+++ /dev/null
-\r
-/*============================================================================\r
-\r
-This C source fragment is part of the SoftFloat IEC/IEEE Floating-point\r
-Arithmetic Package, Release 2b.\r
-\r
-Written by John R. Hauser. This work was made possible in part by the\r
-International Computer Science Institute, located at Suite 600, 1947 Center\r
-Street, Berkeley, California 94704. Funding was partially provided by the\r
-National Science Foundation under grant MIP-9311980. The original version\r
-of this code was written as part of a project to build a fixed-point vector\r
-processor in collaboration with the University of California at Berkeley,\r
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information\r
-is available through the Web page `http://www.cs.berkeley.edu/~jhauser/\r
-arithmetic/SoftFloat.html'.\r
-\r
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has\r
-been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES\r
-RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS\r
-AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,\r
-COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE\r
-EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE\r
-INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR\r
-OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.\r
-\r
-Derivative works are acceptable, even for commercial purposes, so long as\r
-(1) the source code for the derivative work includes prominent notice that\r
-the work is derivative, and (2) the source code includes prominent notice with\r
-these four paragraphs for those parts of this code that are retained.\r
-\r
-=============================================================================*/\r
-\r
-/*----------------------------------------------------------------------------\r
-| Shifts `a' right by the number of bits given in `count'. If any nonzero\r
-| bits are shifted off, they are ``jammed'' into the least significant bit of\r
-| the result by setting the least significant bit to 1. The value of `count'\r
-| can be arbitrarily large; in particular, if `count' is greater than 32, the\r
-| result will be either 0 or 1, depending on whether `a' is zero or nonzero.\r
-| The result is stored in the location pointed to by `zPtr'.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )\r
-{\r
- bits32 z;\r
-\r
- if ( count == 0 ) {\r
- z = a;\r
- }\r
- else if ( count < 32 ) {\r
- z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );\r
- }\r
- else {\r
- z = ( a != 0 );\r
- }\r
- *zPtr = z;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the\r
-| number of bits given in `count'. Any bits shifted off are lost. The value\r
-| of `count' can be arbitrarily large; in particular, if `count' is greater\r
-| than 64, the result will be 0. The result is broken into two 32-bit pieces\r
-| which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE void\r
- shift64Right(\r
- bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )\r
-{\r
- bits32 z0, z1;\r
- int8 negCount = ( - count ) & 31;\r
-\r
- if ( count == 0 ) {\r
- z1 = a1;\r
- z0 = a0;\r
- }\r
- else if ( count < 32 ) {\r
- z1 = ( a0<<negCount ) | ( a1>>count );\r
- z0 = a0>>count;\r
- }\r
- else {\r
- z1 = ( count < 64 ) ? ( a0>>( count & 31 ) ) : 0;\r
- z0 = 0;\r
- }\r
- *z1Ptr = z1;\r
- *z0Ptr = z0;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the\r
-| number of bits given in `count'. If any nonzero bits are shifted off, they\r
-| are ``jammed'' into the least significant bit of the result by setting the\r
-| least significant bit to 1. The value of `count' can be arbitrarily large;\r
-| in particular, if `count' is greater than 64, the result will be either 0\r
-| or 1, depending on whether the concatenation of `a0' and `a1' is zero or\r
-| nonzero. The result is broken into two 32-bit pieces which are stored at\r
-| the locations pointed to by `z0Ptr' and `z1Ptr'.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE void\r
- shift64RightJamming(\r
- bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )\r
-{\r
- bits32 z0, z1;\r
- int8 negCount = ( - count ) & 31;\r
-\r
- if ( count == 0 ) {\r
- z1 = a1;\r
- z0 = a0;\r
- }\r
- else if ( count < 32 ) {\r
- z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );\r
- z0 = a0>>count;\r
- }\r
- else {\r
- if ( count == 32 ) {\r
- z1 = a0 | ( a1 != 0 );\r
- }\r
- else if ( count < 64 ) {\r
- z1 = ( a0>>( count & 31 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );\r
- }\r
- else {\r
- z1 = ( ( a0 | a1 ) != 0 );\r
- }\r
- z0 = 0;\r
- }\r
- *z1Ptr = z1;\r
- *z0Ptr = z0;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right\r
-| by 32 _plus_ the number of bits given in `count'. The shifted result is\r
-| at most 64 nonzero bits; these are broken into two 32-bit pieces which are\r
-| stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted\r
-| off form a third 32-bit result as follows: The _last_ bit shifted off is\r
-| the most-significant bit of the extra result, and the other 31 bits of the\r
-| extra result are all zero if and only if _all_but_the_last_ bits shifted off\r
-| were all zero. This extra result is stored in the location pointed to by\r
-| `z2Ptr'. The value of `count' can be arbitrarily large.\r
-| (This routine makes more sense if `a0', `a1', and `a2' are considered\r
-| to form a fixed-point value with binary point between `a1' and `a2'. This\r
-| fixed-point value is shifted right by the number of bits given in `count',\r
-| and the integer part of the result is returned at the locations pointed to\r
-| by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly\r
-| corrupted as described above, and is returned at the location pointed to by\r
-| `z2Ptr'.)\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE void\r
- shift64ExtraRightJamming(\r
- bits32 a0,\r
- bits32 a1,\r
- bits32 a2,\r
- int16 count,\r
- bits32 *z0Ptr,\r
- bits32 *z1Ptr,\r
- bits32 *z2Ptr\r
- )\r
-{\r
- bits32 z0, z1, z2;\r
- int8 negCount = ( - count ) & 31;\r
-\r
- if ( count == 0 ) {\r
- z2 = a2;\r
- z1 = a1;\r
- z0 = a0;\r
- }\r
- else {\r
- if ( count < 32 ) {\r
- z2 = a1<<negCount;\r
- z1 = ( a0<<negCount ) | ( a1>>count );\r
- z0 = a0>>count;\r
- }\r
- else {\r
- if ( count == 32 ) {\r
- z2 = a1;\r
- z1 = a0;\r
- }\r
- else {\r
- a2 |= a1;\r
- if ( count < 64 ) {\r
- z2 = a0<<negCount;\r
- z1 = a0>>( count & 31 );\r
- }\r
- else {\r
- z2 = ( count == 64 ) ? a0 : ( a0 != 0 );\r
- z1 = 0;\r
- }\r
- }\r
- z0 = 0;\r
- }\r
- z2 |= ( a2 != 0 );\r
- }\r
- *z2Ptr = z2;\r
- *z1Ptr = z1;\r
- *z0Ptr = z0;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the\r
-| number of bits given in `count'. Any bits shifted off are lost. The value\r
-| of `count' must be less than 32. The result is broken into two 32-bit\r
-| pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE void\r
- shortShift64Left(\r
- bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )\r
-{\r
-\r
- *z1Ptr = a1<<count;\r
- *z0Ptr =\r
- ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 31 ) );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' left\r
-| by the number of bits given in `count'. Any bits shifted off are lost.\r
-| The value of `count' must be less than 32. The result is broken into three\r
-| 32-bit pieces which are stored at the locations pointed to by `z0Ptr',\r
-| `z1Ptr', and `z2Ptr'.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE void\r
- shortShift96Left(\r
- bits32 a0,\r
- bits32 a1,\r
- bits32 a2,\r
- int16 count,\r
- bits32 *z0Ptr,\r
- bits32 *z1Ptr,\r
- bits32 *z2Ptr\r
- )\r
-{\r
- bits32 z0, z1, z2;\r
- int8 negCount;\r
-\r
- z2 = a2<<count;\r
- z1 = a1<<count;\r
- z0 = a0<<count;\r
- if ( 0 < count ) {\r
- negCount = ( ( - count ) & 31 );\r
- z1 |= a2>>negCount;\r
- z0 |= a1>>negCount;\r
- }\r
- *z2Ptr = z2;\r
- *z1Ptr = z1;\r
- *z0Ptr = z0;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit\r
-| value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so\r
-| any carry out is lost. The result is broken into two 32-bit pieces which\r
-| are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE void\r
- add64(\r
- bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr )\r
-{\r
- bits32 z1;\r
-\r
- z1 = a1 + b1;\r
- *z1Ptr = z1;\r
- *z0Ptr = a0 + b0 + ( z1 < a1 );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the\r
-| 96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is\r
-| modulo 2^96, so any carry out is lost. The result is broken into three\r
-| 32-bit pieces which are stored at the locations pointed to by `z0Ptr',\r
-| `z1Ptr', and `z2Ptr'.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE void\r
- add96(\r
- bits32 a0,\r
- bits32 a1,\r
- bits32 a2,\r
- bits32 b0,\r
- bits32 b1,\r
- bits32 b2,\r
- bits32 *z0Ptr,\r
- bits32 *z1Ptr,\r
- bits32 *z2Ptr\r
- )\r
-{\r
- bits32 z0, z1, z2;\r
- int8 carry0, carry1;\r
-\r
- z2 = a2 + b2;\r
- carry1 = ( z2 < a2 );\r
- z1 = a1 + b1;\r
- carry0 = ( z1 < a1 );\r
- z0 = a0 + b0;\r
- z1 += carry1;\r
- z0 += ( z1 < carry1 );\r
- z0 += carry0;\r
- *z2Ptr = z2;\r
- *z1Ptr = z1;\r
- *z0Ptr = z0;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the\r
-| 64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo\r
-| 2^64, so any borrow out (carry out) is lost. The result is broken into two\r
-| 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and\r
-| `z1Ptr'.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE void\r
- sub64(\r
- bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr )\r
-{\r
-\r
- *z1Ptr = a1 - b1;\r
- *z0Ptr = a0 - b0 - ( a1 < b1 );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from\r
-| the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction\r
-| is modulo 2^96, so any borrow out (carry out) is lost. The result is broken\r
-| into three 32-bit pieces which are stored at the locations pointed to by\r
-| `z0Ptr', `z1Ptr', and `z2Ptr'.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE void\r
- sub96(\r
- bits32 a0,\r
- bits32 a1,\r
- bits32 a2,\r
- bits32 b0,\r
- bits32 b1,\r
- bits32 b2,\r
- bits32 *z0Ptr,\r
- bits32 *z1Ptr,\r
- bits32 *z2Ptr\r
- )\r
-{\r
- bits32 z0, z1, z2;\r
- int8 borrow0, borrow1;\r
-\r
- z2 = a2 - b2;\r
- borrow1 = ( a2 < b2 );\r
- z1 = a1 - b1;\r
- borrow0 = ( a1 < b1 );\r
- z0 = a0 - b0;\r
- z0 -= ( z1 < borrow1 );\r
- z1 -= borrow1;\r
- z0 -= borrow0;\r
- *z2Ptr = z2;\r
- *z1Ptr = z1;\r
- *z0Ptr = z0;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Multiplies `a' by `b' to obtain a 64-bit product. The product is broken\r
-| into two 32-bit pieces which are stored at the locations pointed to by\r
-| `z0Ptr' and `z1Ptr'.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE void mul32To64( bits32 a, bits32 b, bits32 *z0Ptr, bits32 *z1Ptr )\r
-{\r
- bits16 aHigh, aLow, bHigh, bLow;\r
- bits32 z0, zMiddleA, zMiddleB, z1;\r
-\r
- aLow = a;\r
- aHigh = a>>16;\r
- bLow = b;\r
- bHigh = b>>16;\r
- z1 = ( (bits32) aLow ) * bLow;\r
- zMiddleA = ( (bits32) aLow ) * bHigh;\r
- zMiddleB = ( (bits32) aHigh ) * bLow;\r
- z0 = ( (bits32) aHigh ) * bHigh;\r
- zMiddleA += zMiddleB;\r
- z0 += ( ( (bits32) ( zMiddleA < zMiddleB ) )<<16 ) + ( zMiddleA>>16 );\r
- zMiddleA <<= 16;\r
