i965/fs: Introduce FS IR builder.
authorFrancisco Jerez <currojerez@riseup.net>
Wed, 22 Apr 2015 11:02:47 +0000 (14:02 +0300)
committerFrancisco Jerez <currojerez@riseup.net>
Tue, 9 Jun 2015 12:07:18 +0000 (15:07 +0300)
The purpose of this change is threefold: First, it improves the
modularity of the compiler back-end by separating the functionality
required to construct an i965 IR program from the rest of the visitor
god-object, what in turn will reduce the coupling between other
components and the visitor allowing a more modular design.  This patch
doesn't yet remove the equivalent functionality from the visitor
classes, as it involves major back-end surgery.

Second, it improves consistency between the scalar and vector
back-ends.  The FS and VEC4 builders can both be used to generate
scalar code with a compatible interface or they can be used to
generate natural vector width code -- 1 or 4 components respectively.

Third, the approach to IR construction is somewhat different to what
the visitor classes currently do.  All parameters affecting code
generation (execution size, half control, point in the program where
new instructions are inserted, etc.) are encapsulated in a stand-alone
object rather than being quasi-global state (yes, anything defined in
one of the visitor classes is effectively global due to the tight
coupling with virtually everything else in the compiler back-end).
This object is lightweight and can be copied, mutated and passed
around, making helper IR-building functions more flexible because they
can now simply take a builder object as argument and will inherit its
IR generation properties in exactly the same way that a discrete
instruction would from the same builder object.

The emit_typed_write() function from my image-load-store branch is an
example that illustrates the usefulness of the latter point: Due to
hardware limitations the function may have to split the untyped
surface message in 8-wide chunks.  That means that the several
functions called to help with the construction of the message payload
are themselves required to set the execution width and half control
correctly on the instructions they emit, and to allocate all registers
with half the default width.  With the previous approach this would
require the used helper functions to be aware of the parameters that
might differ from the default state and explicitly set the instruction
bits accordingly.  With the new approach they would get a modified
builder object as argument that would influence all instructions
emitted by the helper function as if it were the default state.

Another example is the fs_visitor::VARYING_PULL_CONSTANT_LOAD()
method.  It doesn't actually emit any instructions, they are simply
created and inserted into an exec_list which is returned for the
caller to emit at some location of the program.  This sort of two-step
emission becomes unnecessary with the builder interface because the
insertion point is one more of the code generation parameters which
are part of the builder object.  The caller can simply pass
VARYING_PULL_CONSTANT_LOAD() a modified builder object pointing at the
location of the program where the effect of the constant load is
desired.  This two-step emission (which pervades the compiler back-end
and is in most cases redundant) goes away: E.g. ADD() now actually
adds two registers rather than just creating an ADD instruction in
memory, emit(ADD()) is no longer necessary.

v2: Drop scalarizing VEC4 builder.
v3: Take a backend_shader as constructor argument.  Improve handling
    of debug annotations and execution control flags.
v4: Drop Gen6 IF with inline comparison.  Rename "instr" variable.
    Initialize cursor to NULL by default and add method to explicitly
    point the builder at the end of the program.

Reviewed-by: Matt Turner <mattst88@gmail.com>
src/mesa/drivers/dri/i965/Makefile.sources
src/mesa/drivers/dri/i965/brw_fs_builder.h [new file with mode: 0644]

index 3f852cd21ec5e75d5efba45a051b3f5f364a3f1a..93f336e4b728572adb1ad66b8898390a393c9023 100644 (file)
@@ -42,6 +42,7 @@ i965_FILES = \
        brw_ff_gs.c \
        brw_ff_gs_emit.c \
        brw_ff_gs.h \
+       brw_fs_builder.h \
        brw_fs_channel_expressions.cpp \
        brw_fs_cmod_propagation.cpp \
        brw_fs_combine_constants.cpp \
diff --git a/src/mesa/drivers/dri/i965/brw_fs_builder.h b/src/mesa/drivers/dri/i965/brw_fs_builder.h
new file mode 100644 (file)
index 0000000..58ac598
--- /dev/null
@@ -0,0 +1,652 @@
+/* -*- c++ -*- */
+/*
+ * Copyright © 2010-2015 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#ifndef BRW_FS_BUILDER_H
+#define BRW_FS_BUILDER_H
+
+#include "brw_ir_fs.h"
+#include "brw_shader.h"
+#include "brw_context.h"
+
+namespace brw {
+   /**
+    * Toolbox to assemble an FS IR program out of individual instructions.
