Call `assign_stack_local' to allocate a stack slot for a local variable.
This is usually done during the RTL generation for the function body,
but it can also be done in the reload pass when a pseudo-register does
- not get a hard register.
-
- Call `put_var_into_stack' when you learn, belatedly, that a variable
- previously given a pseudo-register must in fact go in the stack.
- This function changes the DECL_RTL to be a stack slot instead of a reg
- then scans all the RTL instructions so far generated to correct them. */
+ not get a hard register. */
#include "config.h"
#include "system.h"
HOST_WIDE_INT full_size;
};
\f
-/* This structure is used to record MEMs or pseudos used to replace VAR, any
- SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
- maintain this list in case two operands of an insn were required to match;
- in that case we must ensure we use the same replacement. */
-
-struct fixup_replacement GTY(())
-{
- rtx old;
- rtx new;
- struct fixup_replacement *next;
-};
-
-struct insns_for_mem_entry
-{
- /* A MEM. */
- rtx key;
- /* These are the INSNs which reference the MEM. */
- rtx insns;
-};
-
/* Forward declarations. */
static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
struct function *);
static struct temp_slot *find_temp_slot_from_address (rtx);
-static void put_reg_into_stack (struct function *, rtx, tree, enum machine_mode,
- unsigned int, bool, bool, bool, htab_t);
-static void schedule_fixup_var_refs (struct function *, rtx, tree, enum machine_mode,
- htab_t);
-static void fixup_var_refs (rtx, enum machine_mode, int, rtx, htab_t);
-static struct fixup_replacement
- *find_fixup_replacement (struct fixup_replacement **, rtx);
-static void fixup_var_refs_insns (rtx, rtx, enum machine_mode, int, int, rtx);
-static void fixup_var_refs_insns_with_hash (htab_t, rtx, enum machine_mode, int, rtx);
-static void fixup_var_refs_insn (rtx, rtx, enum machine_mode, int, int, rtx);
-static void fixup_var_refs_1 (rtx, enum machine_mode, rtx *, rtx,
- struct fixup_replacement **, rtx);
-static rtx fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
-static rtx walk_fixup_memory_subreg (rtx, rtx, rtx, enum machine_mode, int);
-static rtx fixup_stack_1 (rtx, rtx);
-static void optimize_bit_field (rtx, rtx, rtx *);
static void instantiate_decls (tree, int);
static void instantiate_decls_1 (tree, int);
static void instantiate_decl (rtx, HOST_WIDE_INT, int);
#ifdef HAVE_return
static void emit_return_into_block (basic_block, rtx);
#endif
-static void put_addressof_into_stack (rtx, htab_t);
-static bool purge_addressof_1 (rtx *, rtx, int, int, int, htab_t);
static void purge_single_hard_subreg_set (rtx);
#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
static rtx keep_stack_depressed (rtx);
#endif
-static int is_addressof (rtx *, void *);
-static hashval_t insns_for_mem_hash (const void *);
-static int insns_for_mem_comp (const void *, const void *);
-static int insns_for_mem_walk (rtx *, void *);
-static void compute_insns_for_mem (rtx, rtx, htab_t);
static void prepare_function_start (tree);
static void do_clobber_return_reg (rtx, void *);
static void do_use_return_reg (rtx, void *);
/* Pointer to chain of `struct function' for containing functions. */
struct function *outer_function_chain;
-/* List of insns that were postponed by purge_addressof_1. */
-static rtx postponed_insns;
-
/* Given a function decl for a containing function,
return the `struct function' for it. */
p->outer = outer_function_chain;
outer_function_chain = p;
- p->fixup_var_refs_queue = 0;
lang_hooks.function.enter_nested (p);
pop_function_context_from (tree context ATTRIBUTE_UNUSED)
{
struct function *p = outer_function_chain;
- struct var_refs_queue *queue;
cfun = p;
outer_function_chain = p->outer;
lang_hooks.function.leave_nested (p);
- /* Finish doing put_var_into_stack for any of our variables which became
- addressable during the nested function. If only one entry has to be
- fixed up, just do that one. Otherwise, first make a list of MEMs that
- are not to be unshared. */
- if (p->fixup_var_refs_queue == 0)
- ;
- else if (p->fixup_var_refs_queue->next == 0)
- fixup_var_refs (p->fixup_var_refs_queue->modified,
- p->fixup_var_refs_queue->promoted_mode,
- p->fixup_var_refs_queue->unsignedp,
- p->fixup_var_refs_queue->modified, 0);
- else
- {
- rtx list = 0;
-
- for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
- list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);
-
- for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
- fixup_var_refs (queue->modified, queue->promoted_mode,
- queue->unsignedp, list, 0);
-
- }
-
- p->fixup_var_refs_queue = 0;
-
/* Reset variables that have known state during rtx generation. */
rtx_equal_function_value_matters = 1;
virtuals_instantiated = 0;
f->x_tail_recursion_reentry = NULL;
f->x_arg_pointer_save_area = NULL;
f->x_parm_birth_insn = NULL;
- f->x_parm_reg_stack_loc = NULL;
- f->fixup_var_refs_queue = NULL;
f->original_arg_vector = NULL;
f->original_decl_initial = NULL;
f->epilogue_delay_list = NULL;
move_slot_to_level (p, temp_slot_level - 1);
}
- return;
- }
-
- /* If X is a register that is being used as a pointer, see if we have
- a temporary slot we know it points to. To be consistent with
- the code below, we really should preserve all non-kept slots
- if we can't find a match, but that seems to be much too costly. */
- if (REG_P (x) && REG_POINTER (x))
- p = find_temp_slot_from_address (x);
-
- /* If X is not in memory or is at a constant address, it cannot be in
- a temporary slot, but it can contain something whose address was
- taken. */
- if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
- {
- for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
- {
- next = p->next;
-
- if (p->addr_taken)
- move_slot_to_level (p, temp_slot_level - 1);
- }
-
- return;
- }
-
- /* First see if we can find a match. */
- if (p == 0)
- p = find_temp_slot_from_address (XEXP (x, 0));
-
- if (p != 0)
- {
- /* Move everything at our level whose address was taken to our new
- level in case we used its address. */
- struct temp_slot *q;
-
- if (p->level == temp_slot_level)
- {
- for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
- {
- next = q->next;
-
- if (p != q && q->addr_taken)
- move_slot_to_level (q, temp_slot_level - 1);
- }
-
- move_slot_to_level (p, temp_slot_level - 1);
- p->addr_taken = 0;
- }
- return;
- }
-
- /* Otherwise, preserve all non-kept slots at this level. */
- for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
- {
- next = p->next;
-
- if (!p->keep)
- move_slot_to_level (p, temp_slot_level - 1);
- }
-}
-
-/* Free all temporaries used so far. This is normally called at the
- end of generating code for a statement. */
-
-void
-free_temp_slots (void)
-{
- struct temp_slot *p, *next;
-
- for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
- {
- next = p->next;
-
- if (!p->keep)
- make_slot_available (p);
- }
-
- combine_temp_slots ();
-}
-
-/* Push deeper into the nesting level for stack temporaries. */
-
-void
-push_temp_slots (void)
-{
- temp_slot_level++;
-}
-
-/* Pop a temporary nesting level. All slots in use in the current level
- are freed. */
-
-void
-pop_temp_slots (void)
-{
- struct temp_slot *p, *next;
-
- for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
- {
- next = p->next;
- make_slot_available (p);
- }
-
- combine_temp_slots ();
-
- temp_slot_level--;
-}
-
-/* Initialize temporary slots. */
-
-void
-init_temp_slots (void)
-{
- /* We have not allocated any temporaries yet. */
- avail_temp_slots = 0;
- used_temp_slots = 0;
- temp_slot_level = 0;
- var_temp_slot_level = 0;
- target_temp_slot_level = 0;
-}
-\f
-/* Retroactively move an auto variable from a register to a stack
- slot. This is done when an address-reference to the variable is
- seen. If RESCAN is true, all previously emitted instructions are
- examined and modified to handle the fact that DECL is now
- addressable. */
-
-void
-put_var_into_stack (tree decl, int rescan)
-{
- rtx orig_reg, reg;
- enum machine_mode promoted_mode, decl_mode;
- struct function *function = 0;
- tree context;
- bool can_use_addressof_p;
- bool volatile_p = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
- bool used_p = (TREE_USED (decl)
- || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
-
- context = decl_function_context (decl);
-
- /* Get the current rtl used for this object and its original mode. */
- orig_reg = reg = DECL_RTL_IF_SET (decl);
-
- /* No need to do anything if decl has no rtx yet
- since in that case caller is setting TREE_ADDRESSABLE
- and a stack slot will be assigned when the rtl is made. */
- if (reg == 0)
- return;
-
- /* Get the declared mode for this object. */
- decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
- : DECL_MODE (decl));
- /* Get the mode it's actually stored in. */
- promoted_mode = GET_MODE (reg);
-
- /* If this variable comes from an outer function, find that
- function's saved context. Don't use find_function_data here,
- because it might not be in any active function.
- FIXME: Is that really supposed to happen?
- It does in ObjC at least. */
- if (context != current_function_decl)
- for (function = outer_function_chain; function; function = function->outer)
- if (function->decl == context)
- break;
-
- /* If this is a variable-sized object or a structure passed by invisible
- reference, with a pseudo to address it, put that pseudo into the stack
- if the var is non-local. */
- if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
- && MEM_P (reg)
- && REG_P (XEXP (reg, 0))
- && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
- {
- orig_reg = reg = XEXP (reg, 0);
- decl_mode = promoted_mode = GET_MODE (reg);
- }
-
- /* If this variable lives in the current function and we don't need to put it
- in the stack for the sake of setjmp or the non-locality, try to keep it in
- a register until we know we actually need the address. */
- can_use_addressof_p
- = (function == 0
- && ! (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl))
- && optimize > 0
- /* FIXME make it work for promoted modes too */
- && decl_mode == promoted_mode
-#ifdef NON_SAVING_SETJMP
- && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
-#endif
- );
-
- /* If we can't use ADDRESSOF, make sure we see through one we already
- generated. */
- if (! can_use_addressof_p
- && MEM_P (reg)
- && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
- reg = XEXP (XEXP (reg, 0), 0);
-
- /* Now we should have a value that resides in one or more pseudo regs. */
-
- if (REG_P (reg))
- {
- if (can_use_addressof_p)
- gen_mem_addressof (reg, decl, rescan);
- else
- put_reg_into_stack (function, reg, TREE_TYPE (decl), decl_mode,
- 0, volatile_p, used_p, false, 0);
-
- /* If this was previously a MEM but we've removed the ADDRESSOF,
- set this address into that MEM so we always use the same
- rtx for this variable. */
- if (orig_reg != reg && MEM_P (orig_reg))
- XEXP (orig_reg, 0) = XEXP (reg, 0);
- }
- else if (GET_CODE (reg) == CONCAT)
- {
- /* A CONCAT contains two pseudos; put them both in the stack.
- We do it so they end up consecutive.