- z1 += zMiddleA;\r
- z0 += ( z1 < zMiddleA );\r
- *z1Ptr = z1;\r
- *z0Ptr = z0;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Multiplies the 64-bit value formed by concatenating `a0' and `a1' by `b'\r
-| to obtain a 96-bit product. The product is broken into three 32-bit pieces\r
-| which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and\r
-| `z2Ptr'.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE void\r
- mul64By32To96(\r
- bits32 a0,\r
- bits32 a1,\r
- bits32 b,\r
- bits32 *z0Ptr,\r
- bits32 *z1Ptr,\r
- bits32 *z2Ptr\r
- )\r
-{\r
- bits32 z0, z1, z2, more1;\r
-\r
- mul32To64( a1, b, &z1, &z2 );\r
- mul32To64( a0, b, &z0, &more1 );\r
- add64( z0, more1, 0, z1, &z0, &z1 );\r
- *z2Ptr = z2;\r
- *z1Ptr = z1;\r
- *z0Ptr = z0;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the\r
-| 64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit\r
-| product. The product is broken into four 32-bit pieces which are stored at\r
-| the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE void\r
- mul64To128(\r
- bits32 a0,\r
- bits32 a1,\r
- bits32 b0,\r
- bits32 b1,\r
- bits32 *z0Ptr,\r
- bits32 *z1Ptr,\r
- bits32 *z2Ptr,\r
- bits32 *z3Ptr\r
- )\r
-{\r
- bits32 z0, z1, z2, z3;\r
- bits32 more1, more2;\r
-\r
- mul32To64( a1, b1, &z2, &z3 );\r
- mul32To64( a1, b0, &z1, &more2 );\r
- add64( z1, more2, 0, z2, &z1, &z2 );\r
- mul32To64( a0, b0, &z0, &more1 );\r
- add64( z0, more1, 0, z1, &z0, &z1 );\r
- mul32To64( a0, b1, &more1, &more2 );\r
- add64( more1, more2, 0, z2, &more1, &z2 );\r
- add64( z0, z1, 0, more1, &z0, &z1 );\r
- *z3Ptr = z3;\r
- *z2Ptr = z2;\r
- *z1Ptr = z1;\r
- *z0Ptr = z0;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns an approximation to the 32-bit integer quotient obtained by dividing\r
-| `b' into the 64-bit value formed by concatenating `a0' and `a1'. The\r
-| divisor `b' must be at least 2^31. If q is the exact quotient truncated\r
-| toward zero, the approximation returned lies between q and q + 2 inclusive.\r
-| If the exact quotient q is larger than 32 bits, the maximum positive 32-bit\r
-| unsigned integer is returned.\r
-*----------------------------------------------------------------------------*/\r
-\r
-static bits32 estimateDiv64To32( bits32 a0, bits32 a1, bits32 b )\r
-{\r
- bits32 b0, b1;\r
- bits32 rem0, rem1, term0, term1;\r
- bits32 z;\r
-\r
- if ( b <= a0 ) return 0xFFFFFFFF;\r
- b0 = b>>16;\r
- z = ( b0<<16 <= a0 ) ? 0xFFFF0000 : ( a0 / b0 )<<16;\r
- mul32To64( b, z, &term0, &term1 );\r
- sub64( a0, a1, term0, term1, &rem0, &rem1 );\r
- while ( ( (sbits32) rem0 ) < 0 ) {\r
- z -= 0x10000;\r
- b1 = b<<16;\r
- add64( rem0, rem1, b0, b1, &rem0, &rem1 );\r
- }\r
- rem0 = ( rem0<<16 ) | ( rem1>>16 );\r
- z |= ( b0<<16 <= rem0 ) ? 0xFFFF : rem0 / b0;\r
- return z;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns an approximation to the square root of the 32-bit significand given\r
-| by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of\r
-| `aExp' (the least significant bit) is 1, the integer returned approximates\r
-| 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'\r
-| is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either\r
-| case, the approximation returned lies strictly within +/-2 of the exact\r
-| value.\r
-*----------------------------------------------------------------------------*/\r
-\r
-static bits32 estimateSqrt32( int16 aExp, bits32 a )\r
-{\r
- static const bits16 sqrtOddAdjustments[] = {\r
- 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,\r
- 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67\r
- };\r
- static const bits16 sqrtEvenAdjustments[] = {\r
- 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,\r
- 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002\r
- };\r
- int8 index;\r
- bits32 z;\r
-\r
- index = ( a>>27 ) & 15;\r
- if ( aExp & 1 ) {\r
- z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];\r
- z = ( ( a / z )<<14 ) + ( z<<15 );\r
- a >>= 1;\r
- }\r
- else {\r
- z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];\r
- z = a / z + z;\r
- z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );\r
- if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );\r
- }\r
- return ( ( estimateDiv64To32( a, 0, z ) )>>1 ) + ( z>>1 );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the number of leading 0 bits before the most-significant 1 bit of\r
-| `a'. If `a' is zero, 32 is returned.\r
-*----------------------------------------------------------------------------*/\r
-\r
-static int8 countLeadingZeros32( bits32 a )\r
-{\r
- static const int8 countLeadingZerosHigh[] = {\r
- 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,\r
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,\r
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\r
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\r
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\r
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\r
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\r
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\r
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\r
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\r
- };\r
- int8 shiftCount;\r
-\r
- shiftCount = 0;\r
- if ( a < 0x10000 ) {\r
- shiftCount += 16;\r
- a <<= 16;\r
- }\r
- if ( a < 0x1000000 ) {\r
- shiftCount += 8;\r
- a <<= 8;\r
- }\r
- shiftCount += countLeadingZerosHigh[ a>>24 ];\r
- return shiftCount;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is\r
-| equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,\r
-| returns 0.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE flag eq64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )\r
-{\r
-\r
- return ( a0 == b0 ) && ( a1 == b1 );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less\r
-| than or equal to the 64-bit value formed by concatenating `b0' and `b1'.\r
-| Otherwise, returns 0.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE flag le64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )\r
-{\r
-\r
- return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less\r
-| than the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,\r
-| returns 0.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE flag lt64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )\r
-{\r
-\r
- return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is not\r
-| equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,\r
-| returns 0.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE flag ne64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )\r
-{\r
-\r
- return ( a0 != b0 ) || ( a1 != b1 );\r
-\r
-}\r
-\r
+++ /dev/null
-\r
-/*============================================================================\r
-\r
-This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic\r
-Package, Release 2b.\r
-\r
-Written by John R. Hauser. This work was made possible in part by the\r
-International Computer Science Institute, located at Suite 600, 1947 Center\r
-Street, Berkeley, California 94704. Funding was partially provided by the\r
-National Science Foundation under grant MIP-9311980. The original version\r
-of this code was written as part of a project to build a fixed-point vector\r
-processor in collaboration with the University of California at Berkeley,\r
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information\r
-is available through the Web page `http://www.cs.berkeley.edu/~jhauser/\r
-arithmetic/SoftFloat.html'.\r
-\r
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has\r
-been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES\r
-RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS\r
-AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,\r
-COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE\r
-EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE\r
-INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR\r
-OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.\r
-\r
-Derivative works are acceptable, even for commercial purposes, so long as\r
-(1) the source code for the derivative work includes prominent notice that\r
-the work is derivative, and (2) the source code includes prominent notice with\r
-these four paragraphs for those parts of this code that are retained.\r
-\r
-=============================================================================*/\r
-\r
-#include "milieu.h"\r
-#include "softfloat.h"\r
-\r
-/*----------------------------------------------------------------------------\r
-| Floating-point rounding mode and exception flags.\r
-*----------------------------------------------------------------------------*/\r
-int8 float_rounding_mode = float_round_nearest_even;\r
-int8 float_exception_flags = 0;\r
-\r
-/*----------------------------------------------------------------------------\r
-| Primitive arithmetic functions, including multi-word arithmetic, and\r
-| division and square root approximations. (Can be specialized to target if\r
-| desired.)\r
-*----------------------------------------------------------------------------*/\r
-#include "softfloat-macros.h"\r
-\r
-/*----------------------------------------------------------------------------\r
-| Functions and definitions to determine: (1) whether tininess for underflow\r
-| is detected before or after rounding by default, (2) what (if anything)\r
-| happens when exceptions are raised, (3) how signaling NaNs are distinguished\r
-| from quiet NaNs, (4) the default generated quiet NaNs, and (4) how NaNs\r
-| are propagated from function inputs to output. These details are target-\r
-| specific.\r
-*----------------------------------------------------------------------------*/\r
-#include "softfloat-specialize.h"\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the fraction bits of the single-precision floating-point value `a'.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE bits32 extractFloat32Frac( float32 a )\r
-{\r
-\r
- return a & 0x007FFFFF;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the exponent bits of the single-precision floating-point value `a'.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE int16 extractFloat32Exp( float32 a )\r
-{\r
-\r
- return ( a>>23 ) & 0xFF;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the sign bit of the single-precision floating-point value `a'.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE flag extractFloat32Sign( float32 a )\r
-{\r
-\r
- return a>>31;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Normalizes the subnormal single-precision floating-point value represented\r
-| by the denormalized significand `aSig'. The normalized exponent and\r
-| significand are stored at the locations pointed to by `zExpPtr' and\r
-| `zSigPtr', respectively.\r
-*----------------------------------------------------------------------------*/\r
-\r
-static void\r
- normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )\r
-{\r
- int8 shiftCount;\r
-\r
- shiftCount = countLeadingZeros32( aSig ) - 8;\r
- *zSigPtr = aSig<<shiftCount;\r
- *zExpPtr = 1 - shiftCount;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a\r
-| single-precision floating-point value, returning the result. After being\r