+    *
+    * This object is meant to have an interface consistent with
+    * brw::vec4_builder.  They cannot be fully interchangeable because
+    * brw::fs_builder generates scalar code while brw::vec4_builder generates
+    * vector code.
+    */
+   class fs_builder {
+   public:
+      /** Type used in this IR to represent a source of an instruction. */
+      typedef fs_reg src_reg;
+
+      /** Type used in this IR to represent the destination of an instruction. */
+      typedef fs_reg dst_reg;
+
+      /** Type used in this IR to represent an instruction. */
+      typedef fs_inst instruction;
+
+      /**
+       * Construct an fs_builder that inserts instructions into \p shader.
+       * \p dispatch_width gives the native execution width of the program.
+       */
+      fs_builder(backend_shader *shader,
+                 unsigned dispatch_width) :
+         shader(shader), block(NULL), cursor(NULL),
+         _dispatch_width(dispatch_width),
+         _group(0),
+         force_writemask_all(false),
+         annotation()
+      {
+      }
+
+      /**
+       * Construct an fs_builder that inserts instructions before \p cursor in
+       * basic block \p block, inheriting other code generation parameters
+       * from this.
+       */
+      fs_builder
+      at(bblock_t *block, exec_node *cursor) const
+      {
+         fs_builder bld = *this;
+         bld.block = block;
+         bld.cursor = cursor;
+         return bld;
+      }
+
+      /**
+       * Construct an fs_builder appending instructions at the end of the
+       * instruction list of the shader, inheriting other code generation
+       * parameters from this.
+       */
+      fs_builder
+      at_end() const
+      {
+         return at(NULL, (exec_node *)&shader->instructions.tail);
+      }
+
+      /**
+       * Construct a builder specifying the default SIMD width and group of
+       * channel enable signals, inheriting other code generation parameters
+       * from this.
+       *
+       * \p n gives the default SIMD width, \p i gives the slot group used for
+       * predication and control flow masking in multiples of \p n channels.
+       */
+      fs_builder
+      group(unsigned n, unsigned i) const
+      {
+         assert(n <= dispatch_width() &&
+                i < dispatch_width() / n);
+         fs_builder bld = *this;
+         bld._dispatch_width = n;
+         bld._group += i * n;
+         return bld;
+      }
+
+      /**
+       * Alias for group() with width equal to eight.
+       */
+      fs_builder
+      half(unsigned i) const
+      {
+         return group(8, i);
+      }
+
+      /**
+       * Construct a builder with per-channel control flow execution masking
+       * disabled if \p b is true.  If control flow execution masking is
+       * already disabled this has no effect.
+       */
+      fs_builder
+      exec_all(bool b = true) const
+      {
+         fs_builder bld = *this;
+         if (b)
+            bld.force_writemask_all = true;
+         return bld;
+      }
+
+      /**
+       * Construct a builder with the given debug annotation info.
+       */
+      fs_builder
+      annotate(const char *str, const void *ir = NULL) const
+      {
+         fs_builder bld = *this;
+         bld.annotation.str = str;
+         bld.annotation.ir = ir;
+         return bld;
+      }
+
+      /**
+       * Get the SIMD width in use.
