PR gcov-profile/80911
* gcov.c (block_info::block_info): New constructor.
-2017-06-08 Tamar Christina <tamar.christina@arm.com>
-
- PR middle-end/77925
- PR middle-end/77926
- PR middle-end/66462
-
- * gcc/builtins.c (fold_builtin_fpclassify): Remove.
- (fold_builtin_interclass_mathfn): Remove.
- (expand_builtin): Add builtins to lowering list.
- (fold_builtin_n): Remove fold_builtin_varargs.
- (fold_builtin_varargs): Remove.
- * gcc/builtins.def (BUILT_IN_ISZERO, BUILT_IN_ISSUBNORMAL): New.
- * gcc/real.h (get_min_float): New.
- (real_format): Add is_ieee_compatible field.
- * gcc/real.c (get_min_float): New.
- (ieee_single_format): Set is_ieee_compatible flag.
- * gcc/gimple-low.c (lower_stm): Define BUILT_IN_FPCLASSIFY,
- CASE_FLT_FN (BUILT_IN_ISINF), BUILT_IN_ISINFD32, BUILT_IN_ISINFD64,
- BUILT_IN_ISINFD128, BUILT_IN_ISNAND32, BUILT_IN_ISNAND64,
- BUILT_IN_ISNAND128, BUILT_IN_ISNAN, BUILT_IN_ISNORMAL, BUILT_IN_ISZERO,
- BUILT_IN_ISSUBNORMAL, CASE_FLT_FN (BUILT_IN_FINITE), BUILT_IN_FINITED32
- BUILT_IN_FINITED64, BUILT_IN_FINITED128, BUILT_IN_ISFINITE.
- (lower_builtin_fpclassify, is_nan, is_normal, is_infinity): New.
- (is_zero, is_subnormal, is_finite, use_ieee_int_mode): Likewise.
- (lower_builtin_isnan, lower_builtin_isinfinite): Likewise.
- (lower_builtin_isnormal, lower_builtin_iszero): Likewise.
- (lower_builtin_issubnormal, lower_builtin_isfinite): Likewise.
- (emit_tree_cond, get_num_as_int, emit_tree_and_return_var): New.
- (mips_single_format): Likewise.
- (motorola_single_format): Likewise.
- (spu_single_format): Likewise.
- (ieee_double_format): Likewise.
- (mips_double_format): Likewise.
- (motorola_double_format): Likewise.
- (ieee_extended_motorola_format): Likewise.
- (ieee_extended_intel_128_format): Likewise.
- (ieee_extended_intel_96_round_53_format): Likewise.
- (ibm_extended_format): Likewise.
- (mips_extended_format): Likewise.
- (ieee_quad_format): Likewise.
- (mips_quad_format): Likewise.
- (vax_f_format): Likewise.
- (vax_d_format): Likewise.
- (vax_g_format): Likewise.
- (decimal_single_format): Likewise.
- (decimal_quad_format): Likewise.
- (iee_half_format): Likewise.
- (mips_single_format): Likewise.
- (arm_half_format): Likewise.
- (real_internal_format): Likewise.
- * gcc/doc/extend.texi: Add documentation for built-ins.
- * gcc/c/c-typeck.c (convert_arguments): Add BUILT_IN_ISZERO
- and BUILT_IN_ISSUBNORMAL.
-
2017-06-07 Carl Love <cel@us.ibm.com>
* config/rs6000/rs6000-c: The return type of the following
static tree fold_builtin_1 (location_t, tree, tree);
static tree fold_builtin_2 (location_t, tree, tree, tree);
static tree fold_builtin_3 (location_t, tree, tree, tree, tree);
+static tree fold_builtin_varargs (location_t, tree, tree*, int);
static tree fold_builtin_strpbrk (location_t, tree, tree, tree);
static tree fold_builtin_strspn (location_t, tree, tree);
switch (DECL_FUNCTION_CODE (fndecl))
{
CASE_FLT_FN (BUILT_IN_ILOGB):
- errno_set = true;
- builtin_optab = ilogb_optab;
+ errno_set = true; builtin_optab = ilogb_optab; break;
+ CASE_FLT_FN (BUILT_IN_ISINF):
+ builtin_optab = isinf_optab; break;
+ case BUILT_IN_ISNORMAL:
+ case BUILT_IN_ISFINITE:
+ CASE_FLT_FN (BUILT_IN_FINITE):
+ case BUILT_IN_FINITED32:
+ case BUILT_IN_FINITED64:
+ case BUILT_IN_FINITED128:
+ case BUILT_IN_ISINFD32:
+ case BUILT_IN_ISINFD64:
+ case BUILT_IN_ISINFD128:
+ /* These builtins have no optabs (yet). */
break;
default:
gcc_unreachable ();
}
/* Expand a call to one of the builtin math functions that operate on
- floating point argument and output an integer result (ilogb, etc).
+ floating point argument and output an integer result (ilogb, isinf,
+ isnan, etc).
Return 0 if a normal call should be emitted rather than expanding the
function in-line. EXP is the expression that is a call to the builtin
function; if convenient, the result should be placed in TARGET. */
CASE_FLT_FN (BUILT_IN_ILOGB):
if (! flag_unsafe_math_optimizations)
break;
-
+ gcc_fallthrough ();
+ CASE_FLT_FN (BUILT_IN_ISINF):
+ CASE_FLT_FN (BUILT_IN_FINITE):
+ case BUILT_IN_ISFINITE:
+ case BUILT_IN_ISNORMAL:
target = expand_builtin_interclass_mathfn (exp, target);
if (target)
return target;
}
break;
- CASE_FLT_FN (BUILT_IN_ISINF):
- case BUILT_IN_ISNAND32:
- case BUILT_IN_ISNAND64:
- case BUILT_IN_ISNAND128:
- case BUILT_IN_ISNAN:
- case BUILT_IN_ISINFD32:
- case BUILT_IN_ISINFD64:
- case BUILT_IN_ISINFD128:
- case BUILT_IN_ISNORMAL:
- case BUILT_IN_ISZERO:
- case BUILT_IN_ISSUBNORMAL:
- case BUILT_IN_FPCLASSIFY:
case BUILT_IN_SETJMP:
- CASE_FLT_FN (BUILT_IN_FINITE):
- case BUILT_IN_FINITED32:
- case BUILT_IN_FINITED64:
- case BUILT_IN_FINITED128:
- case BUILT_IN_ISFINITE:
- /* These should have been lowered to the builtins in gimple-low.c. */
+ /* This should have been lowered to the builtins below. */
gcc_unreachable ();
case BUILT_IN_SETJMP_SETUP:
return NULL_TREE;
}
+/* Given a location LOC, an interclass builtin function decl FNDECL
+ and its single argument ARG, return an folded expression computing
+ the same, or NULL_TREE if we either couldn't or didn't want to fold
+ (the latter happen if there's an RTL instruction available). */
+
+static tree
+fold_builtin_interclass_mathfn (location_t loc, tree fndecl, tree arg)
+{
+ machine_mode mode;
+
+ if (!validate_arg (arg, REAL_TYPE))
+ return NULL_TREE;
+
+ if (interclass_mathfn_icode (arg, fndecl) != CODE_FOR_nothing)
+ return NULL_TREE;
+
+ mode = TYPE_MODE (TREE_TYPE (arg));
+
+ bool is_ibm_extended = MODE_COMPOSITE_P (mode);
+ /* If there is no optab, try generic code. */
+ switch (DECL_FUNCTION_CODE (fndecl))
+ {
+ tree result;
-/* Fold a call to __builtin_isinf_sign.