-| shifted into the proper positions, the three fields are simply added\r
-| together to form the result. This means that any integer portion of `zSig'\r
-| will be added into the exponent. Since a properly normalized significand\r
-| will have an integer portion equal to 1, the `zExp' input should be 1 less\r
-| than the desired result exponent whenever `zSig' is a complete, normalized\r
-| significand.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )\r
-{\r
-\r
- return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',\r
-| and significand `zSig', and returns the proper single-precision floating-\r
-| point value corresponding to the abstract input. Ordinarily, the abstract\r
-| value is simply rounded and packed into the single-precision format, with\r
-| the inexact exception raised if the abstract input cannot be represented\r
-| exactly. However, if the abstract value is too large, the overflow and\r
-| inexact exceptions are raised and an infinity or maximal finite value is\r
-| returned. If the abstract value is too small, the input value is rounded to\r
-| a subnormal number, and the underflow and inexact exceptions are raised if\r
-| the abstract input cannot be represented exactly as a subnormal single-\r
-| precision floating-point number.\r
-| The input significand `zSig' has its binary point between bits 30\r
-| and 29, which is 7 bits to the left of the usual location. This shifted\r
-| significand must be normalized or smaller. If `zSig' is not normalized,\r
-| `zExp' must be 0; in that case, the result returned is a subnormal number,\r
-| and it must not require rounding. In the usual case that `zSig' is\r
-| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.\r
-| The handling of underflow and overflow follows the IEC/IEEE Standard for\r
-| Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )\r
-{\r
- int8 roundingMode;\r
- flag roundNearestEven;\r
- int8 roundIncrement, roundBits;\r
- flag isTiny;\r
-\r
- roundingMode = float_rounding_mode;\r
- roundNearestEven = roundingMode == float_round_nearest_even;\r
- roundIncrement = 0x40;\r
- if ( ! roundNearestEven ) {\r
- if ( roundingMode == float_round_to_zero ) {\r
- roundIncrement = 0;\r
- }\r
- else {\r
- roundIncrement = 0x7F;\r
- if ( zSign ) {\r
- if ( roundingMode == float_round_up ) roundIncrement = 0;\r
- }\r
- else {\r
- if ( roundingMode == float_round_down ) roundIncrement = 0;\r
- }\r
- }\r
- }\r
- roundBits = zSig & 0x7F;\r
- if ( 0xFD <= (bits16) zExp ) {\r
- if ( ( 0xFD < zExp )\r
- || ( ( zExp == 0xFD )\r
- && ( (sbits32) ( zSig + roundIncrement ) < 0 ) )\r
- ) {\r
- float_raise( float_flag_overflow | float_flag_inexact );\r
- return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );\r
- }\r
- if ( zExp < 0 ) {\r
- isTiny =\r
- ( float_detect_tininess == float_tininess_before_rounding )\r
- || ( zExp < -1 )\r
- || ( zSig + roundIncrement < 0x80000000 );\r
- shift32RightJamming( zSig, - zExp, &zSig );\r
- zExp = 0;\r
- roundBits = zSig & 0x7F;\r
- if ( isTiny && roundBits ) float_raise( float_flag_underflow );\r
- }\r
- }\r
- if ( roundBits ) float_exception_flags |= float_flag_inexact;\r
- zSig = ( zSig + roundIncrement )>>7;\r
- zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );\r
- if ( zSig == 0 ) zExp = 0;\r
- return packFloat32( zSign, zExp, zSig );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',\r
-| and significand `zSig', and returns the proper single-precision floating-\r
-| point value corresponding to the abstract input. This routine is just like\r
-| `roundAndPackFloat32' except that `zSig' does not have to be normalized.\r
-| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''\r
-| floating-point exponent.\r
-*----------------------------------------------------------------------------*/\r
-\r
-static float32\r
- normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )\r
-{\r
- int8 shiftCount;\r
-\r
- shiftCount = countLeadingZeros32( zSig ) - 1;\r
- return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the least-significant 32 fraction bits of the double-precision\r
-| floating-point value `a'.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE bits32 extractFloat64Frac1( float64 a )\r
-{\r
-\r
- return a.low;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the most-significant 20 fraction bits of the double-precision\r
-| floating-point value `a'.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE bits32 extractFloat64Frac0( float64 a )\r
-{\r
-\r
- return a.high & 0x000FFFFF;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the exponent bits of the double-precision floating-point value `a'.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE int16 extractFloat64Exp( float64 a )\r
-{\r
-\r
- return ( a.high>>20 ) & 0x7FF;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the sign bit of the double-precision floating-point value `a'.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE flag extractFloat64Sign( float64 a )\r
-{\r
-\r
- return a.high>>31;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Normalizes the subnormal double-precision floating-point value represented\r
-| by the denormalized significand formed by the concatenation of `aSig0' and\r
-| `aSig1'. The normalized exponent is stored at the location pointed to by\r
-| `zExpPtr'. The most significant 21 bits of the normalized significand are\r
-| stored at the location pointed to by `zSig0Ptr', and the least significant\r
-| 32 bits of the normalized significand are stored at the location pointed to\r
-| by `zSig1Ptr'.\r
-*----------------------------------------------------------------------------*/\r
-\r
-static void\r
- normalizeFloat64Subnormal(\r
- bits32 aSig0,\r
- bits32 aSig1,\r
- int16 *zExpPtr,\r
- bits32 *zSig0Ptr,\r
- bits32 *zSig1Ptr\r
- )\r
-{\r
- int8 shiftCount;\r
-\r
- if ( aSig0 == 0 ) {\r
- shiftCount = countLeadingZeros32( aSig1 ) - 11;\r
- if ( shiftCount < 0 ) {\r
- *zSig0Ptr = aSig1>>( - shiftCount );\r
- *zSig1Ptr = aSig1<<( shiftCount & 31 );\r
- }\r
- else {\r
- *zSig0Ptr = aSig1<<shiftCount;\r
- *zSig1Ptr = 0;\r
- }\r
- *zExpPtr = - shiftCount - 31;\r
- }\r
- else {\r
- shiftCount = countLeadingZeros32( aSig0 ) - 11;\r
- shortShift64Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );\r
- *zExpPtr = 1 - shiftCount;\r
- }\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Packs the sign `zSign', the exponent `zExp', and the significand formed by\r
-| the concatenation of `zSig0' and `zSig1' into a double-precision floating-\r
-| point value, returning the result. After being shifted into the proper\r
-| positions, the three fields `zSign', `zExp', and `zSig0' are simply added\r
-| together to form the most significant 32 bits of the result. This means\r
-| that any integer portion of `zSig0' will be added into the exponent. Since\r
-| a properly normalized significand will have an integer portion equal to 1,\r
-| the `zExp' input should be 1 less than the desired result exponent whenever\r
-| `zSig0' and `zSig1' concatenated form a complete, normalized significand.\r
-*----------------------------------------------------------------------------*/\r
-\r
-INLINE float64\r
- packFloat64( flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 )\r
-{\r
- float64 z;\r
-\r
- z.low = zSig1;\r
- z.high = ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<20 ) + zSig0;\r
- return z;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',\r
-| and extended significand formed by the concatenation of `zSig0', `zSig1',\r
-| and `zSig2', and returns the proper double-precision floating-point value\r
-| corresponding to the abstract input. Ordinarily, the abstract value is\r
-| simply rounded and packed into the double-precision format, with the inexact\r
-| exception raised if the abstract input cannot be represented exactly.\r
-| However, if the abstract value is too large, the overflow and inexact\r
-| exceptions are raised and an infinity or maximal finite value is returned.\r
-| If the abstract value is too small, the input value is rounded to a\r
-| subnormal number, and the underflow and inexact exceptions are raised if the\r
-| abstract input cannot be represented exactly as a subnormal double-precision\r
-| floating-point number.\r
-| The input significand must be normalized or smaller. If the input\r
-| significand is not normalized, `zExp' must be 0; in that case, the result\r
-| returned is a subnormal number, and it must not require rounding. In the\r
-| usual case that the input significand is normalized, `zExp' must be 1 less\r
-| than the ``true'' floating-point exponent. The handling of underflow and\r
-| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-static float64\r
- roundAndPackFloat64(\r
- flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1, bits32 zSig2 )\r
-{\r
- int8 roundingMode;\r
- flag roundNearestEven, increment, isTiny;\r
-\r
- roundingMode = float_rounding_mode;\r
- roundNearestEven = ( roundingMode == float_round_nearest_even );\r
- increment = ( (sbits32) zSig2 < 0 );\r
- if ( ! roundNearestEven ) {\r
- if ( roundingMode == float_round_to_zero ) {\r
- increment = 0;\r
- }\r
- else {\r
- if ( zSign ) {\r
- increment = ( roundingMode == float_round_down ) && zSig2;\r
- }\r
- else {\r
- increment = ( roundingMode == float_round_up ) && zSig2;\r
- }\r
- }\r
- }\r
- if ( 0x7FD <= (bits16) zExp ) {\r
- if ( ( 0x7FD < zExp )\r
- || ( ( zExp == 0x7FD )\r
- && eq64( 0x001FFFFF, 0xFFFFFFFF, zSig0, zSig1 )\r
- && increment\r
- )\r
- ) {\r
- float_raise( float_flag_overflow | float_flag_inexact );\r
- if ( ( roundingMode == float_round_to_zero )\r
- || ( zSign && ( roundingMode == float_round_up ) )\r
- || ( ! zSign && ( roundingMode == float_round_down ) )\r
- ) {\r
- return packFloat64( zSign, 0x7FE, 0x000FFFFF, 0xFFFFFFFF );\r
- }\r
- return packFloat64( zSign, 0x7FF, 0, 0 );\r
- }\r
- if ( zExp < 0 ) {\r
- isTiny =\r
- ( float_detect_tininess == float_tininess_before_rounding )\r
- || ( zExp < -1 )\r
- || ! increment\r
- || lt64( zSig0, zSig1, 0x001FFFFF, 0xFFFFFFFF );\r
- shift64ExtraRightJamming(\r
- zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );\r
- zExp = 0;\r
- if ( isTiny && zSig2 ) float_raise( float_flag_underflow );\r
- if ( roundNearestEven ) {\r
- increment = ( (sbits32) zSig2 < 0 );\r
- }\r
- else {\r
- if ( zSign ) {\r
- increment = ( roundingMode == float_round_down ) && zSig2;\r
- }\r
- else {\r
- increment = ( roundingMode == float_round_up ) && zSig2;\r
- }\r
- }\r
- }\r
- }\r
- if ( zSig2 ) float_exception_flags |= float_flag_inexact;\r
- if ( increment ) {\r
- add64( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );\r
- zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );\r
- }\r
- else {\r
- if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;\r
- }\r
- return packFloat64( zSign, zExp, zSig0, zSig1 );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',\r
-| and significand formed by the concatenation of `zSig0' and `zSig1', and\r
-| returns the proper double-precision floating-point value corresponding\r
-| to the abstract input. This routine is just like `roundAndPackFloat64'\r