+       */
+      unsigned
+      dispatch_width() const
+      {
+         return _dispatch_width;
+      }
+
+      /**
+       * Allocate a virtual register of natural vector size (one for this IR)
+       * and SIMD width.  \p n gives the amount of space to allocate in
+       * dispatch_width units (which is just enough space for one logical
+       * component in this IR).
+       */
+      dst_reg
+      vgrf(enum brw_reg_type type, unsigned n = 1) const
+      {
+         return dst_reg(GRF, shader->alloc.allocate(
+                           DIV_ROUND_UP(n * type_sz(type) * dispatch_width(),
+                                        REG_SIZE)),
+                        type, dispatch_width());
+      }
+
+      /**
+       * Create a null register of floating type.
+       */
+      dst_reg
+      null_reg_f() const
+      {
+         return dst_reg(retype(brw_null_vec(dispatch_width()),
+                               BRW_REGISTER_TYPE_F));
+      }
+
+      /**
+       * Create a null register of signed integer type.
+       */
+      dst_reg
+      null_reg_d() const
+      {
+         return dst_reg(retype(brw_null_vec(dispatch_width()),
+                               BRW_REGISTER_TYPE_D));
+      }
+
+      /**
+       * Create a null register of unsigned integer type.
+       */
+      dst_reg
+      null_reg_ud() const
+      {
+         return dst_reg(retype(brw_null_vec(dispatch_width()),
+                               BRW_REGISTER_TYPE_UD));
+      }
+
+      /**
+       * Get the mask of SIMD channels enabled by dispatch and not yet
+       * disabled by discard.
+       */
+      src_reg
+      sample_mask_reg() const
+      {
+         const bool uses_kill =
+            (shader->stage == MESA_SHADER_FRAGMENT &&
+             ((brw_wm_prog_data *)shader->stage_prog_data)->uses_kill);
+         return (shader->stage != MESA_SHADER_FRAGMENT ? src_reg(0xffff) :
+                 uses_kill ? brw_flag_reg(0, 1) :
+                 retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD));
+      }
+
+      /**
+       * Insert an instruction into the program.
+       */
+      instruction *
+      emit(const instruction &inst) const
+      {
+         return emit(new(shader->mem_ctx) instruction(inst));
+      }
+
+      /**
+       * Create and insert a nullary control instruction into the program.
+       */
+      instruction *
+      emit(enum opcode opcode) const
+      {
+         return emit(instruction(opcode, dispatch_width()));
+      }
+
+      /**
+       * Create and insert a nullary instruction into the program.
+       */
+      instruction *
+      emit(enum opcode opcode, const dst_reg &dst) const
+      {
+         return emit(instruction(opcode, dst));
+      }
+
+      /**
+       * Create and insert a unary instruction into the program.
+       */
+      instruction *
+      emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0) const
+      {
+         switch (opcode) {
+         case SHADER_OPCODE_RCP:
+         case SHADER_OPCODE_RSQ:
+         case SHADER_OPCODE_SQRT:
+         case SHADER_OPCODE_EXP2:
+         case SHADER_OPCODE_LOG2:
+         case SHADER_OPCODE_SIN:
+         case SHADER_OPCODE_COS:
+            return fix_math_instruction(
+               emit(instruction(opcode, dst.width, dst,
+                                fix_math_operand(src0))));
+
+         default:
+            return emit(instruction(opcode, dst.width, dst, src0));
+         }
+      }
+
+      /**
+       * Create and insert a binary instruction into the program.
+       */
+      instruction *
+      emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0,
+           const src_reg &src1) const
+      {
+         switch (opcode) {
+         case SHADER_OPCODE_POW:
+         case SHADER_OPCODE_INT_QUOTIENT:
+         case SHADER_OPCODE_INT_REMAINDER:
+            return fix_math_instruction(
+               emit(instruction(opcode, dst.width, dst,
+                                fix_math_operand(src0),
+                                fix_math_operand(src1))));
+
+         default:
+            return emit(instruction(opcode, dst.width, dst, src0, src1));
+
+         }
+      }
+
+      /**
+       * Create and insert a ternary instruction into the program.