+ CASE_FLT_FN (BUILT_IN_ISINF):
+ {
+ /* isinf(x) -> isgreater(fabs(x),DBL_MAX). */
+ tree const isgr_fn = builtin_decl_explicit (BUILT_IN_ISGREATER);
+ tree type = TREE_TYPE (arg);
+ REAL_VALUE_TYPE r;
+ char buf[128];
+
+ if (is_ibm_extended)
+ {
+ /* NaN and Inf are encoded in the high-order double value
+ only. The low-order value is not significant. */
+ type = double_type_node;
+ mode = DFmode;
+ arg = fold_build1_loc (loc, NOP_EXPR, type, arg);
+ }
+ get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf));
+ real_from_string (&r, buf);
+ result = build_call_expr (isgr_fn, 2,
+ fold_build1_loc (loc, ABS_EXPR, type, arg),
+ build_real (type, r));
+ return result;
+ }
+ CASE_FLT_FN (BUILT_IN_FINITE):
+ case BUILT_IN_ISFINITE:
+ {
+ /* isfinite(x) -> islessequal(fabs(x),DBL_MAX). */
+ tree const isle_fn = builtin_decl_explicit (BUILT_IN_ISLESSEQUAL);
+ tree type = TREE_TYPE (arg);
+ REAL_VALUE_TYPE r;
+ char buf[128];
+
+ if (is_ibm_extended)
+ {
+ /* NaN and Inf are encoded in the high-order double value
+ only. The low-order value is not significant. */
+ type = double_type_node;
+ mode = DFmode;
+ arg = fold_build1_loc (loc, NOP_EXPR, type, arg);
+ }
+ get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf));
+ real_from_string (&r, buf);
+ result = build_call_expr (isle_fn, 2,
+ fold_build1_loc (loc, ABS_EXPR, type, arg),
+ build_real (type, r));
+ /*result = fold_build2_loc (loc, UNGT_EXPR,
+ TREE_TYPE (TREE_TYPE (fndecl)),
+ fold_build1_loc (loc, ABS_EXPR, type, arg),
+ build_real (type, r));
+ result = fold_build1_loc (loc, TRUTH_NOT_EXPR,
+ TREE_TYPE (TREE_TYPE (fndecl)),
+ result);*/
+ return result;
+ }
+ case BUILT_IN_ISNORMAL:
+ {
+ /* isnormal(x) -> isgreaterequal(fabs(x),DBL_MIN) &
+ islessequal(fabs(x),DBL_MAX). */
+ tree const isle_fn = builtin_decl_explicit (BUILT_IN_ISLESSEQUAL);
+ tree type = TREE_TYPE (arg);
+ tree orig_arg, max_exp, min_exp;
+ machine_mode orig_mode = mode;
+ REAL_VALUE_TYPE rmax, rmin;
+ char buf[128];
+
+ orig_arg = arg = builtin_save_expr (arg);
+ if (is_ibm_extended)
+ {
+ /* Use double to test the normal range of IBM extended
+ precision. Emin for IBM extended precision is
+ different to emin for IEEE double, being 53 higher
+ since the low double exponent is at least 53 lower
+ than the high double exponent. */
+ type = double_type_node;
+ mode = DFmode;
+ arg = fold_build1_loc (loc, NOP_EXPR, type, arg);
+ }
+ arg = fold_build1_loc (loc, ABS_EXPR, type, arg);
+
+ get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf));
+ real_from_string (&rmax, buf);
+ sprintf (buf, "0x1p%d", REAL_MODE_FORMAT (orig_mode)->emin - 1);
+ real_from_string (&rmin, buf);
+ max_exp = build_real (type, rmax);
+ min_exp = build_real (type, rmin);
+
+ max_exp = build_call_expr (isle_fn, 2, arg, max_exp);
+ if (is_ibm_extended)
+ {
+ /* Testing the high end of the range is done just using
+ the high double, using the same test as isfinite().
+ For the subnormal end of the range we first test the
+ high double, then if its magnitude is equal to the
+ limit of 0x1p-969, we test whether the low double is
+ non-zero and opposite sign to the high double. */
+ tree const islt_fn = builtin_decl_explicit (BUILT_IN_ISLESS);
+ tree const isgt_fn = builtin_decl_explicit (BUILT_IN_ISGREATER);
+ tree gt_min = build_call_expr (isgt_fn, 2, arg, min_exp);
+ tree eq_min = fold_build2 (EQ_EXPR, integer_type_node,
+ arg, min_exp);
+ tree as_complex = build1 (VIEW_CONVERT_EXPR,
+ complex_double_type_node, orig_arg);
+ tree hi_dbl = build1 (REALPART_EXPR, type, as_complex);
+ tree lo_dbl = build1 (IMAGPART_EXPR, type, as_complex);
+ tree zero = build_real (type, dconst0);
+ tree hilt = build_call_expr (islt_fn, 2, hi_dbl, zero);
+ tree lolt = build_call_expr (islt_fn, 2, lo_dbl, zero);
+ tree logt = build_call_expr (isgt_fn, 2, lo_dbl, zero);
+ tree ok_lo = fold_build1 (TRUTH_NOT_EXPR, integer_type_node,
+ fold_build3 (COND_EXPR,
+ integer_type_node,
+ hilt, logt, lolt));
+ eq_min = fold_build2 (TRUTH_ANDIF_EXPR, integer_type_node,
+ eq_min, ok_lo);
+ min_exp = fold_build2 (TRUTH_ORIF_EXPR, integer_type_node,
+ gt_min, eq_min);
+ }
+ else
+ {
+ tree const isge_fn
+ = builtin_decl_explicit (BUILT_IN_ISGREATEREQUAL);
+ min_exp = build_call_expr (isge_fn, 2, arg, min_exp);
+ }
+ result = fold_build2 (BIT_AND_EXPR, integer_type_node,
+ max_exp, min_exp);
+ return result;
+ }
+ default:
+ break;
+ }
+
+ return NULL_TREE;
+}
+
+/* Fold a call to __builtin_isnan(), __builtin_isinf, __builtin_finite.