-| except that the input significand has fewer bits and does not have to be\r
-| normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-\r
-| point exponent.\r
-*----------------------------------------------------------------------------*/\r
-\r
-static float64\r
- normalizeRoundAndPackFloat64(\r
- flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 )\r
-{\r
- int8 shiftCount;\r
- bits32 zSig2;\r
-\r
- if ( zSig0 == 0 ) {\r
- zSig0 = zSig1;\r
- zSig1 = 0;\r
- zExp -= 32;\r
- }\r
- shiftCount = countLeadingZeros32( zSig0 ) - 11;\r
- if ( 0 <= shiftCount ) {\r
- zSig2 = 0;\r
- shortShift64Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );\r
- }\r
- else {\r
- shift64ExtraRightJamming(\r
- zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );\r
- }\r
- zExp -= shiftCount;\r
- return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the result of converting the 32-bit two's complement integer `a' to\r
-| the single-precision floating-point format. The conversion is performed\r
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-float32 int32_to_float32( int32 a )\r
-{\r
- flag zSign;\r
-\r
- if ( a == 0 ) return 0;\r
- if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );\r
- zSign = ( a < 0 );\r
- return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the result of converting the 32-bit two's complement integer `a' to\r
-| the double-precision floating-point format. The conversion is performed\r
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-float64 int32_to_float64( int32 a )\r
-{\r
- flag zSign;\r
- bits32 absA;\r
- int8 shiftCount;\r
- bits32 zSig0, zSig1;\r
-\r
- if ( a == 0 ) return packFloat64( 0, 0, 0, 0 );\r
- zSign = ( a < 0 );\r
- absA = zSign ? - a : a;\r
- shiftCount = countLeadingZeros32( absA ) - 11;\r
- if ( 0 <= shiftCount ) {\r
- zSig0 = absA<<shiftCount;\r
- zSig1 = 0;\r
- }\r
- else {\r
- shift64Right( absA, 0, - shiftCount, &zSig0, &zSig1 );\r
- }\r
- return packFloat64( zSign, 0x412 - shiftCount, zSig0, zSig1 );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the result of converting the single-precision floating-point value\r
-| `a' to the 32-bit two's complement integer format. The conversion is\r
-| performed according to the IEC/IEEE Standard for Binary Floating-Point\r
-| Arithmetic---which means in particular that the conversion is rounded\r
-| according to the current rounding mode. If `a' is a NaN, the largest\r
-| positive integer is returned. Otherwise, if the conversion overflows, the\r
-| largest integer with the same sign as `a' is returned.\r
-*----------------------------------------------------------------------------*/\r
-\r
-int32 float32_to_int32( float32 a )\r
-{\r
- flag aSign;\r
- int16 aExp, shiftCount;\r
- bits32 aSig, aSigExtra;\r
- int32 z;\r
- int8 roundingMode;\r
-\r
- aSig = extractFloat32Frac( a );\r
- aExp = extractFloat32Exp( a );\r
- aSign = extractFloat32Sign( a );\r
- shiftCount = aExp - 0x96;\r
- if ( 0 <= shiftCount ) {\r
- if ( 0x9E <= aExp ) {\r
- if ( a != 0xCF000000 ) {\r
- float_raise( float_flag_invalid );\r
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {\r
- return 0x7FFFFFFF;\r
- }\r
- }\r
- return (sbits32) 0x80000000;\r
- }\r
- z = ( aSig | 0x00800000 )<<shiftCount;\r
- if ( aSign ) z = - z;\r
- }\r
- else {\r
- if ( aExp < 0x7E ) {\r
- aSigExtra = aExp | aSig;\r
- z = 0;\r
- }\r
- else {\r
- aSig |= 0x00800000;\r
- aSigExtra = aSig<<( shiftCount & 31 );\r
- z = aSig>>( - shiftCount );\r
- }\r
- if ( aSigExtra ) float_exception_flags |= float_flag_inexact;\r
- roundingMode = float_rounding_mode;\r
- if ( roundingMode == float_round_nearest_even ) {\r
- if ( (sbits32) aSigExtra < 0 ) {\r
- ++z;\r
- if ( (bits32) ( aSigExtra<<1 ) == 0 ) z &= ~1;\r
- }\r
- if ( aSign ) z = - z;\r
- }\r
- else {\r
- aSigExtra = ( aSigExtra != 0 );\r
- if ( aSign ) {\r
- z += ( roundingMode == float_round_down ) & aSigExtra;\r
- z = - z;\r
- }\r
- else {\r
- z += ( roundingMode == float_round_up ) & aSigExtra;\r
- }\r
- }\r
- }\r
- return z;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the result of converting the single-precision floating-point value\r
-| `a' to the 32-bit two's complement integer format. The conversion is\r
-| performed according to the IEC/IEEE Standard for Binary Floating-Point\r
-| Arithmetic, except that the conversion is always rounded toward zero.\r
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if\r
-| the conversion overflows, the largest integer with the same sign as `a' is\r
-| returned.\r
-*----------------------------------------------------------------------------*/\r
-\r
-int32 float32_to_int32_round_to_zero( float32 a )\r
-{\r
- flag aSign;\r
- int16 aExp, shiftCount;\r
- bits32 aSig;\r
- int32 z;\r
-\r
- aSig = extractFloat32Frac( a );\r
- aExp = extractFloat32Exp( a );\r
- aSign = extractFloat32Sign( a );\r
- shiftCount = aExp - 0x9E;\r
- if ( 0 <= shiftCount ) {\r
- if ( a != 0xCF000000 ) {\r
- float_raise( float_flag_invalid );\r
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;\r
- }\r
- return (sbits32) 0x80000000;\r
- }\r
- else if ( aExp <= 0x7E ) {\r
- if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;\r
- return 0;\r
- }\r
- aSig = ( aSig | 0x00800000 )<<8;\r
- z = aSig>>( - shiftCount );\r
- if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {\r
- float_exception_flags |= float_flag_inexact;\r
- }\r
- if ( aSign ) z = - z;\r
- return z;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the result of converting the single-precision floating-point value\r
-| `a' to the double-precision floating-point format. The conversion is\r
-| performed according to the IEC/IEEE Standard for Binary Floating-Point\r
-| Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-float64 float32_to_float64( float32 a )\r
-{\r
- flag aSign;\r
- int16 aExp;\r
- bits32 aSig, zSig0, zSig1;\r
-\r
- aSig = extractFloat32Frac( a );\r
- aExp = extractFloat32Exp( a );\r
- aSign = extractFloat32Sign( a );\r
- if ( aExp == 0xFF ) {\r
- if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) );\r
- return packFloat64( aSign, 0x7FF, 0, 0 );\r
- }\r
- if ( aExp == 0 ) {\r
- if ( aSig == 0 ) return packFloat64( aSign, 0, 0, 0 );\r
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );\r
- --aExp;\r
- }\r
- shift64Right( aSig, 0, 3, &zSig0, &zSig1 );\r
- return packFloat64( aSign, aExp + 0x380, zSig0, zSig1 );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Rounds the single-precision floating-point value `a' to an integer,\r
-| and returns the result as a single-precision floating-point value. The\r
-| operation is performed according to the IEC/IEEE Standard for Binary\r
-| Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-float32 float32_round_to_int( float32 a )\r
-{\r
- flag aSign;\r
- int16 aExp;\r
- bits32 lastBitMask, roundBitsMask;\r
- int8 roundingMode;\r
- float32 z;\r
-\r
- aExp = extractFloat32Exp( a );\r
- if ( 0x96 <= aExp ) {\r
- if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {\r
- return propagateFloat32NaN( a, a );\r
- }\r
- return a;\r
- }\r
- if ( aExp <= 0x7E ) {\r
- if ( (bits32) ( a<<1 ) == 0 ) return a;\r
- float_exception_flags |= float_flag_inexact;\r
- aSign = extractFloat32Sign( a );\r
- switch ( float_rounding_mode ) {\r
- case float_round_nearest_even:\r
- if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {\r
- return packFloat32( aSign, 0x7F, 0 );\r
- }\r
- break;\r
- case float_round_down:\r
- return aSign ? 0xBF800000 : 0;\r
- case float_round_up:\r
- return aSign ? 0x80000000 : 0x3F800000;\r
- }\r
- return packFloat32( aSign, 0, 0 );\r
- }\r
- lastBitMask = 1;\r
- lastBitMask <<= 0x96 - aExp;\r
- roundBitsMask = lastBitMask - 1;\r
- z = a;\r
- roundingMode = float_rounding_mode;\r
- if ( roundingMode == float_round_nearest_even ) {\r
- z += lastBitMask>>1;\r
- if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;\r
- }\r
- else if ( roundingMode != float_round_to_zero ) {\r
- if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {\r
- z += roundBitsMask;\r
- }\r
- }\r
- z &= ~ roundBitsMask;\r
- if ( z != a ) float_exception_flags |= float_flag_inexact;\r
- return z;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the result of adding the absolute values of the single-precision\r
-| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated\r
-| before being returned. `zSign' is ignored if the result is a NaN.\r
-| The addition is performed according to the IEC/IEEE Standard for Binary\r
-| Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-static float32 addFloat32Sigs( float32 a, float32 b, flag zSign )\r
-{\r
- int16 aExp, bExp, zExp;\r
- bits32 aSig, bSig, zSig;\r
- int16 expDiff;\r
-\r
- aSig = extractFloat32Frac( a );\r
- aExp = extractFloat32Exp( a );\r
- bSig = extractFloat32Frac( b );\r
- bExp = extractFloat32Exp( b );\r
- expDiff = aExp - bExp;\r
- aSig <<= 6;\r
- bSig <<= 6;\r
- if ( 0 < expDiff ) {\r
- if ( aExp == 0xFF ) {\r
- if ( aSig ) return propagateFloat32NaN( a, b );\r
- return a;\r
- }\r
- if ( bExp == 0 ) {\r
- --expDiff;\r
- }\r
- else {\r
- bSig |= 0x20000000;\r
- }\r
- shift32RightJamming( bSig, expDiff, &bSig );\r
- zExp = aExp;\r
- }\r
- else if ( expDiff < 0 ) {\r
- if ( bExp == 0xFF ) {\r
- if ( bSig ) return propagateFloat32NaN( a, b );\r
- return packFloat32( zSign, 0xFF, 0 );\r
- }\r
- if ( aExp == 0 ) {\r
- ++expDiff;\r
- }\r
- else {\r
- aSig |= 0x20000000;\r
- }\r
- shift32RightJamming( aSig, - expDiff, &aSig );\r
- zExp = bExp;\r
- }\r
- else {\r
- if ( aExp == 0xFF ) {\r
- if ( aSig | bSig ) return propagateFloat32NaN( a, b );\r
- return a;\r
- }\r
- if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );\r
- zSig = 0x40000000 + aSig + bSig;\r
- zExp = aExp;\r
- goto roundAndPack;\r
- }\r
- aSig |= 0x20000000;\r
- zSig = ( aSig + bSig )<<1;\r
- --zExp;\r
- if ( (sbits32) zSig < 0 ) {\r
- zSig = aSig + bSig;\r
- ++zExp;\r
- }\r
- roundAndPack:\r
- return roundAndPackFloat32( zSign, zExp, zSig );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the result of subtracting the absolute values of the single-\r
-| precision floating-point values `a' and `b'. If `zSign' is 1, the\r
-| difference is negated before being returned. `zSign' is ignored if the\r
-| result is a NaN. The subtraction is performed according to the IEC/IEEE\r
-| Standard for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-static float32 subFloat32Sigs( float32 a, float32 b, flag zSign )\r
-{\r
- int16 aExp, bExp, zExp;\r
- bits32 aSig, bSig, zSig;\r
- int16 expDiff;\r
-\r
- aSig = extractFloat32Frac( a );\r
- aExp = extractFloat32Exp( a );\r
- bSig = extractFloat32Frac( b );\r
- bExp = extractFloat32Exp( b );\r
- expDiff = aExp - bExp;\r
- aSig <<= 7;\r
- bSig <<= 7;\r
- if ( 0 < expDiff ) goto aExpBigger;\r
- if ( expDiff < 0 ) goto bExpBigger;\r
- if ( aExp == 0xFF ) {\r
- if ( aSig | bSig ) return propagateFloat32NaN( a, b );\r
- float_raise( float_flag_invalid );\r
- return float32_default_nan;\r
- }\r
- if ( aExp == 0 ) {\r
- aExp = 1;\r
- bExp = 1;\r
- }\r
- if ( bSig < aSig ) goto aBigger;\r
- if ( aSig < bSig ) goto bBigger;\r
- return packFloat32( float_rounding_mode == float_round_down, 0, 0 );\r
