dict<SigBit, std::vector<RTLIL::Cell*>> bit2sinks;
std::map<IdString, int> cell_stats;
- for (auto c : mapped_mod->cells())
+ for (auto mapped_cell : mapped_mod->cells())
{
- toposort.node(c->name);
+ toposort.node(mapped_cell->name);
RTLIL::Cell *cell = nullptr;
- if (c->type == ID($_NOT_)) {
- RTLIL::SigBit a_bit = c->getPort(ID::A);
- RTLIL::SigBit y_bit = c->getPort(ID::Y);
- bit_users[a_bit].insert(c->name);
- bit_drivers[y_bit].insert(c->name);
+ if (mapped_cell->type == ID($_NOT_)) {
+ RTLIL::SigBit a_bit = mapped_cell->getPort(ID::A);
+ RTLIL::SigBit y_bit = mapped_cell->getPort(ID::Y);
++ bit_users[a_bit].insert(mapped_cell->name);
++ bit_drivers[y_bit].insert(mapped_cell->name);
if (!a_bit.wire) {
- c->setPort(ID::Y, module->addWire(NEW_ID));
+ mapped_cell->setPort(ID::Y, module->addWire(NEW_ID));
RTLIL::Wire *wire = module->wire(remap_name(y_bit.wire->name));
log_assert(wire);
module->connect(RTLIL::SigBit(wire, y_bit.offset), State::S1);
driver_name = stringf("%s$lut", a_bit.wire->name.c_str());
else
driver_name = stringf("%s[%d]$lut", a_bit.wire->name.c_str(), a_bit.offset);
- driving_lut = mapped_mod->cell(driver_name);
+ driver_lut = mapped_mod->cell(driver_name);
}
- if (!driving_lut) {
+ if (!driver_lut) {
// If a driver couldn't be found (could be from PI or box CI)
// then implement using a LUT
- cell = module->addLut(remap_name(stringf("%s$lut", c->name.c_str())),
+ cell = module->addLut(remap_name(stringf("%s$lut", mapped_cell->name.c_str())),
RTLIL::SigBit(module->wires_.at(remap_name(a_bit.wire->name)), a_bit.offset),
RTLIL::SigBit(module->wires_.at(remap_name(y_bit.wire->name)), y_bit.offset),
RTLIL::Const::from_string("01"));
bit2sinks[cell->getPort(ID::A)].push_back(cell);
cell_stats[ID($lut)]++;
- bit_users[a_bit].insert(mapped_cell->name);
- bit_drivers[y_bit].insert(mapped_cell->name);
}
else
- not2drivers[mapped_cell] = driving_lut;
- not2drivers[c] = driver_lut;
++ not2drivers[mapped_cell] = driver_lut;
continue;
}
+ else
+ log_abort();
if (cell && markgroups) cell->attributes[ID(abcgroup)] = map_autoidx;
continue;
}
assign_map.set(mod);
if (!dff_mode || !clk_str.empty()) {
- abc9_module(design, mod, script_file, exe_file, cleanup, lut_costs, dff_mode, clk_str, keepff,
+
+ design->selection_stack.emplace_back(false);
+ RTLIL::Selection& sel = design->selection_stack.back();
+ sel.select(mod);
+
+ abc9_module(design, mod, script_file, exe_file, cleanup, lut_costs, false, clk_str, keepff,
delay_target, lutin_shared, fast_mode, show_tempdir,
- box_file, lut_file, wire_delay, box_lookup, scc_break_inputs);
+ box_file, lut_file, wire_delay, box_lookup);
++
+ design->selection_stack.pop_back();
continue;
}
: (S0 ? I1 : I0);
endmodule
+module \$__ABC_FF_ (input C, D, output Q);
+endmodule
+
+(* abc_box_id = 1000 *)
+module \$__ABC_ASYNC (input A, S, output Y);
+endmodule
+
+(* abc_box_id=1001, lib_whitebox, abc_flop *)
+module \$__ABC_FDRE ((* abc_flop_q, abc_arrival=303 *) output Q,
+ (* abc_flop_clk *) input C,
+ (* abc_flop_en *) input CE,
+ (* abc_flop_d *) input D,
+ input R, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_R_INVERTED = 1'b0;
+ parameter CLK_POLARITY = !IS_C_INVERTED;
+ parameter EN_POLARITY = 1'b1;
+ assign Q = (R ^ IS_R_INVERTED) ? 1'b0 : (CE ? (D ^ IS_D_INVERTED) : \$pastQ );
+endmodule
+
+(* abc_box_id=1002, lib_whitebox, abc_flop *)