ARG is the argument for the call. */
static tree
-fold_builtin_classify (location_t loc, tree arg, int builtin_index)
+fold_builtin_classify (location_t loc, tree fndecl, tree arg, int builtin_index)
{
+ tree type = TREE_TYPE (TREE_TYPE (fndecl));
+
if (!validate_arg (arg, REAL_TYPE))
return NULL_TREE;
switch (builtin_index)
{
+ case BUILT_IN_ISINF:
+ if (!HONOR_INFINITIES (arg))
+ return omit_one_operand_loc (loc, type, integer_zero_node, arg);
+
+ return NULL_TREE;
+
case BUILT_IN_ISINF_SIGN:
{
/* isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0 */
return tmp;
}
+ case BUILT_IN_ISFINITE:
+ if (!HONOR_NANS (arg)
+ && !HONOR_INFINITIES (arg))
+ return omit_one_operand_loc (loc, type, integer_one_node, arg);
+
+ return NULL_TREE;
+
+ case BUILT_IN_ISNAN:
+ if (!HONOR_NANS (arg))
+ return omit_one_operand_loc (loc, type, integer_zero_node, arg);
+
+ {
+ bool is_ibm_extended = MODE_COMPOSITE_P (TYPE_MODE (TREE_TYPE (arg)));
+ if (is_ibm_extended)
+ {
+ /* NaN and Inf are encoded in the high-order double value
+ only. The low-order value is not significant. */
+ arg = fold_build1_loc (loc, NOP_EXPR, double_type_node, arg);
+ }
+ }
+ arg = builtin_save_expr (arg);
+ return fold_build2_loc (loc, UNORDERED_EXPR, type, arg, arg);
+
default:
gcc_unreachable ();
}
}
+/* Fold a call to __builtin_fpclassify(int, int, int, int, int, ...).
+ This builtin will generate code to return the appropriate floating
+ point classification depending on the value of the floating point
+ number passed in. The possible return values must be supplied as
+ int arguments to the call in the following order: FP_NAN, FP_INFINITE,
+ FP_NORMAL, FP_SUBNORMAL and FP_ZERO. The ellipses is for exactly
+ one floating point argument which is "type generic". */
+
+static tree
+fold_builtin_fpclassify (location_t loc, tree *args, int nargs)
+{
+ tree fp_nan, fp_infinite, fp_normal, fp_subnormal, fp_zero,
+ arg, type, res, tmp;
+ machine_mode mode;
+ REAL_VALUE_TYPE r;
+ char buf[128];
+
+ /* Verify the required arguments in the original call. */
+ if (nargs != 6
+ || !validate_arg (args[0], INTEGER_TYPE)
+ || !validate_arg (args[1], INTEGER_TYPE)
+ || !validate_arg (args[2], INTEGER_TYPE)
+ || !validate_arg (args[3], INTEGER_TYPE)
+ || !validate_arg (args[4], INTEGER_TYPE)
+ || !validate_arg (args[5], REAL_TYPE))
+ return NULL_TREE;
+
+ fp_nan = args[0];
+ fp_infinite = args[1];
+ fp_normal = args[2];
+ fp_subnormal = args[3];
+ fp_zero = args[4];
+ arg = args[5];
+ type = TREE_TYPE (arg);
+ mode = TYPE_MODE (type);
+ arg = builtin_save_expr (fold_build1_loc (loc, ABS_EXPR, type, arg));
+
+ /* fpclassify(x) ->
+ isnan(x) ? FP_NAN :
+ (fabs(x) == Inf ? FP_INFINITE :
+ (fabs(x) >= DBL_MIN ? FP_NORMAL :
+ (x == 0 ? FP_ZERO : FP_SUBNORMAL))). */
+
+ tmp = fold_build2_loc (loc, EQ_EXPR, integer_type_node, arg,
+ build_real (type, dconst0));
+ res = fold_build3_loc (loc, COND_EXPR, integer_type_node,
+ tmp, fp_zero, fp_subnormal);
+
+ sprintf (buf, "0x1p%d", REAL_MODE_FORMAT (mode)->emin - 1);
+ real_from_string (&r, buf);
+ tmp = fold_build2_loc (loc, GE_EXPR, integer_type_node,
+ arg, build_real (type, r));
+ res = fold_build3_loc (loc, COND_EXPR, integer_type_node, tmp, fp_normal, res);
+
+ if (HONOR_INFINITIES (mode))
+ {
+ real_inf (&r);
+ tmp = fold_build2_loc (loc, EQ_EXPR, integer_type_node, arg,
+ build_real (type, r));
+ res = fold_build3_loc (loc, COND_EXPR, integer_type_node, tmp,
+ fp_infinite, res);
+ }
+
+ if (HONOR_NANS (mode))
+ {
+ tmp = fold_build2_loc (loc, ORDERED_EXPR, integer_type_node, arg, arg);
+ res = fold_build3_loc (loc, COND_EXPR, integer_type_node, tmp, res, fp_nan);
+ }
+
+ return res;
+}
+
/* Fold a call to an unordered comparison function such as
__builtin_isgreater(). FNDECL is the FUNCTION_DECL for the function
being called and ARG0 and ARG1 are the arguments for the call.