- bExpBigger:\r
- if ( bExp == 0xFF ) {\r
- if ( bSig ) return propagateFloat32NaN( a, b );\r
- return packFloat32( zSign ^ 1, 0xFF, 0 );\r
- }\r
- if ( aExp == 0 ) {\r
- ++expDiff;\r
- }\r
- else {\r
- aSig |= 0x40000000;\r
- }\r
- shift32RightJamming( aSig, - expDiff, &aSig );\r
- bSig |= 0x40000000;\r
- bBigger:\r
- zSig = bSig - aSig;\r
- zExp = bExp;\r
- zSign ^= 1;\r
- goto normalizeRoundAndPack;\r
- aExpBigger:\r
- if ( aExp == 0xFF ) {\r
- if ( aSig ) return propagateFloat32NaN( a, b );\r
- return a;\r
- }\r
- if ( bExp == 0 ) {\r
- --expDiff;\r
- }\r
- else {\r
- bSig |= 0x40000000;\r
- }\r
- shift32RightJamming( bSig, expDiff, &bSig );\r
- aSig |= 0x40000000;\r
- aBigger:\r
- zSig = aSig - bSig;\r
- zExp = aExp;\r
- normalizeRoundAndPack:\r
- --zExp;\r
- return normalizeRoundAndPackFloat32( zSign, zExp, zSig );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the result of adding the single-precision floating-point values `a'\r
-| and `b'. The operation is performed according to the IEC/IEEE Standard for\r
-| Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-float32 float32_add( float32 a, float32 b )\r
-{\r
- flag aSign, bSign;\r
-\r
- aSign = extractFloat32Sign( a );\r
- bSign = extractFloat32Sign( b );\r
- if ( aSign == bSign ) {\r
- return addFloat32Sigs( a, b, aSign );\r
- }\r
- else {\r
- return subFloat32Sigs( a, b, aSign );\r
- }\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the result of subtracting the single-precision floating-point values\r
-| `a' and `b'. The operation is performed according to the IEC/IEEE Standard\r
-| for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-float32 float32_sub( float32 a, float32 b )\r
-{\r
- flag aSign, bSign;\r
-\r
- aSign = extractFloat32Sign( a );\r
- bSign = extractFloat32Sign( b );\r
- if ( aSign == bSign ) {\r
- return subFloat32Sigs( a, b, aSign );\r
- }\r
- else {\r
- return addFloat32Sigs( a, b, aSign );\r
- }\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the result of multiplying the single-precision floating-point values\r
-| `a' and `b'. The operation is performed according to the IEC/IEEE Standard\r
-| for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-float32 float32_mul( float32 a, float32 b )\r
-{\r
- flag aSign, bSign, zSign;\r
- int16 aExp, bExp, zExp;\r
- bits32 aSig, bSig, zSig0, zSig1;\r
-\r
- aSig = extractFloat32Frac( a );\r
- aExp = extractFloat32Exp( a );\r
- aSign = extractFloat32Sign( a );\r
- bSig = extractFloat32Frac( b );\r
- bExp = extractFloat32Exp( b );\r
- bSign = extractFloat32Sign( b );\r
- zSign = aSign ^ bSign;\r
- if ( aExp == 0xFF ) {\r
- if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {\r
- return propagateFloat32NaN( a, b );\r
- }\r
- if ( ( bExp | bSig ) == 0 ) {\r
- float_raise( float_flag_invalid );\r
- return float32_default_nan;\r
- }\r
- return packFloat32( zSign, 0xFF, 0 );\r
- }\r
- if ( bExp == 0xFF ) {\r
- if ( bSig ) return propagateFloat32NaN( a, b );\r
- if ( ( aExp | aSig ) == 0 ) {\r
- float_raise( float_flag_invalid );\r
- return float32_default_nan;\r
- }\r
- return packFloat32( zSign, 0xFF, 0 );\r
- }\r
- if ( aExp == 0 ) {\r
- if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );\r
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );\r
- }\r
- if ( bExp == 0 ) {\r
- if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );\r
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );\r
- }\r
- zExp = aExp + bExp - 0x7F;\r
- aSig = ( aSig | 0x00800000 )<<7;\r
- bSig = ( bSig | 0x00800000 )<<8;\r
- mul32To64( aSig, bSig, &zSig0, &zSig1 );\r
- zSig0 |= ( zSig1 != 0 );\r
- if ( 0 <= (sbits32) ( zSig0<<1 ) ) {\r
- zSig0 <<= 1;\r
- --zExp;\r
- }\r
- return roundAndPackFloat32( zSign, zExp, zSig0 );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the result of dividing the single-precision floating-point value `a'\r
-| by the corresponding value `b'. The operation is performed according to the\r
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-float32 float32_div( float32 a, float32 b )\r
-{\r
- flag aSign, bSign, zSign;\r
- int16 aExp, bExp, zExp;\r
- bits32 aSig, bSig, zSig, rem0, rem1, term0, term1;\r
-\r
- aSig = extractFloat32Frac( a );\r
- aExp = extractFloat32Exp( a );\r
- aSign = extractFloat32Sign( a );\r
- bSig = extractFloat32Frac( b );\r
- bExp = extractFloat32Exp( b );\r
- bSign = extractFloat32Sign( b );\r
- zSign = aSign ^ bSign;\r
- if ( aExp == 0xFF ) {\r
- if ( aSig ) return propagateFloat32NaN( a, b );\r
- if ( bExp == 0xFF ) {\r
- if ( bSig ) return propagateFloat32NaN( a, b );\r
- float_raise( float_flag_invalid );\r
- return float32_default_nan;\r
- }\r
- return packFloat32( zSign, 0xFF, 0 );\r
- }\r
- if ( bExp == 0xFF ) {\r
- if ( bSig ) return propagateFloat32NaN( a, b );\r
- return packFloat32( zSign, 0, 0 );\r
- }\r
- if ( bExp == 0 ) {\r
- if ( bSig == 0 ) {\r
- if ( ( aExp | aSig ) == 0 ) {\r
- float_raise( float_flag_invalid );\r
- return float32_default_nan;\r
- }\r
- float_raise( float_flag_divbyzero );\r
- return packFloat32( zSign, 0xFF, 0 );\r
- }\r
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );\r
- }\r
- if ( aExp == 0 ) {\r
- if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );\r
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );\r
- }\r
- zExp = aExp - bExp + 0x7D;\r
- aSig = ( aSig | 0x00800000 )<<7;\r
- bSig = ( bSig | 0x00800000 )<<8;\r
- if ( bSig <= ( aSig + aSig ) ) {\r
- aSig >>= 1;\r
- ++zExp;\r
- }\r
- zSig = estimateDiv64To32( aSig, 0, bSig );\r
- if ( ( zSig & 0x3F ) <= 2 ) {\r
- mul32To64( bSig, zSig, &term0, &term1 );\r
- sub64( aSig, 0, term0, term1, &rem0, &rem1 );\r
- while ( (sbits32) rem0 < 0 ) {\r
- --zSig;\r
- add64( rem0, rem1, 0, bSig, &rem0, &rem1 );\r
- }\r
- zSig |= ( rem1 != 0 );\r
- }\r
- return roundAndPackFloat32( zSign, zExp, zSig );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the remainder of the single-precision floating-point value `a'\r
-| with respect to the corresponding value `b'. The operation is performed\r
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-float32 float32_rem( float32 a, float32 b )\r
-{\r
- flag aSign, bSign, zSign;\r
- int16 aExp, bExp, expDiff;\r
- bits32 aSig, bSig, q, alternateASig;\r
- sbits32 sigMean;\r
-\r
- aSig = extractFloat32Frac( a );\r
- aExp = extractFloat32Exp( a );\r
- aSign = extractFloat32Sign( a );\r
- bSig = extractFloat32Frac( b );\r
- bExp = extractFloat32Exp( b );\r
- bSign = extractFloat32Sign( b );\r
- if ( aExp == 0xFF ) {\r
- if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {\r
- return propagateFloat32NaN( a, b );\r
- }\r
- float_raise( float_flag_invalid );\r
- return float32_default_nan;\r
- }\r
- if ( bExp == 0xFF ) {\r
- if ( bSig ) return propagateFloat32NaN( a, b );\r
- return a;\r
- }\r
- if ( bExp == 0 ) {\r
- if ( bSig == 0 ) {\r
- float_raise( float_flag_invalid );\r
- return float32_default_nan;\r
- }\r
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );\r
- }\r
- if ( aExp == 0 ) {\r
- if ( aSig == 0 ) return a;\r
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );\r
- }\r
- expDiff = aExp - bExp;\r
- aSig = ( aSig | 0x00800000 )<<8;\r
- bSig = ( bSig | 0x00800000 )<<8;\r
- if ( expDiff < 0 ) {\r
- if ( expDiff < -1 ) return a;\r
- aSig >>= 1;\r
- }\r
- q = ( bSig <= aSig );\r
- if ( q ) aSig -= bSig;\r
- expDiff -= 32;\r
- while ( 0 < expDiff ) {\r
- q = estimateDiv64To32( aSig, 0, bSig );\r
- q = ( 2 < q ) ? q - 2 : 0;\r
- aSig = - ( ( bSig>>2 ) * q );\r
- expDiff -= 30;\r
- }\r
- expDiff += 32;\r
- if ( 0 < expDiff ) {\r
- q = estimateDiv64To32( aSig, 0, bSig );\r
- q = ( 2 < q ) ? q - 2 : 0;\r
- q >>= 32 - expDiff;\r
- bSig >>= 2;\r
- aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;\r
- }\r
- else {\r
- aSig >>= 2;\r
- bSig >>= 2;\r
- }\r
- do {\r
- alternateASig = aSig;\r
- ++q;\r
- aSig -= bSig;\r
- } while ( 0 <= (sbits32) aSig );\r
- sigMean = aSig + alternateASig;\r
- if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {\r
- aSig = alternateASig;\r
- }\r
- zSign = ( (sbits32) aSig < 0 );\r
- if ( zSign ) aSig = - aSig;\r
- return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the square root of the single-precision floating-point value `a'.\r
-| The operation is performed according to the IEC/IEEE Standard for Binary\r
-| Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-float32 float32_sqrt( float32 a )\r
-{\r
- flag aSign;\r
- int16 aExp, zExp;\r
- bits32 aSig, zSig, rem0, rem1, term0, term1;\r
-\r
- aSig = extractFloat32Frac( a );\r
- aExp = extractFloat32Exp( a );\r
- aSign = extractFloat32Sign( a );\r
- if ( aExp == 0xFF ) {\r
- if ( aSig ) return propagateFloat32NaN( a, 0 );\r
- if ( ! aSign ) return a;\r
- float_raise( float_flag_invalid );\r
- return float32_default_nan;\r
- }\r
- if ( aSign ) {\r
- if ( ( aExp | aSig ) == 0 ) return a;\r
- float_raise( float_flag_invalid );\r
- return float32_default_nan;\r
- }\r
- if ( aExp == 0 ) {\r
- if ( aSig == 0 ) return 0;\r
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );\r
- }\r
- zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;\r
- aSig = ( aSig | 0x00800000 )<<8;\r
- zSig = estimateSqrt32( aExp, aSig ) + 2;\r
- if ( ( zSig & 0x7F ) <= 5 ) {\r
- if ( zSig < 2 ) {\r
- zSig = 0x7FFFFFFF;\r
- goto roundAndPack;\r
- }\r
- else {\r
- aSig >>= aExp & 1;\r
- mul32To64( zSig, zSig, &term0, &term1 );\r
- sub64( aSig, 0, term0, term1, &rem0, &rem1 );\r
- while ( (sbits32) rem0 < 0 ) {\r
- --zSig;\r
- shortShift64Left( 0, zSig, 1, &term0, &term1 );\r
- term1 |= 1;\r
- add64( rem0, rem1, term0, term1, &rem0, &rem1 );\r
- }\r
- zSig |= ( ( rem0 | rem1 ) != 0 );\r
- }\r
- }\r
- shift32RightJamming( zSig, 1, &zSig );\r
- roundAndPack:\r
- return roundAndPackFloat32( 0, zExp, zSig );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns 1 if the single-precision floating-point value `a' is equal to\r
-| the corresponding value `b', and 0 otherwise. The comparison is performed\r
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-flag float32_eq( float32 a, float32 b )\r
-{\r
-\r
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )\r
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )\r
- ) {\r
- if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {\r
- float_raise( float_flag_invalid );\r
- }\r
- return 0;\r
- }\r
- return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns 1 if the single-precision floating-point value `a' is less than\r
-| or equal to the corresponding value `b', and 0 otherwise. The comparison\r
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point\r
-| Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-flag float32_le( float32 a, float32 b )\r
-{\r
- flag aSign, bSign;\r
-\r
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )\r
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )\r
- ) {\r
- float_raise( float_flag_invalid );\r
- return 0;\r
- }\r
- aSign = extractFloat32Sign( a );\r
- bSign = extractFloat32Sign( b );\r
- if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );\r
- return ( a == b ) || ( aSign ^ ( a < b ) );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns 1 if the single-precision floating-point value `a' is less than\r