- We fixup references to the parts only after we fixup references
- to the whole CONCAT, lest we do double fixups for the latter
- references. */
- enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
- tree part_type = lang_hooks.types.type_for_mode (part_mode, 0);
- rtx lopart = XEXP (reg, 0);
- rtx hipart = XEXP (reg, 1);
-#ifdef FRAME_GROWS_DOWNWARD
- /* Since part 0 should have a lower address, do it second. */
- put_reg_into_stack (function, hipart, part_type, part_mode,
- 0, volatile_p, false, false, 0);
- put_reg_into_stack (function, lopart, part_type, part_mode,
- 0, volatile_p, false, true, 0);
-#else
- put_reg_into_stack (function, lopart, part_type, part_mode,
- 0, volatile_p, false, false, 0);
- put_reg_into_stack (function, hipart, part_type, part_mode,
- 0, volatile_p, false, true, 0);
-#endif
-
- /* Change the CONCAT into a combined MEM for both parts. */
- PUT_CODE (reg, MEM);
- MEM_ATTRS (reg) = 0;
-
- /* set_mem_attributes uses DECL_RTL to avoid re-generating of
- already computed alias sets. Here we want to re-generate. */
- if (DECL_P (decl))
- SET_DECL_RTL (decl, NULL);
- set_mem_attributes (reg, decl, 1);
- if (DECL_P (decl))
- SET_DECL_RTL (decl, reg);
-
- /* The two parts are in memory order already.
- Use the lower parts address as ours. */
- XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
- /* Prevent sharing of rtl that might lose. */
- if (GET_CODE (XEXP (reg, 0)) == PLUS)
- XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
- if (used_p && rescan)
- {
- schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
- promoted_mode, 0);
- schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
- schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
- }
- }
- else
- return;
-}
-
-/* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
- into the stack frame of FUNCTION (0 means the current function).
- TYPE is the user-level data type of the value hold in the register.
- DECL_MODE is the machine mode of the user-level data type.
- ORIGINAL_REGNO must be set if the real regno is not visible in REG.
- VOLATILE_P is true if this is for a "volatile" decl.
- USED_P is true if this reg might have already been used in an insn.
- CONSECUTIVE_P is true if the stack slot assigned to reg must be
- consecutive with the previous stack slot. */
-
-static void
-put_reg_into_stack (struct function *function, rtx reg, tree type,
- enum machine_mode decl_mode, unsigned int original_regno,
- bool volatile_p, bool used_p, bool consecutive_p,
- htab_t ht)
-{
- struct function *func = function ? function : cfun;
- enum machine_mode mode = GET_MODE (reg);
- unsigned int regno = original_regno;
- rtx new = 0;
-
- if (regno == 0)
- regno = REGNO (reg);
-
- if (regno < func->x_max_parm_reg)
- {
- if (!func->x_parm_reg_stack_loc)
- abort ();
- new = func->x_parm_reg_stack_loc[regno];
- }
-
- if (new == 0)
- new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode),
- consecutive_p ? -2 : 0, func);
-
- PUT_CODE (reg, MEM);
- PUT_MODE (reg, decl_mode);
- XEXP (reg, 0) = XEXP (new, 0);
- MEM_ATTRS (reg) = 0;
- /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
- MEM_VOLATILE_P (reg) = volatile_p;
-
- /* If this is a memory ref that contains aggregate components,
- mark it as such for cse and loop optimize. If we are reusing a
- previously generated stack slot, then we need to copy the bit in
- case it was set for other reasons. For instance, it is set for
- __builtin_va_alist. */
- if (type)
- {
- MEM_SET_IN_STRUCT_P (reg,
- AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
- set_mem_alias_set (reg, get_alias_set (type));
- }
-
- if (used_p)
- schedule_fixup_var_refs (function, reg, type, mode, ht);
-}
-
-/* Make sure that all refs to the variable, previously made
- when it was a register, are fixed up to be valid again.
- See function above for meaning of arguments. */
-
-static void
-schedule_fixup_var_refs (struct function *function, rtx reg, tree type,
- enum machine_mode promoted_mode, htab_t ht)
-{
- int unsigned_p = type ? TYPE_UNSIGNED (type) : 0;
-
- if (function != 0)
- {
- struct var_refs_queue *temp;
-
- temp = ggc_alloc (sizeof (struct var_refs_queue));
- temp->modified = reg;
- temp->promoted_mode = promoted_mode;
- temp->unsignedp = unsigned_p;
- temp->next = function->fixup_var_refs_queue;
- function->fixup_var_refs_queue = temp;
- }
- else
- /* Variable is local; fix it up now. */
- fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
-}
-\f
-static void
-fixup_var_refs (rtx var, enum machine_mode promoted_mode, int unsignedp,
- rtx may_share, htab_t ht)
-{
- rtx first_insn = get_insns ();
- struct sequence_stack *stack = seq_stack;
- int save_volatile_ok = volatile_ok;
-
- /* If there's a hash table, it must record all uses of VAR. */
- if (ht)
- {
- if (stack != 0)
- abort ();
- fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
- may_share);
- return;
- }
-
- /* Volatile is valid in MEMs because all we're doing in changing the
- address inside. */
- volatile_ok = 1;
- fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
- stack == 0, may_share);
-
- /* Scan all pending sequences too. */
- for (; stack; stack = stack->next)
- {
- push_to_full_sequence (stack->first, stack->last);
- fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
- stack->next != 0, may_share);
- /* Update bounds of sequence in case we added insns. */
- stack->first = get_insns ();
- stack->last = get_last_insn ();
- end_sequence ();
- }
-
- volatile_ok = save_volatile_ok;
-}
-\f
-/* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
- some part of an insn. Return a struct fixup_replacement whose OLD
- value is equal to X. Allocate a new structure if no such entry exists. */
-
-static struct fixup_replacement *
-find_fixup_replacement (struct fixup_replacement **replacements, rtx x)
-{
- struct fixup_replacement *p;
-
- /* See if we have already replaced this. */
- for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
- ;
-
- if (p == 0)
- {
- p = xmalloc (sizeof (struct fixup_replacement));
- p->old = x;
- p->new = 0;
- p->next = *replacements;
- *replacements = p;
- }
-
- return p;
-}
-
-/* Scan the insn-chain starting with INSN for refs to VAR and fix them
- up. TOPLEVEL is nonzero if this chain is the main chain of insns
- for the current function. MAY_SHARE is either a MEM that is not
- to be unshared or a list of them. */
-
-static void
-fixup_var_refs_insns (rtx insn, rtx var, enum machine_mode promoted_mode,
- int unsignedp, int toplevel, rtx may_share)
-{
- while (insn)
- {
- /* fixup_var_refs_insn might modify insn, so save its next
- pointer now. */
- rtx next = NEXT_INSN (insn);
-
- if (INSN_P (insn))
- fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
- may_share);
-
- insn = next;
- }
-}
-
-/* Look up the insns which reference VAR in HT and fix them up. Other
- arguments are the same as fixup_var_refs_insns. */
-
-static void
-fixup_var_refs_insns_with_hash (htab_t ht, rtx var, enum machine_mode promoted_mode,
- int unsignedp, rtx may_share)
-{
- struct insns_for_mem_entry tmp;
- struct insns_for_mem_entry *ime;
- rtx insn_list;
-
- tmp.key = var;
- ime = htab_find (ht, &tmp);
- for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
- if (INSN_P (XEXP (insn_list, 0)))
- fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
- unsignedp, 1, may_share);
-}
-
-
-/* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
- the insn under examination, VAR is the variable to fix up
- references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
- TOPLEVEL is nonzero if this is the main insn chain for this
- function. */
-
-static void
-fixup_var_refs_insn (rtx insn, rtx var, enum machine_mode promoted_mode,
- int unsignedp, int toplevel, rtx no_share)
-{
- rtx call_dest = 0;
- rtx set, prev, prev_set;
- rtx note;
-
- /* Remember the notes in case we delete the insn. */
- note = REG_NOTES (insn);
-
- /* If this is a CLOBBER of VAR, delete it.
-
- If it has a REG_LIBCALL note, delete the REG_LIBCALL
- and REG_RETVAL notes too. */
- if (GET_CODE (PATTERN (insn)) == CLOBBER
- && (XEXP (PATTERN (insn), 0) == var
- || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
- && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
- || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
- {
- if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
- /* The REG_LIBCALL note will go away since we are going to
- turn INSN into a NOTE, so just delete the
- corresponding REG_RETVAL note. */
- remove_note (XEXP (note, 0),
- find_reg_note (XEXP (note, 0), REG_RETVAL,
- NULL_RTX));
-
- delete_insn (insn);
- }
-
- /* The insn to load VAR from a home in the arglist
- is now a no-op. When we see it, just delete it.
- Similarly if this is storing VAR from a register from which
- it was loaded in the previous insn. This will occur
- when an ADDRESSOF was made for an arglist slot. */
- else if (toplevel
- && (set = single_set (insn)) != 0
- && SET_DEST (set) == var
- /* If this represents the result of an insn group,
- don't delete the insn. */
- && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
- && (rtx_equal_p (SET_SRC (set), var)
- || (REG_P (SET_SRC (set))
- && (prev = prev_nonnote_insn (insn)) != 0
- && (prev_set = single_set (prev)) != 0
- && SET_DEST (prev_set) == SET_SRC (set)
- && rtx_equal_p (SET_SRC (prev_set), var))))
- {
- delete_insn (insn);
- }
- else
- {
- struct fixup_replacement *replacements = 0;
-
- if (SMALL_REGISTER_CLASSES)
- {
- /* If the insn that copies the results of a CALL_INSN
- into a pseudo now references VAR, we have to use an
- intermediate pseudo since we want the life of the
- return value register to be only a single insn.
-
- If we don't use an intermediate pseudo, such things as
- address computations to make the address of VAR valid
- if it is not can be placed between the CALL_INSN and INSN.
-
- To make sure this doesn't happen, we record the destination
- of the CALL_INSN and see if the next insn uses both that
- and VAR. */
-
- if (call_dest != 0 && GET_CODE (insn) == INSN
- && reg_mentioned_p (var, PATTERN (insn))
- && reg_mentioned_p (call_dest, PATTERN (insn)))
- {
- rtx temp = gen_reg_rtx (GET_MODE (call_dest));
-
- emit_insn_before (gen_move_insn (temp, call_dest), insn);
-
- PATTERN (insn) = replace_rtx (PATTERN (insn),
- call_dest, temp);
- }
-
- if (GET_CODE (insn) == CALL_INSN
- && GET_CODE (PATTERN (insn)) == SET)
- call_dest = SET_DEST (PATTERN (insn));
- else if (GET_CODE (insn) == CALL_INSN
- && GET_CODE (PATTERN (insn)) == PARALLEL
- && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
- call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
- else
- call_dest = 0;
- }
-
- /* See if we have to do anything to INSN now that VAR is in
- memory. If it needs to be loaded into a pseudo, use a single
- pseudo for the entire insn in case there is a MATCH_DUP
- between two operands. We pass a pointer to the head of
- a list of struct fixup_replacements. If fixup_var_refs_1
- needs to allocate pseudos or replacement MEMs (for SUBREGs),
- it will record them in this list.