case BUILT_IN_ISDIGIT:
return fold_builtin_isdigit (loc, arg0);
+ CASE_FLT_FN (BUILT_IN_FINITE):
+ case BUILT_IN_FINITED32:
+ case BUILT_IN_FINITED64:
+ case BUILT_IN_FINITED128:
+ case BUILT_IN_ISFINITE:
+ {
+ tree ret = fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISFINITE);
+ if (ret)
+ return ret;
+ return fold_builtin_interclass_mathfn (loc, fndecl, arg0);
+ }
+
+ CASE_FLT_FN (BUILT_IN_ISINF):
+ case BUILT_IN_ISINFD32:
+ case BUILT_IN_ISINFD64:
+ case BUILT_IN_ISINFD128:
+ {
+ tree ret = fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISINF);
+ if (ret)
+ return ret;
+ return fold_builtin_interclass_mathfn (loc, fndecl, arg0);
+ }
+
+ case BUILT_IN_ISNORMAL:
+ return fold_builtin_interclass_mathfn (loc, fndecl, arg0);
+
case BUILT_IN_ISINF_SIGN:
- return fold_builtin_classify (loc, arg0, BUILT_IN_ISINF_SIGN);
+ return fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISINF_SIGN);
+
+ CASE_FLT_FN (BUILT_IN_ISNAN):
+ case BUILT_IN_ISNAND32:
+ case BUILT_IN_ISNAND64:
+ case BUILT_IN_ISNAND128:
+ return fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISNAN);
case BUILT_IN_FREE:
if (integer_zerop (arg0))
ret = fold_builtin_3 (loc, fndecl, args[0], args[1], args[2]);
break;
default:
+ ret = fold_builtin_varargs (loc, fndecl, args, nargs);
break;
}
if (ret)
return NULL_TREE;
}
+/* Builtins with folding operations that operate on "..." arguments
+ need special handling; we need to store the arguments in a convenient
+ data structure before attempting any folding. Fortunately there are
+ only a few builtins that fall into this category. FNDECL is the
+ function, EXP is the CALL_EXPR for the call. */
+
+static tree
+fold_builtin_varargs (location_t loc, tree fndecl, tree *args, int nargs)
+{
+ enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
+ tree ret = NULL_TREE;
+
+ switch (fcode)
+ {
+ case BUILT_IN_FPCLASSIFY:
+ ret = fold_builtin_fpclassify (loc, args, nargs);
+ break;
+
+ default:
+ break;
+ }
+ if (ret)
+ {
+ ret = build1 (NOP_EXPR, TREE_TYPE (ret), ret);
+ SET_EXPR_LOCATION (ret, loc);
+ TREE_NO_WARNING (ret) = 1;
+ return ret;
+ }
+ return NULL_TREE;
+}
+
/* Initialize format string characters in the target charset. */
bool
DEF_EXT_LIB_BUILTIN (BUILT_IN_ISINFD32, "isinfd32", BT_FN_INT_DFLOAT32, ATTR_CONST_NOTHROW_LEAF_LIST)
DEF_EXT_LIB_BUILTIN (BUILT_IN_ISINFD64, "isinfd64", BT_FN_INT_DFLOAT64, ATTR_CONST_NOTHROW_LEAF_LIST)
DEF_EXT_LIB_BUILTIN (BUILT_IN_ISINFD128, "isinfd128", BT_FN_INT_DFLOAT128, ATTR_CONST_NOTHROW_LEAF_LIST)
-DEF_GCC_BUILTIN (BUILT_IN_ISZERO, "iszero", BT_FN_INT_VAR, ATTR_CONST_NOTHROW_TYPEGENERIC_LEAF)
-DEF_GCC_BUILTIN (BUILT_IN_ISSUBNORMAL, "issubnormal", BT_FN_INT_VAR, ATTR_CONST_NOTHROW_TYPEGENERIC_LEAF)
DEF_C99_C90RES_BUILTIN (BUILT_IN_ISNAN, "isnan", BT_FN_INT_VAR, ATTR_CONST_NOTHROW_TYPEGENERIC_LEAF)
DEF_EXT_LIB_BUILTIN (BUILT_IN_ISNANF, "isnanf", BT_FN_INT_FLOAT, ATTR_CONST_NOTHROW_LEAF_LIST)
DEF_EXT_LIB_BUILTIN (BUILT_IN_ISNANL, "isnanl", BT_FN_INT_LONGDOUBLE, ATTR_CONST_NOTHROW_LEAF_LIST)
case BUILT_IN_ISINF_SIGN:
case BUILT_IN_ISNAN:
case BUILT_IN_ISNORMAL:
- case BUILT_IN_ISZERO:
- case BUILT_IN_ISSUBNORMAL:
case BUILT_IN_FPCLASSIFY:
type_generic_remove_excess_precision = true;
break;
@findex __builtin_isgreater
@findex __builtin_isgreaterequal
@findex __builtin_isinf_sign
-@findex __builtin_isinf
-@findex __builtin_isnan
-@findex __builtin_iszero
-@findex __builtin_issubnormal
@findex __builtin_isless
@findex __builtin_islessequal
@findex __builtin_islessgreater
@code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
@code{FP_ZERO}. The ellipsis is for exactly one floating-point value
to classify. GCC treats the last argument as type-generic, which
-means it does not do default promotion from @code{float} to @code{double}.
-@end deftypefn
-
-@deftypefn {Built-in Function} int __builtin_isnan (...)
-This built-in implements the C99 isnan functionality which checks if
-the given argument represents a NaN. The return value of the
-function will either be a 0 (false) or a 1 (true).
-On most systems, when an IEEE 754 floating-point type is used this
-built-in does not produce a signal when a signaling NaN is used.
-
-GCC treats the argument as type-generic, which means it does
-not do default promotion from @code{float} to @code{double}.
-@end deftypefn
-
-@deftypefn {Built-in Function} int __builtin_isinf (...)
-This built-in implements the C99 isinf functionality which checks if
-the given argument represents an infinite number. The return
-value of the function will either be a 0 (false) or a 1 (true).
-
-GCC treats the argument as type-generic, which means it does
-not do default promotion from @code{float} to @code{double}.
-@end deftypefn
-
-@deftypefn {Built-in Function} int __builtin_isnormal (...)
-This built-in implements the C99 isnormal functionality which checks if
-the given argument represents a normal number. The return
-value of the function will either be a 0 (false) or a 1 (true).
-
-GCC treats the argument as type-generic, which means it does
-not do default promotion from @code{float} to @code{double}.
-@end deftypefn
-
-@deftypefn {Built-in Function} int __builtin_iszero (...)
-This built-in implements the TS 18661-1:2014 iszero functionality which checks if
-the given argument represents the number 0 or -0. The return
-value of the function will either be a 0 (false) or a 1 (true).
-
-GCC treats the argument as type-generic, which means it does
-not do default promotion from @code{float} to @code{double}.
-@end deftypefn
-
-@deftypefn {Built-in Function} int __builtin_issubnormal (...)
-This built-in implements the TS 18661-1:2014 issubnormal functionality which checks if
-the given argument represents a subnormal number. The return
-value of the function will either be a 0 (false) or a 1 (true).
-
-GCC treats the argument as type-generic, which means it does
-not do default promotion from @code{float} to @code{double}.
+means it does not do default promotion from float to double.