+       */
+      instruction *
+      emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0,
+           const src_reg &src1, const src_reg &src2) const
+      {
+         switch (opcode) {
+         case BRW_OPCODE_BFE:
+         case BRW_OPCODE_BFI2:
+         case BRW_OPCODE_MAD:
+         case BRW_OPCODE_LRP:
+            return emit(instruction(opcode, dst.width, dst,
+                                    fix_3src_operand(src0),
+                                    fix_3src_operand(src1),
+                                    fix_3src_operand(src2)));
+
+         default:
+            return emit(instruction(opcode, dst.width, dst, src0, src1, src2));
+         }
+      }
+
+      /**
+       * Insert a preallocated instruction into the program.
+       */
+      instruction *
+      emit(instruction *inst) const
+      {
+         assert(inst->exec_size == dispatch_width() ||
+                force_writemask_all);
+         assert(_group == 0 || _group == 8);
+
+         inst->force_sechalf = (_group == 8);
+         inst->force_writemask_all = force_writemask_all;
+         inst->annotation = annotation.str;
+         inst->ir = annotation.ir;
+
+         if (block)
+            static_cast<instruction *>(cursor)->insert_before(block, inst);
+         else
+            cursor->insert_before(inst);
+
+         return inst;
+      }
+
+      /**
+       * Select \p src0 if the comparison of both sources with the given
+       * conditional mod evaluates to true, otherwise select \p src1.
+       *
+       * Generally useful to get the minimum or maximum of two values.
+       */
+      void
+      emit_minmax(const dst_reg &dst, const src_reg &src0,
+                  const src_reg &src1, brw_conditional_mod mod) const
+      {
+         if (shader->devinfo->gen >= 6) {
+            set_condmod(mod, SEL(dst, fix_unsigned_negate(src0),
+                                 fix_unsigned_negate(src1)));
+         } else {
+            CMP(null_reg_d(), src0, src1, mod);
+            set_predicate(BRW_PREDICATE_NORMAL,
+                          SEL(dst, src0, src1));
+         }
+      }
+
+      /**
+       * Copy any live channel from \p src to the first channel of \p dst.
+       */
+      void
+      emit_uniformize(const dst_reg &dst, const src_reg &src) const
+      {
+         const fs_builder ubld = exec_all();
+         const dst_reg chan_index = vgrf(BRW_REGISTER_TYPE_UD);
+
+         ubld.emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, component(chan_index, 0));
+         ubld.emit(SHADER_OPCODE_BROADCAST, component(dst, 0),
+                   src, component(chan_index, 0));
+      }
+
+      /**
+       * Assorted arithmetic ops.
+       * @{
+       */
+#define ALU1(op)                                        \
+      instruction *                                     \
+      op(const dst_reg &dst, const src_reg &src0) const \
+      {                                                 \
+         return emit(BRW_OPCODE_##op, dst, src0);       \
+      }
+
+#define ALU2(op)                                                        \
+      instruction *                                                     \
+      op(const dst_reg &dst, const src_reg &src0, const src_reg &src1) const \
+      {                                                                 \
+         return emit(BRW_OPCODE_##op, dst, src0, src1);                 \
+      }
+
+#define ALU2_ACC(op)                                                    \
+      instruction *                                                     \
+      op(const dst_reg &dst, const src_reg &src0, const src_reg &src1) const \
+      {                                                                 \
+         instruction *inst = emit(BRW_OPCODE_##op, dst, src0, src1);    \