-
- If it allocated a pseudo for any replacement, we copy into
- it here. */
-
- fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
- &replacements, no_share);
-
- while (replacements)
- {
- struct fixup_replacement *next;
-
- if (REG_P (replacements->new))
- {
- rtx insert_before;
- rtx seq;
-
- /* OLD might be a (subreg (mem)). */
- if (GET_CODE (replacements->old) == SUBREG)
- replacements->old
- = fixup_memory_subreg (replacements->old, insn,
- promoted_mode, 0);
- else
- replacements->old
- = fixup_stack_1 (replacements->old, insn);
-
- insert_before = insn;
-
- /* If we are changing the mode, do a conversion.
- This might be wasteful, but combine.c will
- eliminate much of the waste. */
-
- if (GET_MODE (replacements->new)
- != GET_MODE (replacements->old))
- {
- start_sequence ();
- convert_move (replacements->new,
- replacements->old, unsignedp);
- seq = get_insns ();
- end_sequence ();
- }
- else
- seq = gen_move_insn (replacements->new,
- replacements->old);
-
- emit_insn_before (seq, insert_before);
- }
-
- next = replacements->next;
- free (replacements);
- replacements = next;
- }
- }
-
- /* Also fix up any invalid exprs in the REG_NOTES of this insn.
- But don't touch other insns referred to by reg-notes;
- we will get them elsewhere. */
- while (note)
- {
- if (GET_CODE (note) != INSN_LIST)
- XEXP (note, 0)
- = walk_fixup_memory_subreg (XEXP (note, 0), insn, var,
- promoted_mode, 1);
- note = XEXP (note, 1);
- }
-}
-\f
-/* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
- See if the rtx expression at *LOC in INSN needs to be changed.
-
- REPLACEMENTS is a pointer to a list head that starts out zero, but may
- contain a list of original rtx's and replacements. If we find that we need
- to modify this insn by replacing a memory reference with a pseudo or by
- making a new MEM to implement a SUBREG, we consult that list to see if
- we have already chosen a replacement. If none has already been allocated,
- we allocate it and update the list. fixup_var_refs_insn will copy VAR
- or the SUBREG, as appropriate, to the pseudo. */
-
-static void
-fixup_var_refs_1 (rtx var, enum machine_mode promoted_mode, rtx *loc, rtx insn,
- struct fixup_replacement **replacements, rtx no_share)
-{
- int i;
- rtx x = *loc;
- RTX_CODE code = GET_CODE (x);
- const char *fmt;
- rtx tem, tem1;
- struct fixup_replacement *replacement;
-
- switch (code)
- {
- case ADDRESSOF:
- if (XEXP (x, 0) == var)
- {
- /* Prevent sharing of rtl that might lose. */
- rtx sub = copy_rtx (XEXP (var, 0));
-
- if (! validate_change (insn, loc, sub, 0))
- {
- rtx y = gen_reg_rtx (GET_MODE (sub));
- rtx seq, new_insn;
-
- /* We should be able to replace with a register or all is lost.
- Note that we can't use validate_change to verify this, since
- we're not caring for replacing all dups simultaneously. */
- if (! validate_replace_rtx (*loc, y, insn))
- abort ();
-
- /* Careful! First try to recognize a direct move of the
- value, mimicking how things are done in gen_reload wrt
- PLUS. Consider what happens when insn is a conditional
- move instruction and addsi3 clobbers flags. */
-
- start_sequence ();
- new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
- seq = get_insns ();
- end_sequence ();
-
- if (recog_memoized (new_insn) < 0)
- {
- /* That failed. Fall back on force_operand and hope. */
-
- start_sequence ();
- sub = force_operand (sub, y);
- if (sub != y)
- emit_insn (gen_move_insn (y, sub));
- seq = get_insns ();
- end_sequence ();
- }
-
-#ifdef HAVE_cc0
- /* Don't separate setter from user. */
- if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
- insn = PREV_INSN (insn);
-#endif
-
- emit_insn_before (seq, insn);
- }
- }
- return;
-
- case MEM:
- if (var == x)
- {
- /* If we already have a replacement, use it. Otherwise,
- try to fix up this address in case it is invalid. */
-
- replacement = find_fixup_replacement (replacements, var);
- if (replacement->new)
- {
- *loc = replacement->new;
- return;
- }
-
- *loc = replacement->new = x = fixup_stack_1 (x, insn);
-
- /* Unless we are forcing memory to register or we changed the mode,
- we can leave things the way they are if the insn is valid. */
-
- INSN_CODE (insn) = -1;
- if (! flag_force_mem && GET_MODE (x) == promoted_mode
- && recog_memoized (insn) >= 0)
- return;
-
- *loc = replacement->new = gen_reg_rtx (promoted_mode);
- return;
- }
-
- /* If X contains VAR, we need to unshare it here so that we update
- each occurrence separately. But all identical MEMs in one insn
- must be replaced with the same rtx because of the possibility of
- MATCH_DUPs. */
-
- if (reg_mentioned_p (var, x))
- {
- replacement = find_fixup_replacement (replacements, x);
- if (replacement->new == 0)
- replacement->new = copy_most_rtx (x, no_share);
-
- *loc = x = replacement->new;
- code = GET_CODE (x);
- }
- break;
-
- case REG:
- case CC0:
- case PC:
- case CONST_INT:
- case CONST:
- case SYMBOL_REF:
- case LABEL_REF:
- case CONST_DOUBLE:
- case CONST_VECTOR:
- return;
-
- case SIGN_EXTRACT:
- case ZERO_EXTRACT:
- /* Note that in some cases those types of expressions are altered
- by optimize_bit_field, and do not survive to get here. */
- if (XEXP (x, 0) == var
- || (GET_CODE (XEXP (x, 0)) == SUBREG
- && SUBREG_REG (XEXP (x, 0)) == var))
- {
- /* Get TEM as a valid MEM in the mode presently in the insn.
-
- We don't worry about the possibility of MATCH_DUP here; it
- is highly unlikely and would be tricky to handle. */
-
- tem = XEXP (x, 0);
- if (GET_CODE (tem) == SUBREG)
- {
- if (GET_MODE_BITSIZE (GET_MODE (tem))
- > GET_MODE_BITSIZE (GET_MODE (var)))
- {
- replacement = find_fixup_replacement (replacements, var);
- if (replacement->new == 0)
- replacement->new = gen_reg_rtx (GET_MODE (var));
- SUBREG_REG (tem) = replacement->new;
-
- /* The following code works only if we have a MEM, so we
- need to handle the subreg here. We directly substitute
- it assuming that a subreg must be OK here. We already
- scheduled a replacement to copy the mem into the
- subreg. */
- XEXP (x, 0) = tem;
- return;
- }
- else
- tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
- }
- else
- tem = fixup_stack_1 (tem, insn);
-
- /* Unless we want to load from memory, get TEM into the proper mode
- for an extract from memory. This can only be done if the
- extract is at a constant position and length. */
-
- if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
- && GET_CODE (XEXP (x, 2)) == CONST_INT
- && ! mode_dependent_address_p (XEXP (tem, 0))
- && ! MEM_VOLATILE_P (tem))
- {
- enum machine_mode wanted_mode = VOIDmode;
- enum machine_mode is_mode = GET_MODE (tem);
- HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
-
- if (GET_CODE (x) == ZERO_EXTRACT)
- {
- enum machine_mode new_mode
- = mode_for_extraction (EP_extzv, 1);
- if (new_mode != MAX_MACHINE_MODE)
- wanted_mode = new_mode;
- }
- else if (GET_CODE (x) == SIGN_EXTRACT)
- {
- enum machine_mode new_mode
- = mode_for_extraction (EP_extv, 1);
- if (new_mode != MAX_MACHINE_MODE)
- wanted_mode = new_mode;
- }
-
- /* If we have a narrower mode, we can do something. */
- if (wanted_mode != VOIDmode
- && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
- {
- HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
- rtx old_pos = XEXP (x, 2);
- rtx newmem;
-
- /* If the bytes and bits are counted differently, we
- must adjust the offset. */
- if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
- offset = (GET_MODE_SIZE (is_mode)
- - GET_MODE_SIZE (wanted_mode) - offset);
-
- pos %= GET_MODE_BITSIZE (wanted_mode);
-
- newmem = adjust_address_nv (tem, wanted_mode, offset);
-
- /* Make the change and see if the insn remains valid. */
- INSN_CODE (insn) = -1;
- XEXP (x, 0) = newmem;
- XEXP (x, 2) = GEN_INT (pos);
-
- if (recog_memoized (insn) >= 0)
- return;
-
- /* Otherwise, restore old position. XEXP (x, 0) will be
- restored later. */
- XEXP (x, 2) = old_pos;
- }
- }
-
- /* If we get here, the bitfield extract insn can't accept a memory
- reference. Copy the input into a register. */
-
- tem1 = gen_reg_rtx (GET_MODE (tem));
- emit_insn_before (gen_move_insn (tem1, tem), insn);
- XEXP (x, 0) = tem1;
- return;
- }
- break;
-
- case SUBREG:
- if (SUBREG_REG (x) == var)
- {
- /* If this is a special SUBREG made because VAR was promoted
- from a wider mode, replace it with VAR and call ourself
- recursively, this time saying that the object previously
- had its current mode (by virtue of the SUBREG). */
-
- if (SUBREG_PROMOTED_VAR_P (x))
- {
- *loc = var;
- fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
- no_share);
- return;
- }
-
- /* If this SUBREG makes VAR wider, it has become a paradoxical
- SUBREG with VAR in memory, but these aren't allowed at this
- stage of the compilation. So load VAR into a pseudo and take
- a SUBREG of that pseudo. */
- if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
- {
- replacement = find_fixup_replacement (replacements, var);
- if (replacement->new == 0)
- replacement->new = gen_reg_rtx (promoted_mode);
- SUBREG_REG (x) = replacement->new;
- return;
- }
-
- /* See if we have already found a replacement for this SUBREG.