@end deftypefn
@deftypefn {Built-in Function} double __builtin_inf (void)
#include "calls.h"
#include "gimple-iterator.h"
#include "gimple-low.h"
-#include "stor-layout.h"
-#include "target.h"
-#include "gimplify.h"
/* The differences between High GIMPLE and Low GIMPLE are the
following:
static void lower_try_catch (gimple_stmt_iterator *, struct lower_data *);
static void lower_gimple_return (gimple_stmt_iterator *, struct lower_data *);
static void lower_builtin_setjmp (gimple_stmt_iterator *);
-static void lower_builtin_fpclassify (gimple_stmt_iterator *);
-static void lower_builtin_isnan (gimple_stmt_iterator *);
-static void lower_builtin_isinfinite (gimple_stmt_iterator *);
-static void lower_builtin_isnormal (gimple_stmt_iterator *);
-static void lower_builtin_iszero (gimple_stmt_iterator *);
-static void lower_builtin_issubnormal (gimple_stmt_iterator *);
-static void lower_builtin_isfinite (gimple_stmt_iterator *);
static void lower_builtin_posix_memalign (gimple_stmt_iterator *);
if (decl
&& DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
{
- switch (DECL_FUNCTION_CODE (decl))
+ if (DECL_FUNCTION_CODE (decl) == BUILT_IN_SETJMP)
{
- case BUILT_IN_SETJMP:
lower_builtin_setjmp (gsi);
data->cannot_fallthru = false;
return;
-
- case BUILT_IN_POSIX_MEMALIGN:
- if (flag_tree_bit_ccp
- && gimple_builtin_call_types_compatible_p (stmt, decl))
- {
- lower_builtin_posix_memalign (gsi);
- return;
- }
- break;
-
- case BUILT_IN_FPCLASSIFY:
- lower_builtin_fpclassify (gsi);
- data->cannot_fallthru = false;
- return;
-
- CASE_FLT_FN (BUILT_IN_ISINF):
- case BUILT_IN_ISINFD32:
- case BUILT_IN_ISINFD64:
- case BUILT_IN_ISINFD128:
- lower_builtin_isinfinite (gsi);
- data->cannot_fallthru = false;
- return;
-
- case BUILT_IN_ISNAND32:
- case BUILT_IN_ISNAND64:
- case BUILT_IN_ISNAND128:
- CASE_FLT_FN (BUILT_IN_ISNAN):
- lower_builtin_isnan (gsi);
- data->cannot_fallthru = false;
- return;
-
- case BUILT_IN_ISNORMAL:
- lower_builtin_isnormal (gsi);
- data->cannot_fallthru = false;
- return;
-
- case BUILT_IN_ISZERO:
- lower_builtin_iszero (gsi);
- data->cannot_fallthru = false;
- return;
-
- case BUILT_IN_ISSUBNORMAL:
- lower_builtin_issubnormal (gsi);
- data->cannot_fallthru = false;
- return;
-
- CASE_FLT_FN (BUILT_IN_FINITE):
- case BUILT_IN_FINITED32:
- case BUILT_IN_FINITED64:
- case BUILT_IN_FINITED128:
- case BUILT_IN_ISFINITE:
- lower_builtin_isfinite (gsi);
- data->cannot_fallthru = false;
+ }
+ else if (DECL_FUNCTION_CODE (decl) == BUILT_IN_POSIX_MEMALIGN
+ && flag_tree_bit_ccp
+ && gimple_builtin_call_types_compatible_p (stmt, decl))
+ {
+ lower_builtin_posix_memalign (gsi);
return;
-
- default:
- break;
}
}
gsi_remove (gsi, false);
}
-/* This function will if ARG is not already a variable or SSA_NAME,
- create a new temporary TMP and bind ARG to TMP. This new binding is then
- emitted into SEQ and TMP is returned. */
-static tree
-emit_tree_and_return_var (gimple_seq *seq, tree arg)
-{
- if (TREE_CODE (arg) == SSA_NAME || VAR_P (arg))
- return arg;
-
- tree tmp = create_tmp_reg (TREE_TYPE (arg));
- gassign *stm = gimple_build_assign (tmp, arg);
- gimple_seq_add_stmt (seq, stm);
- return tmp;
-}
-
-/* This function builds an if statement that ends up using explicit branches
- instead of becoming a ternary conditional select. This function assumes you
- will fall through to the next statements after the condition for the false
- branch. The code emitted looks like:
-
- if (COND)
- RESULT_VARIABLE = TRUE_BRANCH
- GOTO EXIT_LABEL
- else
- ...
-
- SEQ is the gimple sequence/buffer to emit any new bindings to.
- RESULT_VARIABLE is the value to set if COND.
- EXIT_LABEL is the label to jump to in case COND.
- COND is condition to use in the conditional statement of the if.
- TRUE_BRANCH is the value to set RESULT_VARIABLE to if COND. */
-static void
-emit_tree_cond (gimple_seq *seq, tree result_variable, tree exit_label,
- tree cond, tree true_branch)
-{
- /* Create labels for fall through. */
- tree true_label = create_artificial_label (UNKNOWN_LOCATION);
- tree false_label = create_artificial_label (UNKNOWN_LOCATION);
- gcond *stmt = gimple_build_cond_from_tree (cond, true_label, false_label);
- gimple_seq_add_stmt (seq, stmt);
-
- /* Build the true case. */
- gimple_seq_add_stmt (seq, gimple_build_label (true_label));
- tree value = TREE_CONSTANT (true_branch)
- ? true_branch
- : emit_tree_and_return_var (seq, true_branch);
- gimple_seq_add_stmt (seq, gimple_build_assign (result_variable, value));
- gimple_seq_add_stmt (seq, gimple_build_goto (exit_label));
-
- /* Build the false case. */
- gimple_seq_add_stmt (seq, gimple_build_label (false_label));
-}
-
-/* This function returns a variable containing an reinterpreted ARG as an
- integer.
-
- SEQ is the gimple sequence/buffer to write any new bindings to.
- ARG is the floating point number to reinterpret as an integer.
- LOC is the location to use when doing folding operations. */
-static tree
-get_num_as_int (gimple_seq *seq, tree arg, location_t loc)
-{
- tree type = TREE_TYPE (arg);
-
- const HOST_WIDE_INT type_width = TYPE_PRECISION (type);
-
- /* Re-interpret the float as an unsigned integer type
- with equal precision. */
- tree int_arg_type = build_nonstandard_integer_type (type_width, true);
- tree conv_arg = fold_build1_loc (loc, VIEW_CONVERT_EXPR, int_arg_type, arg);
- return emit_tree_and_return_var (seq, conv_arg);
-}
-
-/* Check if ARG which is the floating point number being classified is close
- enough to IEEE 754 format to be able to go in the early exit code. */
-static bool
-use_ieee_int_mode (tree arg)
-{
- tree type = TREE_TYPE (arg);
- machine_mode mode = TYPE_MODE (type);
-
- const real_format *format = REAL_MODE_FORMAT (mode);
- machine_mode imode = int_mode_for_mode (mode);
- bool is_ibm_extended = MODE_COMPOSITE_P (mode);
-
- return (format->is_binary_ieee_compatible
- && FLOAT_WORDS_BIG_ENDIAN == WORDS_BIG_ENDIAN
- /* Check if there's a usable integer mode. */
- && imode != BLKmode
- && targetm.scalar_mode_supported_p (imode)
- && !is_ibm_extended);
-}
-
-/* Perform some IBM extended format fixups on ARG for use by FP functions.
