTH; i = i+1)
- if (B[i] != B[BB_WIDTH-1])
- overflow = 1;
- end else
- overflow = |B[B_WIDTH-1:BB_WIDTH];
- if (overflow)
- buffer = {WIDTH{extbit}};
- end
+ integer i;
+ reg [WIDTH-1:0] buffer;
+ reg overflow;
- for (i = BB_WIDTH-1; i >= 0; i = i-1)
- if (B[i]) begin
- if (B_SIGNED && i == BB_WIDTH-1)
- buffer = {buffer, {2**i{extbit}}};
- else if (2**i < WIDTH)
- buffer = {{2**i{extbit}}, buffer[WIDTH-1 : 2**i]};
- else
- buffer = {WIDTH{extbit}};
+ always @* begin
+ overflow = 0;
+ buffer = {WIDTH{extbit}};
+ buffer[`MAX(A_WIDTH, Y_WIDTH)-1:0] = A;
+
+ if (B_WIDTH > BB_WIDTH) begin
+ if (B_SIGNED) begin
+ for (i = BB_WIDTH; i < B_WIDTH; i = i+1)
+ if (B[i] != B[BB_WIDTH-1])
+ overflow = 1;
+ end else
+ overflow = |B[B_WIDTH-1:BB_WIDTH];
+ if (overflow)
+ buffer = {WIDTH{extbit}};
+ end
+
+ for (i = BB_WIDTH-1; i >= 0; i = i-1)
+ if (B[i]) begin
+ if (B_SIGNED && i == BB_WIDTH-1)
+ buffer = {buffer, {2**i{extbit}}};
+ else if (2**i < WIDTH)
+ buffer = {{2**i{extbit}}, buffer[WIDTH-1 : 2**i]};
+ else
+ buffer = {WIDTH{extbit}};
+ end
end
- end
-
- assign Y = buffer;
+ assign Y = buffer;
+ end
+ endgenerate
endmodule