- If so, use it. Otherwise, make a MEM and see if the insn
- is recognized. If not, or if we should force MEM into a register,
- make a pseudo for this SUBREG. */
- replacement = find_fixup_replacement (replacements, x);
- if (replacement->new)
- {
- enum machine_mode mode = GET_MODE (x);
- *loc = replacement->new;
-
- /* Careful! We may have just replaced a SUBREG by a MEM, which
- means that the insn may have become invalid again. We can't
- in this case make a new replacement since we already have one
- and we must deal with MATCH_DUPs. */
- if (MEM_P (replacement->new))
- {
- INSN_CODE (insn) = -1;
- if (recog_memoized (insn) >= 0)
- return;
-
- fixup_var_refs_1 (replacement->new, mode, &PATTERN (insn),
- insn, replacements, no_share);
- }
-
- return;
- }
-
- replacement->new = *loc = fixup_memory_subreg (x, insn,
- promoted_mode, 0);
-
- INSN_CODE (insn) = -1;
- if (! flag_force_mem && recog_memoized (insn) >= 0)
- return;
-
- *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
- return;
- }
- break;
-
- case SET:
- /* First do special simplification of bit-field references. */
- if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
- || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
- optimize_bit_field (x, insn, 0);
- if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
- || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
- optimize_bit_field (x, insn, 0);
-
- /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
- into a register and then store it back out. */
- if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
- && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
- && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
- && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
- > GET_MODE_SIZE (GET_MODE (var))))
- {
- replacement = find_fixup_replacement (replacements, var);
- if (replacement->new == 0)
- replacement->new = gen_reg_rtx (GET_MODE (var));
-
- SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
- emit_insn_after (gen_move_insn (var, replacement->new), insn);
- }
-
- /* If SET_DEST is now a paradoxical SUBREG, put the result of this
- insn into a pseudo and store the low part of the pseudo into VAR. */
- if (GET_CODE (SET_DEST (x)) == SUBREG
- && SUBREG_REG (SET_DEST (x)) == var
- && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
- > GET_MODE_SIZE (GET_MODE (var))))
- {
- SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
- emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
- tem)),
- insn);
- break;
- }
-
- {
- rtx dest = SET_DEST (x);
- rtx src = SET_SRC (x);
- rtx outerdest = dest;
-
- while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
- || GET_CODE (dest) == SIGN_EXTRACT
- || GET_CODE (dest) == ZERO_EXTRACT)
- dest = XEXP (dest, 0);
-
- if (GET_CODE (src) == SUBREG)
- src = SUBREG_REG (src);
-
- /* If VAR does not appear at the top level of the SET
- just scan the lower levels of the tree. */
-
- if (src != var && dest != var)
- break;
-
- /* We will need to rerecognize this insn. */
- INSN_CODE (insn) = -1;
-
- if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
- && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
- {
- /* Since this case will return, ensure we fixup all the
- operands here. */
- fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
- insn, replacements, no_share);
- fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
- insn, replacements, no_share);
- fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
- insn, replacements, no_share);
-
- tem = XEXP (outerdest, 0);
-
- /* Clean up (SUBREG:SI (MEM:mode ...) 0)
- that may appear inside a ZERO_EXTRACT.
- This was legitimate when the MEM was a REG. */
- if (GET_CODE (tem) == SUBREG
- && SUBREG_REG (tem) == var)
- tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
- else
- tem = fixup_stack_1 (tem, insn);
-
- if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
- && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
- && ! mode_dependent_address_p (XEXP (tem, 0))
- && ! MEM_VOLATILE_P (tem))
- {
- enum machine_mode wanted_mode;
- enum machine_mode is_mode = GET_MODE (tem);
- HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
-
- wanted_mode = mode_for_extraction (EP_insv, 0);
-
- /* If we have a narrower mode, we can do something. */
- if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
- {
- HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
- rtx old_pos = XEXP (outerdest, 2);
- rtx newmem;
-
- if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
- offset = (GET_MODE_SIZE (is_mode)
- - GET_MODE_SIZE (wanted_mode) - offset);
-
- pos %= GET_MODE_BITSIZE (wanted_mode);
-
- newmem = adjust_address_nv (tem, wanted_mode, offset);
-
- /* Make the change and see if the insn remains valid. */
- INSN_CODE (insn) = -1;
- XEXP (outerdest, 0) = newmem;
- XEXP (outerdest, 2) = GEN_INT (pos);
-
- if (recog_memoized (insn) >= 0)
- return;
-
- /* Otherwise, restore old position. XEXP (x, 0) will be
- restored later. */
- XEXP (outerdest, 2) = old_pos;
- }
- }
-
- /* If we get here, the bit-field store doesn't allow memory
- or isn't located at a constant position. Load the value into
- a register, do the store, and put it back into memory. */
-
- tem1 = gen_reg_rtx (GET_MODE (tem));
- emit_insn_before (gen_move_insn (tem1, tem), insn);
- emit_insn_after (gen_move_insn (tem, tem1), insn);
- XEXP (outerdest, 0) = tem1;
- return;
- }
-
- /* STRICT_LOW_PART is a no-op on memory references
- and it can cause combinations to be unrecognizable,
- so eliminate it. */
-
- if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
- SET_DEST (x) = XEXP (SET_DEST (x), 0);
-
- /* A valid insn to copy VAR into or out of a register
- must be left alone, to avoid an infinite loop here.
- If the reference to VAR is by a subreg, fix that up,
- since SUBREG is not valid for a memref.
- Also fix up the address of the stack slot.
-
- Note that we must not try to recognize the insn until
- after we know that we have valid addresses and no
- (subreg (mem ...) ...) constructs, since these interfere
- with determining the validity of the insn. */
-
- if ((SET_SRC (x) == var
- || (GET_CODE (SET_SRC (x)) == SUBREG
- && SUBREG_REG (SET_SRC (x)) == var))
- && (REG_P (SET_DEST (x))
- || (GET_CODE (SET_DEST (x)) == SUBREG
- && REG_P (SUBREG_REG (SET_DEST (x)))))
- && GET_MODE (var) == promoted_mode
- && x == single_set (insn))
- {
- rtx pat, last;
-
- if (GET_CODE (SET_SRC (x)) == SUBREG
- && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
- > GET_MODE_SIZE (GET_MODE (var))))
- {
- /* This (subreg VAR) is now a paradoxical subreg. We need
- to replace VAR instead of the subreg. */
- replacement = find_fixup_replacement (replacements, var);
- if (replacement->new == NULL_RTX)
- replacement->new = gen_reg_rtx (GET_MODE (var));
- SUBREG_REG (SET_SRC (x)) = replacement->new;
- }
- else
- {
- replacement = find_fixup_replacement (replacements, SET_SRC (x));
- if (replacement->new)
- SET_SRC (x) = replacement->new;
- else if (GET_CODE (SET_SRC (x)) == SUBREG)
- SET_SRC (x) = replacement->new
- = fixup_memory_subreg (SET_SRC (x), insn, promoted_mode,
- 0);
- else
- SET_SRC (x) = replacement->new
- = fixup_stack_1 (SET_SRC (x), insn);
- }
-
- if (recog_memoized (insn) >= 0)
- return;
-
- /* INSN is not valid, but we know that we want to
- copy SET_SRC (x) to SET_DEST (x) in some way. So
- we generate the move and see whether it requires more
- than one insn. If it does, we emit those insns and
- delete INSN. Otherwise, we can just replace the pattern
- of INSN; we have already verified above that INSN has
- no other function that to do X. */
-
- pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
- if (NEXT_INSN (pat) != NULL_RTX)
- {
- last = emit_insn_before (pat, insn);
-
- /* INSN might have REG_RETVAL or other important notes, so
- we need to store the pattern of the last insn in the
- sequence into INSN similarly to the normal case. LAST
- should not have REG_NOTES, but we allow them if INSN has
- no REG_NOTES. */
- if (REG_NOTES (last) && REG_NOTES (insn))
- abort ();
- if (REG_NOTES (last))
- REG_NOTES (insn) = REG_NOTES (last);
- PATTERN (insn) = PATTERN (last);
-
- delete_insn (last);
- }
- else
- PATTERN (insn) = PATTERN (pat);
-
- return;
- }
-
- if ((SET_DEST (x) == var
- || (GET_CODE (SET_DEST (x)) == SUBREG
- && SUBREG_REG (SET_DEST (x)) == var))
- && (REG_P (SET_SRC (x))
- || (GET_CODE (SET_SRC (x)) == SUBREG
- && REG_P (SUBREG_REG (SET_SRC (x)))))
- && GET_MODE (var) == promoted_mode
- && x == single_set (insn))
- {
- rtx pat, last;
-
- if (GET_CODE (SET_DEST (x)) == SUBREG)
- SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn,
- promoted_mode, 0);
- else
- SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
-
- if (recog_memoized (insn) >= 0)
- return;
-
- pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
- if (NEXT_INSN (pat) != NULL_RTX)
- {
- last = emit_insn_before (pat, insn);
-
- /* INSN might have REG_RETVAL or other important notes, so
- we need to store the pattern of the last insn in the
- sequence into INSN similarly to the normal case. LAST
- should not have REG_NOTES, but we allow them if INSN has
- no REG_NOTES. */
- if (REG_NOTES (last) && REG_NOTES (insn))
- abort ();
- if (REG_NOTES (last))
- REG_NOTES (insn) = REG_NOTES (last);
- PATTERN (insn) = PATTERN (last);
-
- delete_insn (last);
- }
- else
- PATTERN (insn) = PATTERN (pat);
-
- return;
- }
-
- /* Otherwise, storing into VAR must be handled specially
- by storing into a temporary and copying that into VAR
- with a new insn after this one. Note that this case
- will be used when storing into a promoted scalar since
- the insn will now have different modes on the input
- and output and hence will be invalid (except for the case
- of setting it to a constant, which does not need any
- change if it is valid). We generate extra code in that case,
- but combine.c will eliminate it. */
-
- if (dest == var)
- {
- rtx temp;
- rtx fixeddest = SET_DEST (x);
- enum machine_mode temp_mode;
-
- /* STRICT_LOW_PART can be discarded, around a MEM. */
- if (GET_CODE (fixeddest) == STRICT_LOW_PART)
- fixeddest = XEXP (fixeddest, 0);
- /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
- if (GET_CODE (fixeddest) == SUBREG)
- {
- fixeddest = fixup_memory_subreg (fixeddest, insn,
- promoted_mode, 0);
- temp_mode = GET_MODE (fixeddest);
- }
- else
- {
- fixeddest = fixup_stack_1 (fixeddest, insn);
- temp_mode = promoted_mode;
- }
-
- temp = gen_reg_rtx (temp_mode);
-
- emit_insn_after (gen_move_insn (fixeddest,
- gen_lowpart (GET_MODE (fixeddest),
- temp)),
- insn);
-
- SET_DEST (x) = temp;
- }
- }
-
- default:
- break;
- }
-
- /* Nothing special about this RTX; fix its operands. */
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
- no_share);
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
- insn, replacements, no_share);
- }
- }
-}
-\f
-/* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
- The REG was placed on the stack, so X now has the form (SUBREG:m1
- (MEM:m2 ...)).
-
- Return an rtx (MEM:m1 newaddr) which is equivalent. If any insns
- must be emitted to compute NEWADDR, put them before INSN.
-
- UNCRITICAL nonzero means accept paradoxical subregs.
- This is used for subregs found inside REG_NOTES. */
-
-static rtx
-fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode, int uncritical)
-{
- int offset;
- rtx mem = SUBREG_REG (x);
- rtx addr = XEXP (mem, 0);
- enum machine_mode mode = GET_MODE (x);
- rtx result, seq;
-
- /* Paradoxical SUBREGs are usually invalid during RTL generation. */
- if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical)
- abort ();
-
- offset = SUBREG_BYTE (x);
- if (BYTES_BIG_ENDIAN)
- /* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
- the offset so that it points to the right location within the
- MEM. */
- offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem)));
-
- if (!flag_force_addr
- && memory_address_p (mode, plus_constant (addr, offset)))
- /* Shortcut if no insns need be emitted. */
- return adjust_address (mem, mode, offset);
-
- start_sequence ();
- result = adjust_address (mem, mode, offset);
- seq = get_insns ();
- end_sequence ();
-
- emit_insn_before (seq, insn);
- return result;
-}
-
-/* Do fixup_memory_subreg on all (SUBREG (VAR) ...) contained in X.
- VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
- Replace subexpressions of X in place.
- If X itself is a (SUBREG (VAR) ...), return the replacement expression.
- Otherwise return X, with its contents possibly altered.
-
- INSN and UNCRITICAL are as for fixup_memory_subreg. */
-
-static rtx
-walk_fixup_memory_subreg (rtx x, rtx insn, rtx var,
- enum machine_mode promoted_mode, int uncritical)
-{
- enum rtx_code code;
- const char *fmt;
- int i;
-
- if (x == 0)
- return 0;
-
- code = GET_CODE (x);
-
- if (code == SUBREG && SUBREG_REG (x) == var)
- return fixup_memory_subreg (x, insn, promoted_mode, uncritical);
-
- /* Nothing special about this RTX; fix its operands. */
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, var,
- promoted_mode, uncritical);
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- XVECEXP (x, i, j)
- = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, var,
- promoted_mode, uncritical);
- }
- }
- return x;
-}
-\f
-/* For each memory ref within X, if it refers to a stack slot
- with an out of range displacement, put the address in a temp register
- (emitting new insns before INSN to load these registers)
- and alter the memory ref to use that register.
- Replace each such MEM rtx with a copy, to avoid clobberage. */
-
-static rtx
-fixup_stack_1 (rtx x, rtx insn)
-{
- int i;
- RTX_CODE code = GET_CODE (x);
- const char *fmt;
-
- if (code == MEM)
- {
- rtx ad = XEXP (x, 0);
- /* If we have address of a stack slot but it's not valid
- (displacement is too large), compute the sum in a register. */
- if (GET_CODE (ad) == PLUS
- && REG_P (XEXP (ad, 0))
- && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
- && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
- || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
-#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
- || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
-#endif
- || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
- || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
- || XEXP (ad, 0) == current_function_internal_arg_pointer)
- && GET_CODE (XEXP (ad, 1)) == CONST_INT)
- {
- rtx temp, seq;
- if (memory_address_p (GET_MODE (x), ad))
- return x;
-
- start_sequence ();
- temp = copy_to_reg (ad);
- seq = get_insns ();
- end_sequence ();
- emit_insn_before (seq, insn);
- return replace_equiv_address (x, temp);
- }
- return x;
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
- }
- }
- return x;
-}
-\f
-/* Optimization: a bit-field instruction whose field
- happens to be a byte or halfword in memory
- can be changed to a move instruction.
-
- We call here when INSN is an insn to examine or store into a bit-field.
- BODY is the SET-rtx to be altered.
-
- EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
- (Currently this is called only from function.c, and EQUIV_MEM
- is always 0.) */
-
-static void
-optimize_bit_field (rtx body, rtx insn, rtx *equiv_mem)
-{
- rtx bitfield;
- int destflag;
- rtx seq = 0;
- enum machine_mode mode;
-
- if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
- || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
- bitfield = SET_DEST (body), destflag = 1;
- else
- bitfield = SET_SRC (body), destflag = 0;
-
- /* First check that the field being stored has constant size and position
- and is in fact a byte or halfword suitably aligned. */
-
- if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
- && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
- && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
- != BLKmode)
- && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
- {
- rtx memref = 0;
-
- /* Now check that the containing word is memory, not a register,
- and that it is safe to change the machine mode. */
-
- if (MEM_P (XEXP (bitfield, 0)))
- memref = XEXP (bitfield, 0);
- else if (REG_P (XEXP (bitfield, 0))
- && equiv_mem != 0)
- memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
- else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
- && MEM_P (SUBREG_REG (XEXP (bitfield, 0))))
- memref = SUBREG_REG (XEXP (bitfield, 0));
- else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
- && equiv_mem != 0
- && REG_P (SUBREG_REG (XEXP (bitfield, 0))))
- memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
-
- if (memref
- && ! mode_dependent_address_p (XEXP (memref, 0))
- && ! MEM_VOLATILE_P (memref))
- {
- /* Now adjust the address, first for any subreg'ing
- that we are now getting rid of,
- and then for which byte of the word is wanted. */
-
- HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
- rtx insns;
-
- /* Adjust OFFSET to count bits from low-address byte. */
- if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
- offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
- - offset - INTVAL (XEXP (bitfield, 1)));
-
- /* Adjust OFFSET to count bytes from low-address byte. */
- offset /= BITS_PER_UNIT;
- if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
- {
- offset += (SUBREG_BYTE (XEXP (bitfield, 0))
- / UNITS_PER_WORD) * UNITS_PER_WORD;
- if (BYTES_BIG_ENDIAN)
- offset -= (MIN (UNITS_PER_WORD,
- GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
- - MIN (UNITS_PER_WORD,
- GET_MODE_SIZE (GET_MODE (memref))));
- }
-
- start_sequence ();
- memref = adjust_address (memref, mode, offset);
- insns = get_insns ();
- end_sequence ();
- emit_insn_before (insns, insn);
-
- /* Store this memory reference where
- we found the bit field reference. */
-
- if (destflag)
- {
- validate_change (insn, &SET_DEST (body), memref, 1);
- if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
- {
- rtx src = SET_SRC (body);
- while (GET_CODE (src) == SUBREG
- && SUBREG_BYTE (src) == 0)
- src = SUBREG_REG (src);
- if (GET_MODE (src) != GET_MODE (memref))
- src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
- validate_change (insn, &SET_SRC (body), src, 1);
- }
- else if (GET_MODE (SET_SRC (body)) != VOIDmode
- && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
- /* This shouldn't happen because anything that didn't have
- one of these modes should have got converted explicitly
- and then referenced through a subreg.
- This is so because the original bit-field was
- handled by agg_mode and so its tree structure had
- the same mode that memref now has. */
- abort ();
- }
- else
- {
- rtx dest = SET_DEST (body);
-
- while (GET_CODE (dest) == SUBREG
- && SUBREG_BYTE (dest) == 0
- && (GET_MODE_CLASS (GET_MODE (dest))
- == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
- && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
- <= UNITS_PER_WORD))
- dest = SUBREG_REG (dest);
-
- validate_change (insn, &SET_DEST (body), dest, 1);
-
- if (GET_MODE (dest) == GET_MODE (memref))
- validate_change (insn, &SET_SRC (body), memref, 1);
- else
- {
- /* Convert the mem ref to the destination mode. */
- rtx newreg = gen_reg_rtx (GET_MODE (dest));
-
- start_sequence ();
- convert_move (newreg, memref,
- GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
- seq = get_insns ();
- end_sequence ();
-
- validate_change (insn, &SET_SRC (body), newreg, 1);
- }
- }
-
- /* See if we can convert this extraction or insertion into
- a simple move insn. We might not be able to do so if this
- was, for example, part of a PARALLEL.
-
- If we succeed, write out any needed conversions. If we fail,
- it is hard to guess why we failed, so don't do anything
- special; just let the optimization be suppressed. */
-
- if (apply_change_group () && seq)
- emit_insn_before (seq, insn);
- }
- }
-}
-\f
-/* These routines are responsible for converting virtual register references
- to the actual hard register references once RTL generation is complete.
-
- The following four variables are used for communication between the
- routines. They contain the offsets of the virtual registers from their
- respective hard registers. */
-
-static int in_arg_offset;
-static int var_offset;
-static int dynamic_offset;
-static int out_arg_offset;
-static int cfa_offset;
-
-/* In most machines, the stack pointer register is equivalent to the bottom
- of the stack. */
-
-#ifndef STACK_POINTER_OFFSET
-#define STACK_POINTER_OFFSET 0
-#endif
-
-/* If not defined, pick an appropriate default for the offset of dynamically
- allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
- REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
-
-#ifndef STACK_DYNAMIC_OFFSET
-
-/* The bottom of the stack points to the actual arguments. If
- REG_PARM_STACK_SPACE is defined, this includes the space for the register
- parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
- stack space for register parameters is not pushed by the caller, but
- rather part of the fixed stack areas and hence not included in
- `current_function_outgoing_args_size'. Nevertheless, we must allow
- for it when allocating stack dynamic objects. */
-
-#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
-#define STACK_DYNAMIC_OFFSET(FNDECL) \
-((ACCUMULATE_OUTGOING_ARGS \
- ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
- + (STACK_POINTER_OFFSET)) \
-
-#else
-#define STACK_DYNAMIC_OFFSET(FNDECL) \
-((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
- + (STACK_POINTER_OFFSET))
-#endif
-#endif
-
-/* On most machines, the CFA coincides with the first incoming parm. */
-
-#ifndef ARG_POINTER_CFA_OFFSET
-#define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
-#endif
-
-/* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just
- had its address taken. DECL is the decl or SAVE_EXPR for the
- object stored in the register, for later use if we do need to force
- REG into the stack. REG is overwritten by the MEM like in
- put_reg_into_stack. RESCAN is true if previously emitted
- instructions must be rescanned and modified now that the REG has
- been transformed. */
-
-rtx
-gen_mem_addressof (rtx reg, tree decl, int rescan)
-{
- rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
- REGNO (reg), decl);
-
- /* Calculate this before we start messing with decl's RTL. */
- HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
-
- /* If the original REG was a user-variable, then so is the REG whose
- address is being taken. Likewise for unchanging. */
- REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
- RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
-
- PUT_CODE (reg, MEM);
- MEM_VOLATILE_P (reg) = 0;
- MEM_ATTRS (reg) = 0;
- XEXP (reg, 0) = r;
-
- if (decl)
- {
- tree type = TREE_TYPE (decl);
- enum machine_mode decl_mode = DECL_MODE (decl);
- rtx decl_rtl = DECL_RTL_IF_SET (decl);
-
- PUT_MODE (reg, decl_mode);
-
- /* Clear DECL_RTL momentarily so functions below will work
- properly, then set it again. */
- if (DECL_P (decl) && decl_rtl == reg)
- SET_DECL_RTL (decl, 0);
-
- set_mem_attributes (reg, decl, 1);
- set_mem_alias_set (reg, set);
-
- if (DECL_P (decl) && decl_rtl == reg)
- SET_DECL_RTL (decl, reg);
-
- if (rescan
- && (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0)))
- fixup_var_refs (reg, GET_MODE (reg), TYPE_UNSIGNED (type), reg, 0);
- }
- else if (rescan)
- {
- /* This can only happen during reload. Clear the same flag bits as
- reload. */
- RTX_UNCHANGING_P (reg) = 0;
- MEM_IN_STRUCT_P (reg) = 0;
- MEM_SCALAR_P (reg) = 0;
-
- fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
- }
-
- return reg;
-}
-
-/* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
-
-void
-flush_addressof (tree decl)
-{
- if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
- && DECL_RTL (decl) != 0
- && MEM_P (DECL_RTL (decl))
- && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
- && REG_P (XEXP (XEXP (DECL_RTL (decl), 0), 0)))
- put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
-}
-
-/* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
-
-static void
-put_addressof_into_stack (rtx r, htab_t ht)
-{
- tree decl, type;
- bool volatile_p, used_p;
-
- rtx reg = XEXP (r, 0);
-
- if (!REG_P (reg))
- abort ();
-
- decl = ADDRESSOF_DECL (r);
- if (decl)
- {
- type = TREE_TYPE (decl);
- volatile_p = (TREE_CODE (decl) != SAVE_EXPR
- && TREE_THIS_VOLATILE (decl));
- used_p = (TREE_USED (decl)
- || (DECL_P (decl) && DECL_INITIAL (decl) != 0));
- }
- else
- {
- type = NULL_TREE;
- volatile_p = false;
- used_p = true;
- }
-
- put_reg_into_stack (0, reg, type, GET_MODE (reg), ADDRESSOF_REGNO (r),
- volatile_p, used_p, false, ht);
-}
-
-/* List of replacements made below in purge_addressof_1 when creating
- bitfield insertions. */
-static rtx purge_bitfield_addressof_replacements;
-
-/* List of replacements made below in purge_addressof_1 for patterns
- (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
- corresponding (ADDRESSOF (REG ...)) and value is a substitution for
- the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
- enough in complex cases, e.g. when some field values can be
- extracted by usage MEM with narrower mode. */
-static rtx purge_addressof_replacements;
-
-/* Helper function for purge_addressof. See if the rtx expression at *LOC
- in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
- the stack. If the function returns FALSE then the replacement could not
- be made. If MAY_POSTPONE is true and we would not put the addressof
- to stack, postpone processing of the insn. */
-
-static bool
-purge_addressof_1 (rtx *loc, rtx insn, int force, int store, int may_postpone,
- htab_t ht)
-{
- rtx x;
- RTX_CODE code;
- int i, j;
- const char *fmt;
- bool result = true;
- bool libcall = false;
-
- /* Re-start here to avoid recursion in common cases. */
- restart:
-
- x = *loc;
- if (x == 0)
- return true;
-
- /* Is this a libcall? */
- if (!insn)
- libcall = REG_NOTE_KIND (*loc) == REG_RETVAL;
-
- code = GET_CODE (x);
-
- /* If we don't return in any of the cases below, we will recurse inside
- the RTX, which will normally result in any ADDRESSOF being forced into
- memory. */
- if (code == SET)
- {
- result = purge_addressof_1 (&SET_DEST (x), insn, force, 1,
- may_postpone, ht);
- result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0,
- may_postpone, ht);
- return result;
- }
- else if (code == ADDRESSOF)
- {
- rtx sub, insns;
-
- if (!MEM_P (XEXP (x, 0)))
- put_addressof_into_stack (x, ht);
-
- /* We must create a copy of the rtx because it was created by
- overwriting a REG rtx which is always shared. */
- sub = copy_rtx (XEXP (XEXP (x, 0), 0));
- if (validate_change (insn, loc, sub, 0)
- || validate_replace_rtx (x, sub, insn))
- return true;
-
- start_sequence ();
-
- /* If SUB is a hard or virtual register, try it as a pseudo-register.