- This is done by ignoring the lower 64 bits of the number.
-
- MODE is the machine mode of ARG.
- TYPE is the type of ARG.
- LOC is the location to be used in fold functions. Usually is the location
- of the definition of ARG. */
-static bool
-perform_ibm_extended_fixups (tree *arg, machine_mode *mode,
- tree *type, location_t loc)
-{
- bool is_ibm_extended = MODE_COMPOSITE_P (*mode);
- if (is_ibm_extended)
- {
- /* NaN and Inf are encoded in the high-order double value
- only. The low-order value is not significant. */
- *type = double_type_node;
- *mode = DFmode;
- *arg = fold_build1_loc (loc, NOP_EXPR, *type, *arg);
- }
-
- return is_ibm_extended;
-}
-
-/* Generates code to check if ARG is a normal number. For the FP case we check
- MIN_VALUE(ARG) <= ABS(ARG) > INF and for the INT value we check the exp and
- mantissa bits. Returns a variable containing a boolean which has the result
- of the check.
-
- SEQ is the buffer to use to emit the gimple instructions into.
- LOC is the location to use during fold calls. */
-static tree
-is_normal (gimple_seq *seq, tree arg, location_t loc)
-{
- tree type = TREE_TYPE (arg);
-
- machine_mode mode = TYPE_MODE (type);
- const real_format *format = REAL_MODE_FORMAT (mode);
- const tree bool_type = boolean_type_node;
-
-
- /* If not using optimized route then exit early. */
- if (!use_ieee_int_mode (arg))
- {
- tree orig_arg = arg;
- machine_mode orig_mode = mode;
- if (TREE_CODE (arg) != SSA_NAME
- && (TREE_ADDRESSABLE (arg) != 0
- || (TREE_CODE (arg) != PARM_DECL
- && (!VAR_P (arg) || TREE_STATIC (arg)))))
- orig_arg = save_expr (arg);
-
- /* Perform IBM extended format fixups if required. */
- bool is_ibm_extended = perform_ibm_extended_fixups (&arg, &mode,
- &type, loc);
-
- REAL_VALUE_TYPE rinf, rmin;
- tree arg_p = fold_build1_loc (loc, ABS_EXPR, type, arg);
-
- tree const islt_fn = builtin_decl_explicit (BUILT_IN_ISLESS);
- tree const isgt_fn = builtin_decl_explicit (BUILT_IN_ISGREATER);
- tree const isge_fn = builtin_decl_explicit (BUILT_IN_ISGREATEREQUAL);
-
- char buf[128];
- real_inf (&rinf);
- get_min_float (REAL_MODE_FORMAT (orig_mode), buf, sizeof (buf));
- real_from_string (&rmin, buf);
-
- tree inf_exp = build_call_expr (islt_fn, 2, arg_p,
- build_real (type, rinf));
- tree min_exp = build_real (type, rmin);
- if (is_ibm_extended)
- {
- /* Testing the high end of the range is done just using
- the high double, using the same test as isfinite().
- For the subnormal end of the range we first test the
- high double, then if its magnitude is equal to the
- limit of 0x1p-969, we test whether the low double is
- non-zero and opposite sign to the high double. */
- tree gt_min = build_call_expr (isgt_fn, 2, arg_p, min_exp);
- tree eq_min = fold_build2 (EQ_EXPR, integer_type_node,
- arg_p, min_exp);
- tree as_complex = build1 (VIEW_CONVERT_EXPR,
- complex_double_type_node, orig_arg);
- tree hi_dbl = build1 (REALPART_EXPR, type, as_complex);
- tree lo_dbl = build1 (IMAGPART_EXPR, type, as_complex);
- tree zero = build_real (type, dconst0);
- tree hilt = build_call_expr (islt_fn, 2, hi_dbl, zero);
- tree lolt = build_call_expr (islt_fn, 2, lo_dbl, zero);
- tree logt = build_call_expr (isgt_fn, 2, lo_dbl, zero);
- tree ok_lo = fold_build1 (TRUTH_NOT_EXPR, integer_type_node,
- fold_build3 (COND_EXPR,
- integer_type_node,
- hilt, logt, lolt));
- eq_min = fold_build2 (TRUTH_ANDIF_EXPR, integer_type_node,
- eq_min, ok_lo);
- min_exp = fold_build2 (TRUTH_ORIF_EXPR, integer_type_node,
- gt_min, eq_min);
- }
- else
- {
- min_exp = build_call_expr (isge_fn, 2, arg_p, min_exp);
- }
-
- push_gimplify_context ();
- gimplify_expr (&min_exp, seq, NULL, is_gimple_val, fb_either);
- gimplify_expr (&inf_exp, seq, NULL, is_gimple_val, fb_either);
-
- tree res
- = fold_build2_loc (loc, BIT_AND_EXPR, bool_type,
- emit_tree_and_return_var (seq,
- gimple_boolify (min_exp)),
- emit_tree_and_return_var (seq,
- gimple_boolify (inf_exp)));
- pop_gimplify_context (NULL);
-
- return emit_tree_and_return_var (seq, res);
- }
-
- const tree int_type = unsigned_type_node;
- const int exp_bits = (GET_MODE_SIZE (mode) * BITS_PER_UNIT) - format->p;
- const int exp_mask = (1 << exp_bits) - 1;
-
- /* Get the number reinterpreted as an integer. */
- tree int_arg = get_num_as_int (seq, arg, loc);
-
- /* Extract exp bits from the float, where we expect the exponent to be.
- We create a new type because BIT_FIELD_REF does not allow you to
- extract less bits than the precision of the storage variable. */
- tree exp_tmp
- = fold_build3_loc (loc, BIT_FIELD_REF,
- build_nonstandard_integer_type (exp_bits, true),
- int_arg,
- build_int_cstu (int_type, exp_bits),
- build_int_cstu (int_type, format->p - 1));
- tree exp_bitfield = emit_tree_and_return_var (seq, exp_tmp);
-
- /* Re-interpret the extracted exponent bits as a 32 bit int.