+module \$__ABC_FDRE_1 ((* abc_flop_q, abc_arrival=303 *) output Q,
+ (* abc_flop_clk *) input C,
+ (* abc_flop_en *) input CE,
+ (* abc_flop_d *) input D,
+ input R, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter CLK_POLARITY = 1'b0;
+ parameter EN_POLARITY = 1'b1;
+ assign Q = R ? 1'b0 : (CE ? D : \$pastQ );
+endmodule
+
+(* abc_box_id=1003, lib_whitebox, abc_flop *)
+module \$__ABC_FDCE ((* abc_flop_q, abc_arrival=303 *) output Q,
+ (* abc_flop_clk *) input C,
+ (* abc_flop_en *) input CE,
+ (* abc_flop_d *) input D,
+ input CLR, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_CLR_INVERTED = 1'b0;
+ parameter CLK_POLARITY = !IS_C_INVERTED;
+ parameter EN_POLARITY = 1'b1;
+ assign Q = (CE && !(CLR ^ IS_CLR_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ;
+endmodule
+
+(* abc_box_id=1004, lib_whitebox, abc_flop *)
+module \$__ABC_FDCE_1 ((* abc_flop_q, abc_arrival=303 *) output Q,
+ (* abc_flop_clk *) input C,
+ (* abc_flop_en *) input CE,
+ (* abc_flop_d *) input D,
+ input CLR, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter CLK_POLARITY = 1'b0;
+ parameter EN_POLARITY = 1'b1;
+ assign Q = (CE && !CLR) ? D : \$pastQ ;
+endmodule
+
+(* abc_box_id=1005, lib_whitebox, abc_flop *)
+module \$__ABC_FDPE ((* abc_flop_q, abc_arrival=303 *) output Q,
+ (* abc_flop_clk *) input C,
+ (* abc_flop_en *) input CE,
+ (* abc_flop_d *) input D,
+ input PRE, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_PRE_INVERTED = 1'b0;
+ parameter CLK_POLARITY = !IS_C_INVERTED;
+ parameter EN_POLARITY = 1'b1;
+ assign Q = (CE && !(PRE ^ IS_PRE_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ;
+endmodule
+
+(* abc_box_id=1006, lib_whitebox, abc_flop *)
+module \$__ABC_FDPE_1 ((* abc_flop_q, abc_arrival=303 *) output Q,
+ (* abc_flop_clk *) input C,
+ (* abc_flop_en *) input CE,
+ (* abc_flop_d *) input D,
+ input PRE, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter CLK_POLARITY = 1'b0;
+ parameter EN_POLARITY = 1'b1;
+ assign Q = (CE && !PRE) ? D : \$pastQ ;
+endmodule
+
(* abc_box_id=2000 *)
- module \$__ABC_LUTMUX6 (input A, input [5:0] S, output Y);
+ module \$__ABC_LUT6 (input A, input [5:0] S, output Y);
endmodule
(* abc_box_id=2001 *)
- module \$__ABC_LUTMUX7 (input A, input [6:0] S, output Y);
- endmodule
-
-
- module \$__ABC_RAM32X1D (
- // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957
- (* abc_arrival=1153 *) output DPO, SPO,
- input D,
- input WCLK,
- input WE,
- input A0, A1, A2, A3, A4,
- input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4
- );
- endmodule
-
- module \$__ABC_RAM64X1D (
- // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957
- (* abc_arrival=1153 *) output DPO, SPO,
- input D,
- input WCLK,
- input WE,
- input A0, A1, A2, A3, A4, A5,
- input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5
- );
- parameter INIT = 64'h0;
- parameter IS_WCLK_INVERTED = 1'b0;
- endmodule
-
- module \$__ABC_RAM128X1D (
- // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957
- (* abc_arrival=1153 *) output DPO, SPO,
- input D,
- input WCLK,
- input WE,
- input [6:0] A, DPRA
- );
- parameter INIT = 128'h0;
- parameter IS_WCLK_INVERTED = 1'b0;
- endmodule
-
- module SRL16E (
- // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L904-L905
- (* abc_arrival=1472 *) output Q,
- input A0, A1, A2, A3, CE, CLK, D