+         inst->writes_accumulator = true;                               \
+         return inst;                                                   \
+      }
+
+#define ALU3(op)                                                        \
+      instruction *                                                     \
+      op(const dst_reg &dst, const src_reg &src0, const src_reg &src1,  \
+         const src_reg &src2) const                                     \
+      {                                                                 \
+         return emit(BRW_OPCODE_##op, dst, src0, src1, src2);           \
+      }
+
+      ALU2(ADD)
+      ALU2_ACC(ADDC)
+      ALU2(AND)
+      ALU2(ASR)
+      ALU2(AVG)
+      ALU3(BFE)
+      ALU2(BFI1)
+      ALU3(BFI2)
+      ALU1(BFREV)
+      ALU1(CBIT)
+      ALU2(CMPN)
+      ALU3(CSEL)
+      ALU2(DP2)
+      ALU2(DP3)
+      ALU2(DP4)
+      ALU2(DPH)
+      ALU1(F16TO32)
+      ALU1(F32TO16)
+      ALU1(FBH)
+      ALU1(FBL)
+      ALU1(FRC)
+      ALU2(LINE)
+      ALU1(LZD)
+      ALU2(MAC)
+      ALU2_ACC(MACH)
+      ALU3(MAD)
+      ALU1(MOV)
+      ALU2(MUL)
+      ALU1(NOT)
+      ALU2(OR)
+      ALU2(PLN)
+      ALU1(RNDD)
+      ALU1(RNDE)
+      ALU1(RNDU)
+      ALU1(RNDZ)
+      ALU2(SAD2)
+      ALU2_ACC(SADA2)
+      ALU2(SEL)
+      ALU2(SHL)
+      ALU2(SHR)
+      ALU2_ACC(SUBB)
+      ALU2(XOR)
+
+#undef ALU3
+#undef ALU2_ACC
+#undef ALU2
+#undef ALU1
+      /** @} */
+
+      /**
+       * CMP: Sets the low bit of the destination channels with the result
+       * of the comparison, while the upper bits are undefined, and updates
+       * the flag register with the packed 16 bits of the result.
+       */
+      instruction *
+      CMP(const dst_reg &dst, const src_reg &src0, const src_reg &src1,
+          brw_conditional_mod condition) const
+      {
+         /* Take the instruction:
+          *
+          * CMP null<d> src0<f> src1<f>
+          *
+          * Original gen4 does type conversion to the destination type
+          * before comparison, producing garbage results for floating
+          * point comparisons.
+          *
+          * The destination type doesn't matter on newer generations,
+          * so we set the type to match src0 so we can compact the
+          * instruction.
+          */
+         return set_condmod(condition,
+                            emit(BRW_OPCODE_CMP, retype(dst, src0.type),
+                                 fix_unsigned_negate(src0),
+                                 fix_unsigned_negate(src1)));
+      }
+
+      /**
+       * Gen4 predicated IF.
+       */
+      instruction *
+      IF(brw_predicate predicate) const
+      {
+         return set_predicate(predicate, emit(BRW_OPCODE_IF));
+      }
+
+      /**
+       * Emit a linear interpolation instruction.
+       */
+      instruction *
+      LRP(const dst_reg &dst, const src_reg &x, const src_reg &y,
+          const src_reg &a) const
+      {
+         if (shader->devinfo->gen >= 6) {
+            /* The LRP instruction actually does op1 * op0 + op2 * (1 - op0), so
+             * we need to reorder the operands.
+             */
+            return emit(BRW_OPCODE_LRP, dst, a, y, x);
+
+         } else {
+            /* We can't use the LRP instruction.  Emit x*(1-a) + y*a. */
+            const dst_reg y_times_a = vgrf(dst.type);
+            const dst_reg one_minus_a = vgrf(dst.type);
+            const dst_reg x_times_one_minus_a = vgrf(dst.type);
+
+            MUL(y_times_a, y, a);
+            ADD(one_minus_a, negate(a), src_reg(1.0f));
+            MUL(x_times_one_minus_a, x, src_reg(one_minus_a));
+            return ADD(dst, src_reg(x_times_one_minus_a), src_reg(y_times_a));
+         }
+      }
+
+      /**
+       * Collect a number of registers in a contiguous range of registers.