- This allows us to continue doing operations as int_type. */
- tree exp
- = emit_tree_and_return_var (seq, fold_build1_loc (loc, NOP_EXPR, int_type,
- exp_bitfield));
-
- /* exp_mask & ~1. */
- tree mask_check
- = fold_build2_loc (loc, BIT_AND_EXPR, int_type,
- build_int_cstu (int_type, exp_mask),
- fold_build1_loc (loc, BIT_NOT_EXPR, int_type,
- build_int_cstu (int_type, 1)));
-
- /* (exp + 1) & mask_check.
- Check to see if exp is not all 0 or all 1. */
- tree exp_check
- = fold_build2_loc (loc, BIT_AND_EXPR, int_type,
- emit_tree_and_return_var (seq,
- fold_build2_loc (loc, PLUS_EXPR, int_type, exp,
- build_int_cstu (int_type, 1))),
- mask_check);
-
- tree res = fold_build2_loc (loc, NE_EXPR, boolean_type_node,
- build_int_cstu (int_type, 0),
- emit_tree_and_return_var (seq, exp_check));
-
- return emit_tree_and_return_var (seq, res);
-}
-
-/* Generates code to check if ARG is a zero. For both the FP and INT case we
- check if ARG == 0 (modulo sign bit). Returns a variable containing a boolean
- which has the result of the check.
-
- SEQ is the buffer to use to emit the gimple instructions into.
- LOC is the location to use during fold calls. */
-static tree
-is_zero (gimple_seq *seq, tree arg, location_t loc)
-{
- tree type = TREE_TYPE (arg);
-
- /* If not using optimized route then exit early. */
- if (!use_ieee_int_mode (arg))
- {
- machine_mode mode = TYPE_MODE (type);
- /* Perform IBM extended format fixups if required. */
- perform_ibm_extended_fixups (&arg, &mode, &type, loc);
-
- tree res = fold_build2_loc (loc, EQ_EXPR, boolean_type_node, arg,
- build_real (type, dconst0));
- return emit_tree_and_return_var (seq, res);
- }
-
- const HOST_WIDE_INT type_width = TYPE_PRECISION (type);
-
- tree int_arg_type = build_nonstandard_integer_type (type_width, true);
-
- /* Get the number reinterpreted as an integer.
- Shift left to remove the sign. */
- tree int_arg
- = fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- get_num_as_int (seq, arg, loc),
- build_int_cstu (int_arg_type, 1));
-
- /* num << 1 == 0.
- This checks to see if the number is zero. */
- tree zero_check
- = fold_build2_loc (loc, EQ_EXPR, boolean_type_node,
- build_int_cstu (int_arg_type, 0),
- emit_tree_and_return_var (seq, int_arg));
-
- return emit_tree_and_return_var (seq, zero_check);
-}
-
-/* Generates code to check if ARG is a subnormal number. In the FP case we test
- fabs (ARG) != 0 && fabs (ARG) < MIN_VALUE (ARG) and in the INT case we check
- the exp and mantissa bits on ARG. Returns a variable containing a boolean
- which has the result of the check.
-
- SEQ is the buffer to use to emit the gimple instructions into.
- LOC is the location to use during fold calls. */
-static tree
-is_subnormal (gimple_seq *seq, tree arg, location_t loc)
-{
- const tree bool_type = boolean_type_node;
-
- tree type = TREE_TYPE (arg);
-
- machine_mode mode = TYPE_MODE (type);
- const real_format *format = REAL_MODE_FORMAT (mode);
- const HOST_WIDE_INT type_width = TYPE_PRECISION (type);
-
- tree int_arg_type = build_nonstandard_integer_type (type_width, true);
-
- /* If not using optimized route then exit early. */
- if (!use_ieee_int_mode (arg))
- {
- tree const islt_fn = builtin_decl_explicit (BUILT_IN_ISLESS);
- tree const isgt_fn = builtin_decl_explicit (BUILT_IN_ISGREATER);
-
- tree arg_p
- = emit_tree_and_return_var (seq, fold_build1_loc (loc, ABS_EXPR, type,
- arg));
- REAL_VALUE_TYPE r;
- char buf[128];
- get_min_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf));
- real_from_string (&r, buf);
- tree subnorm = build_call_expr (islt_fn, 2, arg_p, build_real (type, r));
-
- tree zero = build_call_expr (isgt_fn, 2, arg_p,
- build_real (type, dconst0));
-
- push_gimplify_context ();
- gimplify_expr (&subnorm, seq, NULL, is_gimple_val, fb_either);
- gimplify_expr (&zero, seq, NULL, is_gimple_val, fb_either);
-
- tree res
- = fold_build2_loc (loc, BIT_AND_EXPR, bool_type,
- emit_tree_and_return_var (seq,
- gimple_boolify (subnorm)),
- emit_tree_and_return_var (seq,
- gimple_boolify (zero)));
- pop_gimplify_context (NULL);
-
- return emit_tree_and_return_var (seq, res);
- }
-
- /* Get the number reinterpreted as an integer.
- Shift left to remove the sign. */
- tree int_arg
- = fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- get_num_as_int (seq, arg, loc),
- build_int_cstu (int_arg_type, 1));
-
- /* Check for a zero exponent and non-zero mantissa.
- This can be done with two comparisons by first apply a
- removing the sign bit and checking if the value is larger
- than the mantissa mask. */
-
- /* This creates a mask to be used to check the mantissa value in the shifted
- integer representation of the fpnum. */
- tree significant_bit = build_int_cstu (int_arg_type, format->p - 1);
- tree mantissa_mask
- = fold_build2_loc (loc, MINUS_EXPR, int_arg_type,
- fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- build_int_cstu (int_arg_type, 2),
- significant_bit),
- build_int_cstu (int_arg_type, 1));
-
- /* Check if exponent is zero and mantissa is not. */
- tree subnorm_cond_tmp
- = fold_build2_loc (loc, LE_EXPR, bool_type,
- emit_tree_and_return_var (seq, int_arg),
- mantissa_mask);
-
- tree subnorm_cond = emit_tree_and_return_var (seq, subnorm_cond_tmp);
-
- tree zero_cond
- = fold_build2_loc (loc, GT_EXPR, boolean_type_node,
- emit_tree_and_return_var (seq, int_arg),
- build_int_cstu (int_arg_type, 0));
-
- tree subnorm_check
- = fold_build2_loc (loc, BIT_AND_EXPR, boolean_type_node,
- emit_tree_and_return_var (seq, subnorm_cond),
- emit_tree_and_return_var (seq, zero_cond));
-
- return emit_tree_and_return_var (seq, subnorm_check);
-}
-
-/* Generates code to check if ARG is an infinity. In the FP case we test
- FABS(ARG) == INF and in the INT case we check the bits on the exp and
- mantissa. Returns a variable containing a boolean which has the result
- of the check.