- );
- parameter [15:0] INIT = 16'h0000;
- parameter [0:0] IS_CLK_INVERTED = 1'b0;
- endmodule
-
- module SRLC32E (
- // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L904-L905
- (* abc_arrival=1472 *) output Q,
- (* abc_arrival=1114 *) output Q31,
- input [4:0] A,
- input CE, CLK, D
- );
- parameter [31:0] INIT = 32'h00000000;
- parameter [0:0] IS_CLK_INVERTED = 1'b0;
+ module \$__ABC_LUT7 (input A, input [6:0] S, output Y);
endmodule
// ============================================================================
- module \$__ABC_LUTMUX6 (input A, input [5:0] S, output Y);
+module \$__ABC_ASYNC (input A, S, output Y);
+ assign Y = A;
+endmodule
+
+module \$__ABC_FDRE (output Q,
+ input C,
+ input CE,
+ input D,
+ input R, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_R_INVERTED = 1'b0;
+ parameter CLK_POLARITY = !IS_C_INVERTED;
+ parameter EN_POLARITY = 1'b1;
+
+ FDRE #(
+ .INIT(INIT),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_R_INVERTED(IS_R_INVERTED),
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(Q), .C(C), .CE(CE), .R(R)
+ );
+endmodule
+
+module \$__ABC_FDRE_1 (output Q,
+ input C,
+ input CE,
+ input D,
+ input R, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter CLK_POLARITY = 1'b0;
+ parameter EN_POLARITY = 1'b1;
+ assign Q = R ? 1'b0 : (CE ? D : \$pastQ );
+
+ FDRE_1 #(
+ .INIT(INIT),
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(Q), .C(C), .CE(CE), .R(R)
+ );
+endmodule
+
+module \$__ABC_FDCE (output Q,
+ input C,
+ input CE,
+ input D,
+ input CLR, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_CLR_INVERTED = 1'b0;
+ parameter CLK_POLARITY = !IS_C_INVERTED;
+ parameter EN_POLARITY = 1'b1;
+
+ FDCE #(
+ .INIT(INIT),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_CLR_INVERTED(IS_CLR_INVERTED),
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR)
+ );
+endmodule
+
+module \$__ABC_FDCE_1 (output Q,
+ input C,
+ input CE,
+ input D,
+ input CLR, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter CLK_POLARITY = 1'b0;
+ parameter EN_POLARITY = 1'b1;
+
+ FDCE_1 #(
+ .INIT(INIT),
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR)
+ );
+endmodule
+
+module \$__ABC_FDPE (output Q,
+ input C,
+ input CE,
+ input D,
+ input PRE, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_PRE_INVERTED = 1'b0;
+ parameter CLK_POLARITY = !IS_C_INVERTED;
+ parameter EN_POLARITY = 1'b1;
+
+ FDPE #(
+ .INIT(INIT),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_PRE_INVERTED(IS_PRE_INVERTED),
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE)
+ );
+endmodule
+
+module \$__ABC_FDPE_1 (output Q,
+ input C,
+ input CE,
+ input D,
+ input PRE, \$pastQ );
+ parameter [0:0] INIT = 1'b0;
+ parameter CLK_POLARITY = 1'b0;
+ parameter EN_POLARITY = 1'b1;
+
+ FDPE_1 #(
+ .INIT(INIT),
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE)
+ );
+endmodule
+
+ module \$__ABC_LUT6 (input A, input [5:0] S, output Y);
assign Y = A;
endmodule
- module \$__ABC_LUTMUX7 (input A, input [6:0] S, output Y);
+ module \$__ABC_LUT7 (input A, input [6:0] S, output Y);
assign Y = A;
endmodule
-
- module \$__ABC_RAM32X1D (
- output DPO, SPO,
- input D,
- input WCLK,
- input WE,
- input A0, A1, A2, A3, A4,
- input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4
- );
- parameter INIT = 32'h0;
- parameter IS_WCLK_INVERTED = 1'b0;