- Otherwise, perhaps SUB is an expression, so generate code to compute
- it. */
- if (REG_P (sub) && REGNO (sub) <= LAST_VIRTUAL_REGISTER)
- sub = copy_to_reg (sub);
- else
- sub = force_operand (sub, NULL_RTX);
-
- if (! validate_change (insn, loc, sub, 0)
- && ! validate_replace_rtx (x, sub, insn))
- abort ();
-
- insns = get_insns ();
- end_sequence ();
- emit_insn_before (insns, insn);
- return true;
- }
-
- else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
- {
- rtx sub = XEXP (XEXP (x, 0), 0);
-
- if (MEM_P (sub))
- sub = adjust_address_nv (sub, GET_MODE (x), 0);
- else if (REG_P (sub)
- && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
- ;
- else if (REG_P (sub) && GET_MODE (x) != GET_MODE (sub))
- {
- int size_x, size_sub;
-
- if (may_postpone)
- {
- /* Postpone for now, so that we do not emit bitfield arithmetics
- unless there is some benefit from it. */
- if (!postponed_insns || XEXP (postponed_insns, 0) != insn)
- postponed_insns = alloc_INSN_LIST (insn, postponed_insns);
- return true;
- }
-
- if (!insn)
- {
- /* When processing REG_NOTES look at the list of
- replacements done on the insn to find the register that X
- was replaced by. */
- rtx tem;
-
- for (tem = purge_bitfield_addressof_replacements;
- tem != NULL_RTX;
- tem = XEXP (XEXP (tem, 1), 1))
- if (rtx_equal_p (x, XEXP (tem, 0)))
- {
- *loc = XEXP (XEXP (tem, 1), 0);
- return true;
- }
-
- /* See comment for purge_addressof_replacements. */
- for (tem = purge_addressof_replacements;
- tem != NULL_RTX;
- tem = XEXP (XEXP (tem, 1), 1))
- if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
- {
- rtx z = XEXP (XEXP (tem, 1), 0);
-
- if (GET_MODE (x) == GET_MODE (z)
- || (!REG_P (XEXP (XEXP (tem, 1), 0))
- && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
- abort ();
-
- /* It can happen that the note may speak of things
- in a wider (or just different) mode than the
- code did. This is especially true of
- REG_RETVAL. */
-
- if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
- z = SUBREG_REG (z);
-
- if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
- && (GET_MODE_SIZE (GET_MODE (x))
- > GET_MODE_SIZE (GET_MODE (z))))
- {
- /* This can occur as a result in invalid
- pointer casts, e.g. float f; ...
- *(long long int *)&f.
- ??? We could emit a warning here, but
- without a line number that wouldn't be
- very helpful. */
- z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
- }
- else
- z = gen_lowpart (GET_MODE (x), z);
-
- *loc = z;
- return true;
- }
-
- /* When we are processing the REG_NOTES of the last instruction
- of a libcall, there will be typically no replacements
- for that insn; the replacements happened before, piecemeal
- fashion. OTOH we are not interested in the details of
- this for the REG_EQUAL note, we want to know the big picture,
- which can be succinctly described with a simple SUBREG.
- Note that removing the REG_EQUAL note is not an option
- on the last insn of a libcall, so we must do a replacement. */
-
- /* In compile/990107-1.c:7 compiled at -O1 -m1 for sh-elf,
- we got
- (mem:DI (addressof:SI (reg/v:DF 160) 159 0x401c8510)
- [0 S8 A32]), which can be expressed with a simple
- same-size subreg */
- if ((GET_MODE_SIZE (GET_MODE (x))
- <= GET_MODE_SIZE (GET_MODE (sub)))
- /* Again, invalid pointer casts (as in
- compile/990203-1.c) can require paradoxical
- subregs. */
- || (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
- && (GET_MODE_SIZE (GET_MODE (x))
- > GET_MODE_SIZE (GET_MODE (sub)))
- && libcall))
- {
- *loc = gen_rtx_SUBREG (GET_MODE (x), sub, 0);
- return true;
- }
- /* ??? Are there other cases we should handle? */
-
- /* Sometimes we may not be able to find the replacement. For
- example when the original insn was a MEM in a wider mode,
- and the note is part of a sign extension of a narrowed
- version of that MEM. Gcc testcase compile/990829-1.c can
- generate an example of this situation. Rather than complain
- we return false, which will prompt our caller to remove the
- offending note. */
- return false;
- }
-
- size_x = GET_MODE_BITSIZE (GET_MODE (x));
- size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
-
- /* Do not frob unchanging MEMs. If a later reference forces the
- pseudo to the stack, we can wind up with multiple writes to
- an unchanging memory, which is invalid. */
- if (RTX_UNCHANGING_P (x) && size_x != size_sub)
- ;
-
- /* Don't even consider working with paradoxical subregs,
- or the moral equivalent seen here. */
- else if (size_x <= size_sub
- && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
- {
- /* Do a bitfield insertion to mirror what would happen
- in memory. */
-
- rtx val, seq;
-
- if (store)
- {
- rtx p = PREV_INSN (insn);
-
- start_sequence ();
- val = gen_reg_rtx (GET_MODE (x));
- if (! validate_change (insn, loc, val, 0))
- {
- /* Discard the current sequence and put the
- ADDRESSOF on stack. */
- end_sequence ();
- goto give_up;
- }
- seq = get_insns ();
- end_sequence ();
- emit_insn_before (seq, insn);
- compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
- insn, ht);
-
- start_sequence ();
- store_bit_field (sub, size_x, 0, GET_MODE (x),
- val, GET_MODE_SIZE (GET_MODE (sub)));
-
- /* Make sure to unshare any shared rtl that store_bit_field
- might have created. */
- unshare_all_rtl_again (get_insns ());
-
- seq = get_insns ();
- end_sequence ();
- p = emit_insn_after (seq, insn);
- if (NEXT_INSN (insn))
- compute_insns_for_mem (NEXT_INSN (insn),
- p ? NEXT_INSN (p) : NULL_RTX,
- ht);
- }
- else
- {
- rtx p = PREV_INSN (insn);
-
- start_sequence ();
- val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
- GET_MODE (x), GET_MODE (x),
- GET_MODE_SIZE (GET_MODE (sub)));
-
- if (! validate_change (insn, loc, val, 0))
- {
- /* Discard the current sequence and put the
- ADDRESSOF on stack. */
- end_sequence ();
- goto give_up;
- }
+ return;
+ }
- seq = get_insns ();
- end_sequence ();
- emit_insn_before (seq, insn);
- compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
- insn, ht);
- }
+ /* If X is a register that is being used as a pointer, see if we have
+ a temporary slot we know it points to. To be consistent with
+ the code below, we really should preserve all non-kept slots
+ if we can't find a match, but that seems to be much too costly. */
+ if (REG_P (x) && REG_POINTER (x))
+ p = find_temp_slot_from_address (x);
- /* Remember the replacement so that the same one can be done
- on the REG_NOTES. */
- purge_bitfield_addressof_replacements
- = gen_rtx_EXPR_LIST (VOIDmode, x,
- gen_rtx_EXPR_LIST
- (VOIDmode, val,
- purge_bitfield_addressof_replacements));
+ /* If X is not in memory or is at a constant address, it cannot be in
+ a temporary slot, but it can contain something whose address was
+ taken. */
+ if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
+ {
+ for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
+ {
+ next = p->next;
- /* We replaced with a reg -- all done. */
- return true;
- }
+ if (p->addr_taken)
+ move_slot_to_level (p, temp_slot_level - 1);
}
- else if (validate_change (insn, loc, sub, 0))
+ return;
+ }
+
+ /* First see if we can find a match. */
+ if (p == 0)
+ p = find_temp_slot_from_address (XEXP (x, 0));
+
+ if (p != 0)
+ {
+ /* Move everything at our level whose address was taken to our new
+ level in case we used its address. */
+ struct temp_slot *q;
+
+ if (p->level == temp_slot_level)
{
- /* Remember the replacement so that the same one can be done
- on the REG_NOTES. */
- if (REG_P (sub) || GET_CODE (sub) == SUBREG)
+ for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
{
- rtx tem;
+ next = q->next;
- for (tem = purge_addressof_replacements;
- tem != NULL_RTX;
- tem = XEXP (XEXP (tem, 1), 1))
- if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
- {
- XEXP (XEXP (tem, 1), 0) = sub;
- return true;
- }
- purge_addressof_replacements
- = gen_rtx_EXPR_LIST (VOIDmode, XEXP (x, 0),
- gen_rtx_EXPR_LIST (VOIDmode, sub,
- purge_addressof_replacements));
- return true;
+ if (p != q && q->addr_taken)
+ move_slot_to_level (q, temp_slot_level - 1);
}
- goto restart;
+
+ move_slot_to_level (p, temp_slot_level - 1);
+ p->addr_taken = 0;
}
+ return;
}
- give_up:
- /* Scan all subexpressions. */
- fmt = GET_RTX_FORMAT (code);
- for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
+ /* Otherwise, preserve all non-kept slots at this level. */
+ for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
{
- if (*fmt == 'e')
- result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0,
- may_postpone, ht);
- else if (*fmt == 'E')
- for (j = 0; j < XVECLEN (x, i); j++)
- result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0,
- may_postpone, ht);
- }
-
- return result;
-}
-
-/* Return a hash value for K, a REG. */
+ next = p->next;
-static hashval_t
-insns_for_mem_hash (const void *k)
-{
- /* Use the address of the key for the hash value. */
- struct insns_for_mem_entry *m = (struct insns_for_mem_entry *) k;
- return htab_hash_pointer (m->key);
+ if (!p->keep)
+ move_slot_to_level (p, temp_slot_level - 1);
+ }
}
-/* Return nonzero if K1 and K2 (two REGs) are the same. */
+/* Free all temporaries used so far. This is normally called at the
+ end of generating code for a statement. */
-static int
-insns_for_mem_comp (const void *k1, const void *k2)
+void
+free_temp_slots (void)
{
- struct insns_for_mem_entry *m1 = (struct insns_for_mem_entry *) k1;
- struct insns_for_mem_entry *m2 = (struct insns_for_mem_entry *) k2;
- return m1->key == m2->key;
-}
+ struct temp_slot *p, *next;
-struct insns_for_mem_walk_info
-{
- /* The hash table that we are using to record which INSNs use which
- MEMs. */
- htab_t ht;
+ for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
+ {
+ next = p->next;
- /* The INSN we are currently processing. */