-| the corresponding value `b', and 0 otherwise. The comparison is performed\r
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-flag float32_lt( float32 a, float32 b )\r
-{\r
- flag aSign, bSign;\r
-\r
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )\r
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )\r
- ) {\r
- float_raise( float_flag_invalid );\r
- return 0;\r
- }\r
- aSign = extractFloat32Sign( a );\r
- bSign = extractFloat32Sign( b );\r
- if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );\r
- return ( a != b ) && ( aSign ^ ( a < b ) );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns 1 if the single-precision floating-point value `a' is equal to\r
-| the corresponding value `b', and 0 otherwise. The invalid exception is\r
-| raised if either operand is a NaN. Otherwise, the comparison is performed\r
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-flag float32_eq_signaling( float32 a, float32 b )\r
-{\r
-\r
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )\r
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )\r
- ) {\r
- float_raise( float_flag_invalid );\r
- return 0;\r
- }\r
- return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns 1 if the single-precision floating-point value `a' is less than or\r
-| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not\r
-| cause an exception. Otherwise, the comparison is performed according to the\r
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-flag float32_le_quiet( float32 a, float32 b )\r
-{\r
- flag aSign, bSign;\r
-\r
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )\r
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )\r
- ) {\r
- if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {\r
- float_raise( float_flag_invalid );\r
- }\r
- return 0;\r
- }\r
- aSign = extractFloat32Sign( a );\r
- bSign = extractFloat32Sign( b );\r
- if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );\r
- return ( a == b ) || ( aSign ^ ( a < b ) );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns 1 if the single-precision floating-point value `a' is less than\r
-| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an\r
-| exception. Otherwise, the comparison is performed according to the IEC/IEEE\r
-| Standard for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-flag float32_lt_quiet( float32 a, float32 b )\r
-{\r
- flag aSign, bSign;\r
-\r
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )\r
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )\r
- ) {\r
- if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {\r
- float_raise( float_flag_invalid );\r
- }\r
- return 0;\r
- }\r
- aSign = extractFloat32Sign( a );\r
- bSign = extractFloat32Sign( b );\r
- if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );\r
- return ( a != b ) && ( aSign ^ ( a < b ) );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the result of converting the double-precision floating-point value\r
-| `a' to the 32-bit two's complement integer format. The conversion is\r
-| performed according to the IEC/IEEE Standard for Binary Floating-Point\r
-| Arithmetic---which means in particular that the conversion is rounded\r
-| according to the current rounding mode. If `a' is a NaN, the largest\r
-| positive integer is returned. Otherwise, if the conversion overflows, the\r
-| largest integer with the same sign as `a' is returned.\r
-*----------------------------------------------------------------------------*/\r
-\r
-int32 float64_to_int32( float64 a )\r
-{\r
- flag aSign;\r
- int16 aExp, shiftCount;\r
- bits32 aSig0, aSig1, absZ, aSigExtra;\r
- int32 z;\r
- int8 roundingMode;\r
-\r
- aSig1 = extractFloat64Frac1( a );\r
- aSig0 = extractFloat64Frac0( a );\r
- aExp = extractFloat64Exp( a );\r
- aSign = extractFloat64Sign( a );\r
- shiftCount = aExp - 0x413;\r
- if ( 0 <= shiftCount ) {\r
- if ( 0x41E < aExp ) {\r
- if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0;\r
- goto invalid;\r
- }\r
- shortShift64Left(\r
- aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra );\r
- if ( 0x80000000 < absZ ) goto invalid;\r
- }\r
- else {\r
- aSig1 = ( aSig1 != 0 );\r
- if ( aExp < 0x3FE ) {\r
- aSigExtra = aExp | aSig0 | aSig1;\r
- absZ = 0;\r
- }\r
- else {\r
- aSig0 |= 0x00100000;\r
- aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1;\r
- absZ = aSig0>>( - shiftCount );\r
- }\r
- }\r
- roundingMode = float_rounding_mode;\r
- if ( roundingMode == float_round_nearest_even ) {\r
- if ( (sbits32) aSigExtra < 0 ) {\r
- ++absZ;\r
- if ( (bits32) ( aSigExtra<<1 ) == 0 ) absZ &= ~1;\r
- }\r
- z = aSign ? - absZ : absZ;\r
- }\r
- else {\r
- aSigExtra = ( aSigExtra != 0 );\r
- if ( aSign ) {\r
- z = - ( absZ\r
- + ( ( roundingMode == float_round_down ) & aSigExtra ) );\r
- }\r
- else {\r
- z = absZ + ( ( roundingMode == float_round_up ) & aSigExtra );\r
- }\r
- }\r
- if ( ( aSign ^ ( z < 0 ) ) && z ) {\r
- invalid:\r
- float_raise( float_flag_invalid );\r
- return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;\r
- }\r
- if ( aSigExtra ) float_exception_flags |= float_flag_inexact;\r
- return z;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the result of converting the double-precision floating-point value\r
-| `a' to the 32-bit two's complement integer format. The conversion is\r
-| performed according to the IEC/IEEE Standard for Binary Floating-Point\r
-| Arithmetic, except that the conversion is always rounded toward zero.\r
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if\r
-| the conversion overflows, the largest integer with the same sign as `a' is\r
-| returned.\r
-*----------------------------------------------------------------------------*/\r
-\r
-int32 float64_to_int32_round_to_zero( float64 a )\r
-{\r
- flag aSign;\r
- int16 aExp, shiftCount;\r
- bits32 aSig0, aSig1, absZ, aSigExtra;\r
- int32 z;\r
-\r
- aSig1 = extractFloat64Frac1( a );\r
- aSig0 = extractFloat64Frac0( a );\r
- aExp = extractFloat64Exp( a );\r
- aSign = extractFloat64Sign( a );\r
- shiftCount = aExp - 0x413;\r
- if ( 0 <= shiftCount ) {\r
- if ( 0x41E < aExp ) {\r
- if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0;\r
- goto invalid;\r
- }\r
- shortShift64Left(\r
- aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra );\r
- }\r
- else {\r
- if ( aExp < 0x3FF ) {\r
- if ( aExp | aSig0 | aSig1 ) {\r
- float_exception_flags |= float_flag_inexact;\r
- }\r
- return 0;\r
- }\r
- aSig0 |= 0x00100000;\r
- aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1;\r
- absZ = aSig0>>( - shiftCount );\r
- }\r
- z = aSign ? - absZ : absZ;\r
- if ( ( aSign ^ ( z < 0 ) ) && z ) {\r
- invalid:\r
- float_raise( float_flag_invalid );\r
- return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;\r
- }\r
- if ( aSigExtra ) float_exception_flags |= float_flag_inexact;\r
- return z;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the result of converting the double-precision floating-point value\r
-| `a' to the single-precision floating-point format. The conversion is\r
-| performed according to the IEC/IEEE Standard for Binary Floating-Point\r
-| Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-float32 float64_to_float32( float64 a )\r
-{\r
- flag aSign;\r
- int16 aExp;\r
- bits32 aSig0, aSig1, zSig;\r
- bits32 allZero;\r
-\r
- aSig1 = extractFloat64Frac1( a );\r
- aSig0 = extractFloat64Frac0( a );\r
- aExp = extractFloat64Exp( a );\r
- aSign = extractFloat64Sign( a );\r
- if ( aExp == 0x7FF ) {\r
- if ( aSig0 | aSig1 ) {\r
- return commonNaNToFloat32( float64ToCommonNaN( a ) );\r
- }\r
- return packFloat32( aSign, 0xFF, 0 );\r
- }\r
- shift64RightJamming( aSig0, aSig1, 22, &allZero, &zSig );\r
- if ( aExp ) zSig |= 0x40000000;\r
- return roundAndPackFloat32( aSign, aExp - 0x381, zSig );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Rounds the double-precision floating-point value `a' to an integer,\r
-| and returns the result as a double-precision floating-point value. The\r
-| operation is performed according to the IEC/IEEE Standard for Binary\r
-| Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-float64 float64_round_to_int( float64 a )\r
-{\r
- flag aSign;\r
- int16 aExp;\r
- bits32 lastBitMask, roundBitsMask;\r
- int8 roundingMode;\r
- float64 z;\r
-\r
- aExp = extractFloat64Exp( a );\r
- if ( 0x413 <= aExp ) {\r
- if ( 0x433 <= aExp ) {\r
- if ( ( aExp == 0x7FF )\r
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) {\r
- return propagateFloat64NaN( a, a );\r
- }\r
- return a;\r
- }\r
- lastBitMask = 1;\r
- lastBitMask = ( lastBitMask<<( 0x432 - aExp ) )<<1;\r
- roundBitsMask = lastBitMask - 1;\r
- z = a;\r
- roundingMode = float_rounding_mode;\r
- if ( roundingMode == float_round_nearest_even ) {\r
- if ( lastBitMask ) {\r
- add64( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );\r
- if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;\r
- }\r
- else {\r
- if ( (sbits32) z.low < 0 ) {\r
- ++z.high;\r
- if ( (bits32) ( z.low<<1 ) == 0 ) z.high &= ~1;\r
- }\r
- }\r
- }\r
- else if ( roundingMode != float_round_to_zero ) {\r
- if ( extractFloat64Sign( z )\r
- ^ ( roundingMode == float_round_up ) ) {\r
- add64( z.high, z.low, 0, roundBitsMask, &z.high, &z.low );\r
- }\r
- }\r
- z.low &= ~ roundBitsMask;\r
- }\r
- else {\r
- if ( aExp <= 0x3FE ) {\r
- if ( ( ( (bits32) ( a.high<<1 ) ) | a.low ) == 0 ) return a;\r
- float_exception_flags |= float_flag_inexact;\r
- aSign = extractFloat64Sign( a );\r
- switch ( float_rounding_mode ) {\r
- case float_round_nearest_even:\r
- if ( ( aExp == 0x3FE )\r
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) )\r
- ) {\r
- return packFloat64( aSign, 0x3FF, 0, 0 );\r
- }\r
- break;\r
- case float_round_down:\r
- return\r
- aSign ? packFloat64( 1, 0x3FF, 0, 0 )\r
- : packFloat64( 0, 0, 0, 0 );\r
- case float_round_up:\r
- return\r
- aSign ? packFloat64( 1, 0, 0, 0 )\r
- : packFloat64( 0, 0x3FF, 0, 0 );\r
- }\r
- return packFloat64( aSign, 0, 0, 0 );\r
- }\r
- lastBitMask = 1;\r
- lastBitMask <<= 0x413 - aExp;\r
- roundBitsMask = lastBitMask - 1;\r
- z.low = 0;\r
- z.high = a.high;\r
- roundingMode = float_rounding_mode;\r
- if ( roundingMode == float_round_nearest_even ) {\r
- z.high += lastBitMask>>1;\r
- if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {\r
- z.high &= ~ lastBitMask;\r
- }\r
- }\r
- else if ( roundingMode != float_round_to_zero ) {\r
- if ( extractFloat64Sign( z )\r
- ^ ( roundingMode == float_round_up ) ) {\r
- z.high |= ( a.low != 0 );\r
- z.high += roundBitsMask;\r
- }\r
- }\r
- z.high &= ~ roundBitsMask;\r
- }\r
- if ( ( z.low != a.low ) || ( z.high != a.high ) ) {\r
- float_exception_flags |= float_flag_inexact;\r
- }\r
- return z;\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the result of adding the absolute values of the double-precision\r
-| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated\r
-| before being returned. `zSign' is ignored if the result is a NaN.\r
-| The addition is performed according to the IEC/IEEE Standard for Binary\r
-| Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-static float64 addFloat64Sigs( float64 a, float64 b, flag zSign )\r
-{\r
- int16 aExp, bExp, zExp;\r
- bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;\r
- int16 expDiff;\r
-\r
- aSig1 = extractFloat64Frac1( a );\r
- aSig0 = extractFloat64Frac0( a );\r
- aExp = extractFloat64Exp( a );\r
- bSig1 = extractFloat64Frac1( b );\r
- bSig0 = extractFloat64Frac0( b );\r
- bExp = extractFloat64Exp( b );\r
- expDiff = aExp - bExp;\r
- if ( 0 < expDiff ) {\r
- if ( aExp == 0x7FF ) {\r
- if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );\r
- return a;\r
- }\r
- if ( bExp == 0 ) {\r
- --expDiff;\r
- }\r
- else {\r
- bSig0 |= 0x00100000;\r
- }\r
- shift64ExtraRightJamming(\r
- bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );\r
- zExp = aExp;\r
- }\r
- else if ( expDiff < 0 ) {\r
- if ( bExp == 0x7FF ) {\r
- if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );\r
- return packFloat64( zSign, 0x7FF, 0, 0 );\r
- }\r
- if ( aExp == 0 ) {\r
- ++expDiff;\r
- }\r
- else {\r
- aSig0 |= 0x00100000;\r
- }\r
- shift64ExtraRightJamming(\r
- aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );\r
- zExp = bExp;\r
- }\r
- else {\r
- if ( aExp == 0x7FF ) {\r
- if ( aSig0 | aSig1 | bSig0 | bSig1 ) {\r
- return propagateFloat64NaN( a, b );\r
- }\r
- return a;\r
- }\r
- add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );\r
- if ( aExp == 0 ) return packFloat64( zSign, 0, zSig0, zSig1 );\r
- zSig2 = 0;\r
- zSig0 |= 0x00200000;\r
- zExp = aExp;\r
- goto shiftRight1;\r
- }\r
- aSig0 |= 0x00100000;\r
- add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );\r
- --zExp;\r
- if ( zSig0 < 0x00200000 ) goto roundAndPack;\r
- ++zExp;\r
- shiftRight1:\r
- shift64ExtraRightJamming( zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );\r
- roundAndPack:\r
- return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the result of subtracting the absolute values of the double-\r
-| precision floating-point values `a' and `b'. If `zSign' is 1, the\r
-| difference is negated before being returned. `zSign' is ignored if the\r
-| result is a NaN. The subtraction is performed according to the IEC/IEEE\r
-| Standard for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-static float64 subFloat64Sigs( float64 a, float64 b, flag zSign )\r
-{\r
- int16 aExp, bExp, zExp;\r
- bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;\r
- int16 expDiff;\r
- float64 z;\r
-\r
- aSig1 = extractFloat64Frac1( a );\r
- aSig0 = extractFloat64Frac0( a );\r
- aExp = extractFloat64Exp( a );\r
- bSig1 = extractFloat64Frac1( b );\r
- bSig0 = extractFloat64Frac0( b );\r
- bExp = extractFloat64Exp( b );\r
- expDiff = aExp - bExp;\r
- shortShift64Left( aSig0, aSig1, 10, &aSig0, &aSig1 );\r
- shortShift64Left( bSig0, bSig1, 10, &bSig0, &bSig1 );\r
- if ( 0 < expDiff ) goto aExpBigger;\r
- if ( expDiff < 0 ) goto bExpBigger;\r
- if ( aExp == 0x7FF ) {\r
- if ( aSig0 | aSig1 | bSig0 | bSig1 ) {\r
- return propagateFloat64NaN( a, b );\r
- }\r
- float_raise( float_flag_invalid );\r
- z.low = float64_default_nan_low;\r
- z.high = float64_default_nan_high;\r
- return z;\r
- }\r
- if ( aExp == 0 ) {\r
- aExp = 1;\r
- bExp = 1;\r
- }\r
- if ( bSig0 < aSig0 ) goto aBigger;\r
- if ( aSig0 < bSig0 ) goto bBigger;\r
- if ( bSig1 < aSig1 ) goto aBigger;\r
- if ( aSig1 < bSig1 ) goto bBigger;\r
- return packFloat64( float_rounding_mode == float_round_down, 0, 0, 0 );\r
- bExpBigger:\r
- if ( bExp == 0x7FF ) {\r
- if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );\r
- return packFloat64( zSign ^ 1, 0x7FF, 0, 0 );\r
- }\r
- if ( aExp == 0 ) {\r
- ++expDiff;\r
- }\r
- else {\r
- aSig0 |= 0x40000000;\r
- }\r
- shift64RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );\r
- bSig0 |= 0x40000000;\r
- bBigger:\r
- sub64( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );\r
- zExp = bExp;\r
- zSign ^= 1;\r
- goto normalizeRoundAndPack;\r
- aExpBigger:\r
- if ( aExp == 0x7FF ) {\r
- if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );\r
- return a;\r
- }\r
- if ( bExp == 0 ) {\r
- --expDiff;\r
- }\r
- else {\r
- bSig0 |= 0x40000000;\r
- }\r
- shift64RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );\r
- aSig0 |= 0x40000000;\r
- aBigger:\r
- sub64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );\r
- zExp = aExp;\r
- normalizeRoundAndPack:\r
- --zExp;\r
- return normalizeRoundAndPackFloat64( zSign, zExp - 10, zSig0, zSig1 );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the result of adding the double-precision floating-point values `a'\r
-| and `b'. The operation is performed according to the IEC/IEEE Standard for\r
-| Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-float64 float64_add( float64 a, float64 b )\r
-{\r
- flag aSign, bSign;\r
-\r
- aSign = extractFloat64Sign( a );\r
- bSign = extractFloat64Sign( b );\r
- if ( aSign == bSign ) {\r
- return addFloat64Sigs( a, b, aSign );\r
- }\r
- else {\r
- return subFloat64Sigs( a, b, aSign );\r
- }\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the result of subtracting the double-precision floating-point values\r
-| `a' and `b'. The operation is performed according to the IEC/IEEE Standard\r
-| for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-float64 float64_sub( float64 a, float64 b )\r
-{\r
- flag aSign, bSign;\r
-\r
- aSign = extractFloat64Sign( a );\r
- bSign = extractFloat64Sign( b );\r
- if ( aSign == bSign ) {\r
- return subFloat64Sigs( a, b, aSign );\r
- }\r
- else {\r
- return addFloat64Sigs( a, b, aSign );\r
- }\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the result of multiplying the double-precision floating-point values\r
-| `a' and `b'. The operation is performed according to the IEC/IEEE Standard\r
-| for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-float64 float64_mul( float64 a, float64 b )\r
-{\r
- flag aSign, bSign, zSign;\r
- int16 aExp, bExp, zExp;\r
- bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;\r
- float64 z;\r
-\r
- aSig1 = extractFloat64Frac1( a );\r
- aSig0 = extractFloat64Frac0( a );\r
- aExp = extractFloat64Exp( a );\r
- aSign = extractFloat64Sign( a );\r
- bSig1 = extractFloat64Frac1( b );\r
- bSig0 = extractFloat64Frac0( b );\r
- bExp = extractFloat64Exp( b );\r
- bSign = extractFloat64Sign( b );\r
- zSign = aSign ^ bSign;\r
- if ( aExp == 0x7FF ) {\r
- if ( ( aSig0 | aSig1 )\r
- || ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) {\r
- return propagateFloat64NaN( a, b );\r
- }\r
- if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;\r
- return packFloat64( zSign, 0x7FF, 0, 0 );\r
- }\r
- if ( bExp == 0x7FF ) {\r
- if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );\r
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) {\r
- invalid:\r
- float_raise( float_flag_invalid );\r
- z.low = float64_default_nan_low;\r
- z.high = float64_default_nan_high;\r
- return z;\r
- }\r
- return packFloat64( zSign, 0x7FF, 0, 0 );\r
- }\r
- if ( aExp == 0 ) {\r
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );\r
- normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );\r
- }\r
- if ( bExp == 0 ) {\r
- if ( ( bSig0 | bSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );\r
- normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );\r
- }\r
- zExp = aExp + bExp - 0x400;\r
- aSig0 |= 0x00100000;\r
- shortShift64Left( bSig0, bSig1, 12, &bSig0, &bSig1 );\r
- mul64To128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );\r
- add64( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );\r
- zSig2 |= ( zSig3 != 0 );\r
- if ( 0x00200000 <= zSig0 ) {\r
- shift64ExtraRightJamming(\r
- zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );\r
- ++zExp;\r
- }\r
- return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the result of dividing the double-precision floating-point value `a'\r
-| by the corresponding value `b'. The operation is performed according to the\r
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-float64 float64_div( float64 a, float64 b )\r
-{\r
- flag aSign, bSign, zSign;\r
- int16 aExp, bExp, zExp;\r
- bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;\r
- bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3;\r
- float64 z;\r
-\r
- aSig1 = extractFloat64Frac1( a );\r
- aSig0 = extractFloat64Frac0( a );\r
- aExp = extractFloat64Exp( a );\r
- aSign = extractFloat64Sign( a );\r
- bSig1 = extractFloat64Frac1( b );\r
- bSig0 = extractFloat64Frac0( b );\r
- bExp = extractFloat64Exp( b );\r
- bSign = extractFloat64Sign( b );\r
- zSign = aSign ^ bSign;\r
- if ( aExp == 0x7FF ) {\r
- if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );\r
- if ( bExp == 0x7FF ) {\r
- if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );\r
- goto invalid;\r
- }\r
- return packFloat64( zSign, 0x7FF, 0, 0 );\r
- }\r
- if ( bExp == 0x7FF ) {\r
- if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );\r
- return packFloat64( zSign, 0, 0, 0 );\r
- }\r
- if ( bExp == 0 ) {\r
- if ( ( bSig0 | bSig1 ) == 0 ) {\r
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) {\r
- invalid:\r
- float_raise( float_flag_invalid );\r
- z.low = float64_default_nan_low;\r
- z.high = float64_default_nan_high;\r
- return z;\r
- }\r
- float_raise( float_flag_divbyzero );\r
- return packFloat64( zSign, 0x7FF, 0, 0 );\r
- }\r
- normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );\r
- }\r
- if ( aExp == 0 ) {\r
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );\r
- normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );\r
- }\r
- zExp = aExp - bExp + 0x3FD;\r
- shortShift64Left( aSig0 | 0x00100000, aSig1, 11, &aSig0, &aSig1 );\r
- shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 );\r
- if ( le64( bSig0, bSig1, aSig0, aSig1 ) ) {\r
- shift64Right( aSig0, aSig1, 1, &aSig0, &aSig1 );\r
- ++zExp;\r
- }\r
- zSig0 = estimateDiv64To32( aSig0, aSig1, bSig0 );\r
- mul64By32To96( bSig0, bSig1, zSig0, &term0, &term1, &term2 );\r
- sub96( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );\r
- while ( (sbits32) rem0 < 0 ) {\r
- --zSig0;\r
- add96( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );\r
- }\r
- zSig1 = estimateDiv64To32( rem1, rem2, bSig0 );\r
- if ( ( zSig1 & 0x3FF ) <= 4 ) {\r
- mul64By32To96( bSig0, bSig1, zSig1, &term1, &term2, &term3 );\r
- sub96( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );\r
- while ( (sbits32) rem1 < 0 ) {\r
- --zSig1;\r
- add96( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );\r
- }\r
- zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );\r
- }\r
- shift64ExtraRightJamming( zSig0, zSig1, 0, 11, &zSig0, &zSig1, &zSig2 );\r
- return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the remainder of the double-precision floating-point value `a'\r
-| with respect to the corresponding value `b'. The operation is performed\r
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-float64 float64_rem( float64 a, float64 b )\r
-{\r
- flag aSign, bSign, zSign;\r
- int16 aExp, bExp, expDiff;\r
- bits32 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;\r
- bits32 allZero, alternateASig0, alternateASig1, sigMean1;\r
- sbits32 sigMean0;\r
- float64 z;\r
-\r
- aSig1 = extractFloat64Frac1( a );\r
- aSig0 = extractFloat64Frac0( a );\r
- aExp = extractFloat64Exp( a );\r
- aSign = extractFloat64Sign( a );\r
- bSig1 = extractFloat64Frac1( b );\r
- bSig0 = extractFloat64Frac0( b );\r