+       */
+      instruction *
+      LOAD_PAYLOAD(const dst_reg &dst, const src_reg *src,
+                   unsigned sources, unsigned header_size) const
+      {
+         assert(dst.width % 8 == 0);
+         instruction *inst = emit(instruction(SHADER_OPCODE_LOAD_PAYLOAD,
+                                              dst.width, dst, src, sources));
+         inst->header_size = header_size;
+
+         for (unsigned i = 0; i < header_size; i++)
+            assert(src[i].file != GRF ||
+                   src[i].width * type_sz(src[i].type) == 32);
+         inst->regs_written = header_size;
+
+         for (unsigned i = header_size; i < sources; ++i)
+            assert(src[i].file != GRF ||
+                   src[i].width == dst.width);
+         inst->regs_written += (sources - header_size) * (dst.width / 8);
+
+         return inst;
+      }
+
+      backend_shader *shader;
+
+   private:
+      /**
+       * Workaround for negation of UD registers.  See comment in
+       * fs_generator::generate_code() for more details.
+       */
+      src_reg
+      fix_unsigned_negate(const src_reg &src) const
+      {
+         if (src.type == BRW_REGISTER_TYPE_UD &&
+             src.negate) {
+            dst_reg temp = vgrf(BRW_REGISTER_TYPE_UD);
+            MOV(temp, src);
+            return src_reg(temp);
+         } else {
+            return src;
+         }
+      }
+
+      /**
+       * Workaround for source register modes not supported by the ternary
+       * instruction encoding.
+       */
+      src_reg
+      fix_3src_operand(const src_reg &src) const
+      {
+         if (src.file == GRF || src.file == UNIFORM || src.stride > 1) {
+            return src;
+         } else {
+            dst_reg expanded = vgrf(src.type);
+            MOV(expanded, src);
+            return expanded;
+         }
+      }
+
+      /**
+       * Workaround for source register modes not supported by the math
+       * instruction.
+       */
+      src_reg
+      fix_math_operand(const src_reg &src) const
+      {
+         /* Can't do hstride == 0 args on gen6 math, so expand it out. We
+          * might be able to do better by doing execsize = 1 math and then
+          * expanding that result out, but we would need to be careful with
+          * masking.
+          *
+          * Gen6 hardware ignores source modifiers (negate and abs) on math
+          * instructions, so we also move to a temp to set those up.
+          *
+          * Gen7 relaxes most of the above restrictions, but still can't use IMM
+          * operands to math
+          */
+         if ((shader->devinfo->gen == 6 &&
+              (src.file == IMM || src.file == UNIFORM ||
+               src.abs || src.negate)) ||
+             (shader->devinfo->gen == 7 && src.file == IMM)) {
+            const dst_reg tmp = vgrf(src.type);
+            MOV(tmp, src);
+            return tmp;
+         } else {
+            return src;
+         }
+      }
+
+      /**
+       * Workaround other weirdness of the math instruction.
+       */
+      instruction *
+      fix_math_instruction(instruction *inst) const
+      {
+         if (shader->devinfo->gen < 6) {
+            inst->base_mrf = 2;
+            inst->mlen = inst->sources * dispatch_width() / 8;
+
+            if (inst->sources > 1) {
+               /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
+                * "Message Payload":
+                *
+                * "Operand0[7].  For the INT DIV functions, this operand is the
+                *  denominator."
+                *  ...
+                * "Operand1[7].  For the INT DIV functions, this operand is the
+                *  numerator."
+                */
+               const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
+               const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
+               const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
+
+               inst->resize_sources(1);
+               inst->src[0] = src0;
+
+               at(block, inst).MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type,
+                                          dispatch_width()), src1);
+            }
+         }
+
+         return inst;
+      }
+
+      bblock_t *block;
+      exec_node *cursor;
+
+      unsigned _dispatch_width;
+      unsigned _group;
+      bool force_writemask_all;
+
+      /** Debug annotation info. */
+      struct {
+         const char *str;
+         const void *ir;
+      } annotation;
+   };
+}
+
+#endif