- RAM32X1D #(
- .INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
- ) _TECHMAP_REPLACE_ (
- .DPO(DPO), .SPO(SPO),
- .D(D), .WCLK(WCLK), .WE(WE),
- .A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4),
- .DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4)
- );
- endmodule
-
- module \$__ABC_RAM64X1D (
- output DPO, SPO,
- input D,
- input WCLK,
- input WE,
- input A0, A1, A2, A3, A4, A5,
- input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5
- );
- parameter INIT = 64'h0;
- parameter IS_WCLK_INVERTED = 1'b0;
- RAM64X1D #(
- .INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
- ) _TECHMAP_REPLACE_ (
- .DPO(DPO), .SPO(SPO),
- .D(D), .WCLK(WCLK), .WE(WE),
- .A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4), .A5(A5),
- .DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4), .DPRA5(DPRA5)
- );
- endmodule
-
- module \$__ABC_RAM128X1D (
- output DPO, SPO,
- input D,
- input WCLK,
- input WE,
- input A,
- input DPRA,
- );
- parameter INIT = 128'h0;
- parameter IS_WCLK_INVERTED = 1'b0;
- RAM128X1D #(
- .INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
- ) _TECHMAP_REPLACE_ (
- .DPO(DPO), .SPO(SPO),
- .D(D), .WCLK(WCLK), .WE(WE),
- .A(A),
- .DPRA(DPRA)
- );
- endmodule
-
- module \$__ABC_SRL16E (
- output Q,
- input A0, A1, A2, A3, CE, CLK, D
- );
- parameter [15:0] INIT = 16'h0000;
- parameter [0:0] IS_CLK_INVERTED = 1'b0;
-
- SRL16E #(
- .INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED)
- ) _TECHMAP_REPLACE_ (
- .Q(Q),
- .A0(A0), .A1(A1), .A2(A2), .A3(A3), .CE(CE), .CLK(CLK), .D(D)
- );
- endmodule
-
- module \$__ABC_SRLC32E (
- output Q,
- output Q31,
- input [4:0] A,
- input CE, CLK, D
- );
- parameter [31:0] INIT = 32'h00000000;
- parameter [0:0] IS_CLK_INVERTED = 1'b0;
-
- SRLC32E #(
- .INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED)
- ) _TECHMAP_REPLACE_ (
- .Q(Q), .Q31(Q31),
- .A(A), .CE(CE), .CLK(CLK), .D(D)
- );
- endmodule
592 540 520 356 - 512 548 292 - 228
580 526 507 398 385 508 528 378 380 114
+# Box to emulate async behaviour of FD[CP]*
+# Inputs: A S
+# Outputs: Y
+$__ABC_ASYNC 1000 0 2 1
+0 764
+
+# The following FD*.{CE,R,CLR,PRE) are offset by 46ps to
+# reflect the -46ps Tsu
+# https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L237-L251
+# https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L265-L277
+
+# Inputs: C CE D R \$pastQ
+# Outputs: Q
+FDRE 1001 1 5 1
+0 151 0 446 0
+
+# Inputs: C CE D R \$pastQ
+# Outputs: Q
+FDRE_1 1002 1 5 1
+0 151 0 446 0
+
+# Inputs: C CE CLR D \$pastQ
+# Outputs: Q
+FDCE 1003 1 5 1
+0 151 806 0 0
+
+# Inputs: C CE CLR D \$pastQ
+# Outputs: Q
+FDCE_1 1004 1 5 1
+0 151 806 0 0
+
+# Inputs: C CE D PRE \$pastQ
+# Outputs: Q
+FDPE 1005 1 5 1
+0 151 0 806 0
+
+# Inputs: C CE D PRE \$pastQ
+# Outputs: Q
+FDPE_1 1006 1 5 1
+0 151 0 806 0
+
# SLICEM/A6LUT
# Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32}
+ # Necessary since RAMD* and SRL* have both combinatorial (i.e.
+ # same-cycle read operation) and sequential (write operation
+ # is only committed on the next clock edge).
+ # To model the combinatorial path, such cells have to be split
+ # into comb and seq parts, with this box modelling only the former.
# Inputs: A S0 S1 S2 S3 S4 S5
# Outputs: Y
- $__ABC_LUTRAM6 2000 0 7 1
+ $__ABC_LUT6 2000 0 7 1
0 642 631 472 407 238 127
# SLICEM/A6LUT + F7BMUX