- rtx insn;
+ if (!p->keep)
+ make_slot_available (p);
+ }
- /* Zero if we are walking to find ADDRESSOFs, one if we are walking
- to find the insns that use the REGs in the ADDRESSOFs. */
- int pass;
-};
+ combine_temp_slots ();
+}
-/* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
- that might be used in an ADDRESSOF expression, record this INSN in
- the hash table given by DATA (which is really a pointer to an
- insns_for_mem_walk_info structure). */
+/* Push deeper into the nesting level for stack temporaries. */
-static int
-insns_for_mem_walk (rtx *r, void *data)
+void
+push_temp_slots (void)
{
- struct insns_for_mem_walk_info *ifmwi
- = (struct insns_for_mem_walk_info *) data;
- struct insns_for_mem_entry tmp;
- tmp.insns = NULL_RTX;
-
- if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
- && REG_P (XEXP (*r, 0)))
- {
- void **e;
- tmp.key = XEXP (*r, 0);
- e = htab_find_slot (ifmwi->ht, &tmp, INSERT);
- if (*e == NULL)
- {
- *e = ggc_alloc (sizeof (tmp));
- memcpy (*e, &tmp, sizeof (tmp));
- }
- }
- else if (ifmwi->pass == 1 && *r && REG_P (*r))
- {
- struct insns_for_mem_entry *ifme;
- tmp.key = *r;
- ifme = htab_find (ifmwi->ht, &tmp);
-
- /* If we have not already recorded this INSN, do so now. Since
- we process the INSNs in order, we know that if we have
- recorded it it must be at the front of the list. */
- if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
- ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
- ifme->insns);
- }
-
- return 0;
+ temp_slot_level++;
}
-/* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
- which REGs in HT. */
+/* Pop a temporary nesting level. All slots in use in the current level
+ are freed. */
-static void
-compute_insns_for_mem (rtx insns, rtx last_insn, htab_t ht)
+void
+pop_temp_slots (void)
{
- rtx insn;
- struct insns_for_mem_walk_info ifmwi;
- ifmwi.ht = ht;
+ struct temp_slot *p, *next;
- for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
- for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
- if (INSN_P (insn))
- {
- ifmwi.insn = insn;
- for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
- }
-}
+ for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
+ {
+ next = p->next;
+ make_slot_available (p);
+ }
-/* Helper function for purge_addressof called through for_each_rtx.
- Returns true iff the rtl is an ADDRESSOF. */
+ combine_temp_slots ();
-static int
-is_addressof (rtx *rtl, void *data ATTRIBUTE_UNUSED)
-{
- return GET_CODE (*rtl) == ADDRESSOF;
+ temp_slot_level--;
}
-/* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
- (MEM (ADDRESSOF)) patterns, and force any needed registers into the
- stack. */
+/* Initialize temporary slots. */
void
-purge_addressof (rtx insns)
+init_temp_slots (void)
{
- rtx insn, tmp;
- htab_t ht;
+ /* We have not allocated any temporaries yet. */
+ avail_temp_slots = 0;
+ used_temp_slots = 0;
+ temp_slot_level = 0;
+ var_temp_slot_level = 0;
+ target_temp_slot_level = 0;
+}
+\f
+/* These routines are responsible for converting virtual register references
+ to the actual hard register references once RTL generation is complete.
- /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
- requires a fixup pass over the instruction stream to correct
- INSNs that depended on the REG being a REG, and not a MEM. But,
- these fixup passes are slow. Furthermore, most MEMs are not
- mentioned in very many instructions. So, we speed up the process
- by pre-calculating which REGs occur in which INSNs; that allows
- us to perform the fixup passes much more quickly. */
- ht = htab_create_ggc (1000, insns_for_mem_hash, insns_for_mem_comp, NULL);
- compute_insns_for_mem (insns, NULL_RTX, ht);
+ The following four variables are used for communication between the
+ routines. They contain the offsets of the virtual registers from their
+ respective hard registers. */
- postponed_insns = NULL;
+static int in_arg_offset;
+static int var_offset;
+static int dynamic_offset;
+static int out_arg_offset;
+static int cfa_offset;
- for (insn = insns; insn; insn = NEXT_INSN (insn))
- if (INSN_P (insn))
- {
- if (! purge_addressof_1 (&PATTERN (insn), insn,
- asm_noperands (PATTERN (insn)) > 0, 0, 1, ht))
- /* If we could not replace the ADDRESSOFs in the insn,
- something is wrong. */
- abort ();
+/* In most machines, the stack pointer register is equivalent to the bottom
+ of the stack. */
- if (! purge_addressof_1 (®_NOTES (insn), NULL_RTX, 0, 0, 0, ht))
- {
- /* If we could not replace the ADDRESSOFs in the insn's notes,
- we can just remove the offending notes instead. */
- rtx note;
+#ifndef STACK_POINTER_OFFSET
+#define STACK_POINTER_OFFSET 0
+#endif
- for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
- {
- /* If we find a REG_RETVAL note then the insn is a libcall.
- Such insns must have REG_EQUAL notes as well, in order
- for later passes of the compiler to work. So it is not
- safe to delete the notes here, and instead we abort. */
- if (REG_NOTE_KIND (note) == REG_RETVAL)
- abort ();
- if (for_each_rtx (¬e, is_addressof, NULL))
- remove_note (insn, note);
- }
- }
- }
+/* If not defined, pick an appropriate default for the offset of dynamically
+ allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
+ REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
- /* Process the postponed insns. */
- while (postponed_insns)
- {
- insn = XEXP (postponed_insns, 0);
- tmp = postponed_insns;
- postponed_insns = XEXP (postponed_insns, 1);
- free_INSN_LIST_node (tmp);
+#ifndef STACK_DYNAMIC_OFFSET
- if (! purge_addressof_1 (&PATTERN (insn), insn,
- asm_noperands (PATTERN (insn)) > 0, 0, 0, ht))
- abort ();
- }
+/* The bottom of the stack points to the actual arguments. If
+ REG_PARM_STACK_SPACE is defined, this includes the space for the register
+ parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
+ stack space for register parameters is not pushed by the caller, but
+ rather part of the fixed stack areas and hence not included in
+ `current_function_outgoing_args_size'. Nevertheless, we must allow
+ for it when allocating stack dynamic objects. */
- /* Clean up. */
- purge_bitfield_addressof_replacements = 0;
- purge_addressof_replacements = 0;
+#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
+#define STACK_DYNAMIC_OFFSET(FNDECL) \
+((ACCUMULATE_OUTGOING_ARGS \
+ ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
+ + (STACK_POINTER_OFFSET)) \
- /* REGs are shared. purge_addressof will destructively replace a REG
- with a MEM, which creates shared MEMs.
+#else
+#define STACK_DYNAMIC_OFFSET(FNDECL) \
+((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
+ + (STACK_POINTER_OFFSET))
+#endif
+#endif
- Unfortunately, the children of put_reg_into_stack assume that MEMs
- referring to the same stack slot are shared (fixup_var_refs and
- the associated hash table code).
+/* On most machines, the CFA coincides with the first incoming parm. */
- So, we have to do another unsharing pass after we have flushed any
- REGs that had their address taken into the stack.
+#ifndef ARG_POINTER_CFA_OFFSET
+#define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
+#endif
- It may be worth tracking whether or not we converted any REGs into
- MEMs to avoid this overhead when it is not needed. */
- unshare_all_rtl_again (get_insns ());
-}
\f
/* Convert a SET of a hard subreg to a set of the appropriate hard
register. A subroutine of purge_hard_subreg_sets. */
instantiate_virtual_regs (void)
{
rtx insn;
- unsigned int i;
/* Compute the offsets to use for this function. */
in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
instantiate_virtual_regs_lossage (insn);
}
- /* Instantiate the stack slots for the parm registers, for later use in
- addressof elimination. */
- for (i = 0; i < max_parm_reg; ++i)
- if (parm_reg_stack_loc[i])
- instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
-
/* Now instantiate the remaining register equivalences for debugging info.
These will not be valid addresses. */
instantiate_decls (current_function_decl, 0);
addr = XEXP (x, 0);
if (CONSTANT_P (addr)
- || (GET_CODE (addr) == ADDRESSOF && REG_P (XEXP (addr, 0)))
|| (REG_P (addr)
&& (REGNO (addr) < FIRST_VIRTUAL_REGISTER
|| REGNO (addr) > LAST_VIRTUAL_REGISTER)))
return 1;
- case ADDRESSOF:
- if (REG_P (XEXP (x, 0)))
- return 1;
-
- else if (MEM_P (XEXP (x, 0)))
- {
- /* If we have a (addressof (mem ..)), do any instantiation inside
- since we know we'll be making the inside valid when we finally
- remove the ADDRESSOF. */
- instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
- return 1;
- }
- break;
-
default:
break;
}
return 0;
}
\f
+/* Return true if we should assign DECL a pseudo register; false if it
+ should live on the local stack. */
+
+bool
+use_register_for_decl (tree decl)
+{
+ /* Honor volatile. */
+ if (TREE_SIDE_EFFECTS (decl))
+ return false;
+
+ /* Honor addressability. */
+ if (TREE_ADDRESSABLE (decl))
+ return false;
+
+ /* Only register-like things go in registers. */
+ if (DECL_MODE (decl) == BLKmode)
+ return false;
+
+ /* If -ffloat-store specified, don't put explicit float variables
+ into registers. */
+ /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
+ propagates values across these stores, and it probably shouldn't. */
+ if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
+ return false;
+
+ /* Compiler-generated temporaries can always go in registers. */
+ if (DECL_ARTIFICIAL (decl))
+ return true;
+
+#ifdef NON_SAVING_SETJMP
+ /* Protect variables not declared "register" from setjmp. */
+ if (NON_SAVING_SETJMP
+ && current_function_calls_setjmp
+ && !DECL_REGISTER (decl))
+ return false;
+#endif
+
+ return (optimize || DECL_REGISTER (decl));
+}
+
/* Assign RTL expressions to the function's parameters.