- bExp = extractFloat64Exp( b );\r
- bSign = extractFloat64Sign( b );\r
- if ( aExp == 0x7FF ) {\r
- if ( ( aSig0 | aSig1 )\r
- || ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) {\r
- return propagateFloat64NaN( a, b );\r
- }\r
- goto invalid;\r
- }\r
- if ( bExp == 0x7FF ) {\r
- if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );\r
- return a;\r
- }\r
- if ( bExp == 0 ) {\r
- if ( ( bSig0 | bSig1 ) == 0 ) {\r
- invalid:\r
- float_raise( float_flag_invalid );\r
- z.low = float64_default_nan_low;\r
- z.high = float64_default_nan_high;\r
- return z;\r
- }\r
- normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );\r
- }\r
- if ( aExp == 0 ) {\r
- if ( ( aSig0 | aSig1 ) == 0 ) return a;\r
- normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );\r
- }\r
- expDiff = aExp - bExp;\r
- if ( expDiff < -1 ) return a;\r
- shortShift64Left(\r
- aSig0 | 0x00100000, aSig1, 11 - ( expDiff < 0 ), &aSig0, &aSig1 );\r
- shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 );\r
- q = le64( bSig0, bSig1, aSig0, aSig1 );\r
- if ( q ) sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );\r
- expDiff -= 32;\r
- while ( 0 < expDiff ) {\r
- q = estimateDiv64To32( aSig0, aSig1, bSig0 );\r
- q = ( 4 < q ) ? q - 4 : 0;\r
- mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 );\r
- shortShift96Left( term0, term1, term2, 29, &term1, &term2, &allZero );\r
- shortShift64Left( aSig0, aSig1, 29, &aSig0, &allZero );\r
- sub64( aSig0, 0, term1, term2, &aSig0, &aSig1 );\r
- expDiff -= 29;\r
- }\r
- if ( -32 < expDiff ) {\r
- q = estimateDiv64To32( aSig0, aSig1, bSig0 );\r
- q = ( 4 < q ) ? q - 4 : 0;\r
- q >>= - expDiff;\r
- shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 );\r
- expDiff += 24;\r
- if ( expDiff < 0 ) {\r
- shift64Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );\r
- }\r
- else {\r
- shortShift64Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );\r
- }\r
- mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 );\r
- sub64( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );\r
- }\r
- else {\r
- shift64Right( aSig0, aSig1, 8, &aSig0, &aSig1 );\r
- shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 );\r
- }\r
- do {\r
- alternateASig0 = aSig0;\r
- alternateASig1 = aSig1;\r
- ++q;\r
- sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );\r
- } while ( 0 <= (sbits32) aSig0 );\r
- add64(\r
- aSig0, aSig1, alternateASig0, alternateASig1, (bits32 *)&sigMean0, &sigMean1 );\r
- if ( ( sigMean0 < 0 )\r
- || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {\r
- aSig0 = alternateASig0;\r
- aSig1 = alternateASig1;\r
- }\r
- zSign = ( (sbits32) aSig0 < 0 );\r
- if ( zSign ) sub64( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );\r
- return\r
- normalizeRoundAndPackFloat64( aSign ^ zSign, bExp - 4, aSig0, aSig1 );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns the square root of the double-precision floating-point value `a'.\r
-| The operation is performed according to the IEC/IEEE Standard for Binary\r
-| Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-float64 float64_sqrt( float64 a )\r
-{\r
- flag aSign;\r
- int16 aExp, zExp;\r
- bits32 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;\r
- bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3;\r
- float64 z;\r
-\r
- aSig1 = extractFloat64Frac1( a );\r
- aSig0 = extractFloat64Frac0( a );\r
- aExp = extractFloat64Exp( a );\r
- aSign = extractFloat64Sign( a );\r
- if ( aExp == 0x7FF ) {\r
- if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, a );\r
- if ( ! aSign ) return a;\r
- goto invalid;\r
- }\r
- if ( aSign ) {\r
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;\r
- invalid:\r
- float_raise( float_flag_invalid );\r
- z.low = float64_default_nan_low;\r
- z.high = float64_default_nan_high;\r
- return z;\r
- }\r
- if ( aExp == 0 ) {\r
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( 0, 0, 0, 0 );\r
- normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );\r
- }\r
- zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;\r
- aSig0 |= 0x00100000;\r
- shortShift64Left( aSig0, aSig1, 11, &term0, &term1 );\r
- zSig0 = ( estimateSqrt32( aExp, term0 )>>1 ) + 1;\r
- if ( zSig0 == 0 ) zSig0 = 0x7FFFFFFF;\r
- doubleZSig0 = zSig0 + zSig0;\r
- shortShift64Left( aSig0, aSig1, 9 - ( aExp & 1 ), &aSig0, &aSig1 );\r
- mul32To64( zSig0, zSig0, &term0, &term1 );\r
- sub64( aSig0, aSig1, term0, term1, &rem0, &rem1 );\r
- while ( (sbits32) rem0 < 0 ) {\r
- --zSig0;\r
- doubleZSig0 -= 2;\r
- add64( rem0, rem1, 0, doubleZSig0 | 1, &rem0, &rem1 );\r
- }\r
- zSig1 = estimateDiv64To32( rem1, 0, doubleZSig0 );\r
- if ( ( zSig1 & 0x1FF ) <= 5 ) {\r
- if ( zSig1 == 0 ) zSig1 = 1;\r
- mul32To64( doubleZSig0, zSig1, &term1, &term2 );\r
- sub64( rem1, 0, term1, term2, &rem1, &rem2 );\r
- mul32To64( zSig1, zSig1, &term2, &term3 );\r
- sub96( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );\r
- while ( (sbits32) rem1 < 0 ) {\r
- --zSig1;\r
- shortShift64Left( 0, zSig1, 1, &term2, &term3 );\r
- term3 |= 1;\r
- term2 |= doubleZSig0;\r
- add96( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );\r
- }\r
- zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );\r
- }\r
- shift64ExtraRightJamming( zSig0, zSig1, 0, 10, &zSig0, &zSig1, &zSig2 );\r
- return roundAndPackFloat64( 0, zExp, zSig0, zSig1, zSig2 );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns 1 if the double-precision floating-point value `a' is equal to\r
-| the corresponding value `b', and 0 otherwise. The comparison is performed\r
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-flag float64_eq( float64 a, float64 b )\r
-{\r
-\r
- if ( ( ( extractFloat64Exp( a ) == 0x7FF )\r
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )\r
- || ( ( extractFloat64Exp( b ) == 0x7FF )\r
- && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )\r
- ) {\r
- if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {\r
- float_raise( float_flag_invalid );\r
- }\r
- return 0;\r
- }\r
- return\r
- ( a.low == b.low )\r
- && ( ( a.high == b.high )\r
- || ( ( a.low == 0 )\r
- && ( (bits32) ( ( a.high | b.high )<<1 ) == 0 ) )\r
- );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns 1 if the double-precision floating-point value `a' is less than\r
-| or equal to the corresponding value `b', and 0 otherwise. The comparison\r
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point\r
-| Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-flag float64_le( float64 a, float64 b )\r
-{\r
- flag aSign, bSign;\r
-\r
- if ( ( ( extractFloat64Exp( a ) == 0x7FF )\r
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )\r
- || ( ( extractFloat64Exp( b ) == 0x7FF )\r
- && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )\r
- ) {\r
- float_raise( float_flag_invalid );\r
- return 0;\r
- }\r
- aSign = extractFloat64Sign( a );\r
- bSign = extractFloat64Sign( b );\r
- if ( aSign != bSign ) {\r
- return\r
- aSign\r
- || ( ( ( (bits32) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )\r
- == 0 );\r
- }\r
- return\r
- aSign ? le64( b.high, b.low, a.high, a.low )\r
- : le64( a.high, a.low, b.high, b.low );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns 1 if the double-precision floating-point value `a' is less than\r
-| the corresponding value `b', and 0 otherwise. The comparison is performed\r
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-flag float64_lt( float64 a, float64 b )\r
-{\r
- flag aSign, bSign;\r
-\r
- if ( ( ( extractFloat64Exp( a ) == 0x7FF )\r
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )\r
- || ( ( extractFloat64Exp( b ) == 0x7FF )\r
- && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )\r
- ) {\r
- float_raise( float_flag_invalid );\r
- return 0;\r
- }\r
- aSign = extractFloat64Sign( a );\r
- bSign = extractFloat64Sign( b );\r
- if ( aSign != bSign ) {\r
- return\r
- aSign\r
- && ( ( ( (bits32) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )\r
- != 0 );\r
- }\r
- return\r
- aSign ? lt64( b.high, b.low, a.high, a.low )\r
- : lt64( a.high, a.low, b.high, b.low );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns 1 if the double-precision floating-point value `a' is equal to\r
-| the corresponding value `b', and 0 otherwise. The invalid exception is\r
-| raised if either operand is a NaN. Otherwise, the comparison is performed\r
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-flag float64_eq_signaling( float64 a, float64 b )\r
-{\r
-\r
- if ( ( ( extractFloat64Exp( a ) == 0x7FF )\r
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )\r
- || ( ( extractFloat64Exp( b ) == 0x7FF )\r
- && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )\r
- ) {\r
- float_raise( float_flag_invalid );\r
- return 0;\r
- }\r
- return\r
- ( a.low == b.low )\r
- && ( ( a.high == b.high )\r
- || ( ( a.low == 0 )\r
- && ( (bits32) ( ( a.high | b.high )<<1 ) == 0 ) )\r
- );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns 1 if the double-precision floating-point value `a' is less than or\r
-| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not\r
-| cause an exception. Otherwise, the comparison is performed according to the\r
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-flag float64_le_quiet( float64 a, float64 b )\r
-{\r
- flag aSign, bSign;\r
-\r
- if ( ( ( extractFloat64Exp( a ) == 0x7FF )\r
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )\r
- || ( ( extractFloat64Exp( b ) == 0x7FF )\r
- && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )\r
- ) {\r
- if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {\r
- float_raise( float_flag_invalid );\r
- }\r
- return 0;\r
- }\r
- aSign = extractFloat64Sign( a );\r
- bSign = extractFloat64Sign( b );\r
- if ( aSign != bSign ) {\r
- return\r
- aSign\r
- || ( ( ( (bits32) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )\r
- == 0 );\r
- }\r
- return\r
- aSign ? le64( b.high, b.low, a.high, a.low )\r
- : le64( a.high, a.low, b.high, b.low );\r
-\r
-}\r
-\r
-/*----------------------------------------------------------------------------\r
-| Returns 1 if the double-precision floating-point value `a' is less than\r
-| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an\r
-| exception. Otherwise, the comparison is performed according to the IEC/IEEE\r
-| Standard for Binary Floating-Point Arithmetic.\r
-*----------------------------------------------------------------------------*/\r
-\r
-flag float64_lt_quiet( float64 a, float64 b )\r
-{\r
- flag aSign, bSign;\r
-\r
- if ( ( ( extractFloat64Exp( a ) == 0x7FF )\r
- && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )\r
- || ( ( extractFloat64Exp( b ) == 0x7FF )\r
- && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )\r
- ) {\r
- if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {\r
- float_raise( float_flag_invalid );\r
- }\r
- return 0;\r
- }\r
- aSign = extractFloat64Sign( a );\r
- bSign = extractFloat64Sign( b );\r
- if ( aSign != bSign ) {\r
- return\r
- aSign\r
- && ( ( ( (bits32) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )\r
- != 0 );\r
- }\r
- return\r
- aSign ? lt64( b.high, b.low, a.high, a.low )\r
- : lt64( a.high, a.low, b.high, b.low );\r
-\r
-}\r
-\r