This may involve copying them into registers and using
those registers as the RTL for them. */
orig_fnargs = fnargs;
- max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
- parm_reg_stack_loc = ggc_alloc_cleared (max_parm_reg * sizeof (rtx));
-
/* If the target wants to split complex arguments into scalars, do so. */
if (targetm.calls.split_complex_arg)
fnargs = split_complex_args (fnargs);
Set DECL_RTL to that place. */
- if (GET_CODE (entry_parm) == PARALLEL && nominal_mode != BLKmode
+ if (GET_CODE (entry_parm) == PARALLEL
+ && nominal_mode != BLKmode
&& XVECLEN (entry_parm, 0) > 1)
{
/* Reconstitute objects the size of a register or larger using
if (REG_P (parmreg))
{
- unsigned int regno = REGNO (parmreg);
-
emit_group_store (parmreg, entry_parm, TREE_TYPE (parm),
int_size_in_bytes (TREE_TYPE (parm)));
SET_DECL_RTL (parm, parmreg);
loaded_in_reg = 1;
-
- if (regno >= max_parm_reg)
- {
- rtx *new;
- int old_max_parm_reg = max_parm_reg;
-
- /* It's slow to expand this one register at a time,
- but it's also rare and we need max_parm_reg to be
- precisely correct. */
- max_parm_reg = regno + 1;
- new = ggc_realloc (parm_reg_stack_loc,
- max_parm_reg * sizeof (rtx));
- memset (new + old_max_parm_reg, 0,
- (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
- parm_reg_stack_loc = new;
- parm_reg_stack_loc[regno] = stack_parm;
- }
}
}
if (! DECL_RTL_SET_P (parm))
SET_DECL_RTL (parm, stack_parm);
}
- else if (! ((! optimize
- && ! DECL_REGISTER (parm))
- || TREE_SIDE_EFFECTS (parm)
- /* If -ffloat-store specified, don't put explicit
- float variables into registers. */
- || (flag_float_store
- && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
+ else if (use_register_for_decl (parm)
/* Always assign pseudo to structure return or item passed
by invisible reference. */
|| passed_pointer || parm == function_result_decl)
may need to do it in a wider mode. */
rtx parmreg;
- unsigned int regno, regnoi = 0, regnor = 0;
unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
/* If we were passed a pointer but the actual value
can safely live in a register, put it in one. */
- if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
+ if (passed_pointer
+ && use_register_for_decl (parm)
/* If by-reference argument was promoted, demote it. */
- && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
- || ! ((! optimize
- && ! DECL_REGISTER (parm))
- || TREE_SIDE_EFFECTS (parm)
- /* If -ffloat-store specified, don't put explicit
- float variables into registers. */
- || (flag_float_store
- && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))))
+ && TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm)))
{
/* We can't use nominal_mode, because it will have been set to
Pmode above. We must use the actual mode of the parm. */
}
#endif /* FUNCTION_ARG_CALLEE_COPIES */
- /* In any case, record the parm's desired stack location
- in case we later discover it must live in the stack.
-
- If it is a COMPLEX value, store the stack location for both
- halves. */
-
- if (GET_CODE (parmreg) == CONCAT)
- regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
- else
- regno = REGNO (parmreg);
-
- if (regno >= max_parm_reg)
- {
- rtx *new;
- int old_max_parm_reg = max_parm_reg;
-
- /* It's slow to expand this one register at a time,
- but it's also rare and we need max_parm_reg to be
- precisely correct. */
- max_parm_reg = regno + 1;
- new = ggc_realloc (parm_reg_stack_loc,
- max_parm_reg * sizeof (rtx));
- memset (new + old_max_parm_reg, 0,
- (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
- parm_reg_stack_loc = new;
- }
-
- if (GET_CODE (parmreg) == CONCAT)
- {
- enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
-
- regnor = REGNO (gen_realpart (submode, parmreg));
- regnoi = REGNO (gen_imagpart (submode, parmreg));
-
- if (stack_parm != 0)
- {
- parm_reg_stack_loc[regnor]
- = gen_realpart (submode, stack_parm);
- parm_reg_stack_loc[regnoi]
- = gen_imagpart (submode, stack_parm);
- }
- else
- {
- parm_reg_stack_loc[regnor] = 0;
- parm_reg_stack_loc[regnoi] = 0;
- }
- }
- else
- parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
-
/* Mark the register as eliminable if we did no conversion
and it was copied from memory at a fixed offset,
and the arg pointer was not copied to a pseudo-reg.
/* Mark complex types separately. */
if (GET_CODE (parmreg) == CONCAT)
- /* Scan backwards for the set of the real and
- imaginary parts. */
- for (sinsn = linsn; sinsn != 0;
- sinsn = prev_nonnote_insn (sinsn))
- {
- set = single_set (sinsn);
- if (set != 0
- && SET_DEST (set) == regno_reg_rtx [regnoi])
- REG_NOTES (sinsn)
- = gen_rtx_EXPR_LIST (REG_EQUIV,
- parm_reg_stack_loc[regnoi],
- REG_NOTES (sinsn));
- else if (set != 0
- && SET_DEST (set) == regno_reg_rtx [regnor])
- REG_NOTES (sinsn)
- = gen_rtx_EXPR_LIST (REG_EQUIV,
- parm_reg_stack_loc[regnor],
- REG_NOTES (sinsn));
- }
+ {
+ enum machine_mode submode
+ = GET_MODE_INNER (GET_MODE (parmreg));
+ int regnor = REGNO (gen_realpart (submode, parmreg));
+ int regnoi = REGNO (gen_imagpart (submode, parmreg));
+ rtx stackr = gen_realpart (submode, stack_parm);
+ rtx stacki = gen_imagpart (submode, stack_parm);
+
+ /* Scan backwards for the set of the real and
+ imaginary parts. */
+ for (sinsn = linsn; sinsn != 0;
+ sinsn = prev_nonnote_insn (sinsn))
+ {
+ set = single_set (sinsn);
+ if (set == 0)
+ continue;
+
+ if (SET_DEST (set) == regno_reg_rtx [regnoi])
+ REG_NOTES (sinsn)
+ = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
+ REG_NOTES (sinsn));
+ else if (SET_DEST (set) == regno_reg_rtx [regnor])
+ REG_NOTES (sinsn)
+ = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
+ REG_NOTES (sinsn));
+ }
+ }
else if ((set = single_set (linsn)) != 0
&& SET_DEST (set) == parmreg)
REG_NOTES (linsn)
if (POINTER_TYPE_P (TREE_TYPE (parm)))
mark_reg_pointer (parmreg,
TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
-
- /* If something wants our address, try to use ADDRESSOF. */
- if (TREE_ADDRESSABLE (parm))
- {
- /* If we end up putting something into the stack,
- fixup_var_refs_insns will need to make a pass over
- all the instructions. It looks through the pending
- sequences -- but it can't see the ones in the
- CONVERSION_INSNS, if they're not on the sequence
- stack. So, we go back to that sequence, just so that
- the fixups will happen. */
- push_to_sequence (conversion_insns);
- put_var_into_stack (parm, /*rescan=*/true);
- conversion_insns = get_insns ();
- end_sequence ();
- }
}
else
{
decl, decl);
}
-/* If this function call setjmp, put all vars into the stack
- unless they were declared `register'. */
-
-void
-setjmp_protect (tree block)
-{
- tree decl, sub;
- for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
- if ((TREE_CODE (decl) == VAR_DECL
- || TREE_CODE (decl) == PARM_DECL)
- && DECL_RTL (decl) != 0
- && (REG_P (DECL_RTL (decl))
- || (MEM_P (DECL_RTL (decl))
- && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
- /* If this variable came from an inline function, it must be
- that its life doesn't overlap the setjmp. If there was a
- setjmp in the function, it would already be in memory. We
- must exclude such variable because their DECL_RTL might be
- set to strange things such as virtual_stack_vars_rtx. */
- && ! DECL_FROM_INLINE (decl)
- && (
-#ifdef NON_SAVING_SETJMP
- /* If longjmp doesn't restore the registers,
- don't put anything in them. */
- NON_SAVING_SETJMP
- ||
-#endif
- ! DECL_REGISTER (decl)))
- put_var_into_stack (decl, /*rescan=*/true);
- for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
- setjmp_protect (sub);
-}
-\f
-/* Like the previous function, but for args instead of local variables. */
-
-void
-setjmp_protect_args (void)
-{
- tree decl;
- for (decl = DECL_ARGUMENTS (current_function_decl);
- decl; decl = TREE_CHAIN (decl))
- if ((TREE_CODE (decl) == VAR_DECL
- || TREE_CODE (decl) == PARM_DECL)
- && DECL_RTL (decl) != 0
- && (REG_P (DECL_RTL (decl))
- || (MEM_P (DECL_RTL (decl))
- && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
- && (
- /* If longjmp doesn't restore the registers,
- don't put anything in them. */
-#ifdef NON_SAVING_SETJMP
- NON_SAVING_SETJMP
- ||
-#endif
- ! DECL_REGISTER (decl)))
- put_var_into_stack (decl, /*rescan=*/true);
-}
\f
/* Convert a stack slot address ADDR for variable VAR
(from a containing function)
fp = find_function_data (context);
- if (GET_CODE (addr) == ADDRESSOF && MEM_P (XEXP (addr, 0)))
- addr = XEXP (XEXP (addr, 0), 0);
-
/* Decode given address as base reg plus displacement. */
if (REG_P (addr))
basereg = addr, displacement = 0;
cfun = ggc_alloc_cleared (sizeof (struct function));
- max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
-
cfun->stack_alignment_needed = STACK_BOUNDARY;
cfun->preferred_stack_boundary = STACK_BOUNDARY;
if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
get_arg_pointer_save_area (cfun);
-#ifdef NON_SAVING_SETJMP
- /* Don't put any variables in registers if we call setjmp
- on a machine that fails to restore the registers. */
- if (NON_SAVING_SETJMP && current_function_calls_setjmp)
- {
- if (DECL_INITIAL (current_function_decl) != error_mark_node)
- setjmp_protect (DECL_INITIAL (current_function_decl));
-
- setjmp_protect_args ();
- }
-#endif
-
/* If we are doing stack checking and this function makes calls,
do a stack probe at the start of the function to ensure we have enough
space for another stack frame. */