-
- SEQ is the buffer to use to emit the gimple instructions into.
- LOC is the location to use during fold calls. */
-static tree
-is_infinity (gimple_seq *seq, tree arg, location_t loc)
-{
- tree type = TREE_TYPE (arg);
-
- machine_mode mode = TYPE_MODE (type);
- const tree bool_type = boolean_type_node;
-
- if (!HONOR_INFINITIES (mode))
- {
- return build_int_cst (bool_type, false);
- }
-
- /* If not using optimized route then exit early. */
- if (!use_ieee_int_mode (arg))
- {
- /* Perform IBM extended format fixups if required. */
- perform_ibm_extended_fixups (&arg, &mode, &type, loc);
-
- tree arg_p
- = emit_tree_and_return_var (seq, fold_build1_loc (loc, ABS_EXPR, type,
- arg));
- REAL_VALUE_TYPE r;
- real_inf (&r);
- tree res = fold_build2_loc (loc, EQ_EXPR, bool_type, arg_p,
- build_real (type, r));
-
- return emit_tree_and_return_var (seq, res);
- }
-
- const real_format *format = REAL_MODE_FORMAT (mode);
- const HOST_WIDE_INT type_width = TYPE_PRECISION (type);
-
- tree int_arg_type = build_nonstandard_integer_type (type_width, true);
-
- /* This creates a mask to be used to check the exp value in the shifted
- integer representation of the fpnum. */
- const int exp_bits = (GET_MODE_SIZE (mode) * BITS_PER_UNIT) - format->p;
- gcc_assert (format->p > 0);
-
- tree significant_bit = build_int_cstu (int_arg_type, format->p);
- tree exp_mask
- = fold_build2_loc (loc, MINUS_EXPR, int_arg_type,
- fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- build_int_cstu (int_arg_type, 2),
- build_int_cstu (int_arg_type,
- exp_bits - 1)),
- build_int_cstu (int_arg_type, 1));
-
- /* Get the number reinterpreted as an integer.
- Shift left to remove the sign. */
- tree int_arg
- = fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- get_num_as_int (seq, arg, loc),
- build_int_cstu (int_arg_type, 1));
-
- /* This mask checks to see if the exp has all bits set and mantissa no
- bits set. */
- tree inf_mask
- = fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- exp_mask, significant_bit);
-
- /* Check if exponent has all bits set and mantissa is 0. */
- tree inf_check
- = emit_tree_and_return_var(seq,
- fold_build2_loc (loc, EQ_EXPR, bool_type,
- emit_tree_and_return_var(seq, int_arg),
- inf_mask));
-
- return emit_tree_and_return_var (seq, inf_check);
-}
-
-/* Generates code to check if ARG is a finite number. In the FP case we check
- if FABS(ARG) <= MAX_VALUE(ARG) and in the INT case we check the exp and
- mantissa bits. Returns a variable containing a boolean which has the result
- of the check.
-
- SEQ is the buffer to use to emit the gimple instructions into.
- LOC is the location to use during fold calls. */
-static tree
-is_finite (gimple_seq *seq, tree arg, location_t loc)
-{
- tree type = TREE_TYPE (arg);
-
- machine_mode mode = TYPE_MODE (type);
- const tree bool_type = boolean_type_node;
-
- if (!HONOR_NANS (arg) && !HONOR_INFINITIES (arg))
- {
- return build_int_cst (bool_type, true);
- }
-
- /* If not using optimized route then exit early. */
- if (!use_ieee_int_mode (arg))
- {
-
- /* Perform IBM extended format fixups if required. */
- perform_ibm_extended_fixups (&arg, &mode, &type, loc);
-
- tree const isle_fn = builtin_decl_explicit (BUILT_IN_ISLESSEQUAL);
-
- tree arg_p
- = emit_tree_and_return_var (seq, fold_build1_loc (loc, ABS_EXPR, type,
- arg));
- REAL_VALUE_TYPE rmax;
- char buf[128];
- get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf));
- real_from_string (&rmax, buf);
-
- tree res = build_call_expr (isle_fn, 2, arg_p, build_real (type, rmax));
-
- push_gimplify_context ();
- gimplify_expr (&res, seq, NULL, is_gimple_val, fb_either);
- pop_gimplify_context (NULL);
-
- return emit_tree_and_return_var (seq, gimple_boolify(res));
- }
-
- const real_format *format = REAL_MODE_FORMAT (mode);
- const HOST_WIDE_INT type_width = TYPE_PRECISION (type);
-
- tree int_arg_type = build_nonstandard_integer_type (type_width, true);
-
- /* This creates a mask to be used to check the exp value in the shifted
- integer representation of the fpnum. */
- const int exp_bits = (GET_MODE_SIZE (mode) * BITS_PER_UNIT) - format->p;
- gcc_assert (format->p > 0);
-
- tree significant_bit = build_int_cstu (int_arg_type, format->p);
- tree exp_mask
- = fold_build2_loc (loc, MINUS_EXPR, int_arg_type,
- fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- build_int_cstu (int_arg_type, 2),
- build_int_cstu (int_arg_type,
- exp_bits - 1)),
- build_int_cstu (int_arg_type, 1));
-
- /* Get the number reinterpreted as an integer.
- Shift left to remove the sign. */
- tree int_arg
- = fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- get_num_as_int (seq, arg, loc),
- build_int_cstu (int_arg_type, 1));
-
- /* This mask checks to see if the exp has all bits set and mantissa no
- bits set. */
- tree inf_mask
- = fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- exp_mask, significant_bit);
-
- /* Check if exponent has all bits set and mantissa is 0. */
- tree inf_check_tmp
- = fold_build2_loc (loc, LT_EXPR, bool_type,
- emit_tree_and_return_var (seq, int_arg),
- inf_mask);
-
- tree inf_check = emit_tree_and_return_var (seq, inf_check_tmp);
-
- return emit_tree_and_return_var (seq, inf_check);
-}
-
-/* Generates code to check if ARG is a NaN. In the FP case we simply check if
- ARG != ARG and in the INT case we check the bits in the exp and mantissa.
- Returns a variable containing a boolean which has the result of the check.
-
- SEQ is the buffer to use to emit the gimple instructions into.
- LOC is the location to use during fold calls. */
-static tree
-is_nan (gimple_seq *seq, tree arg, location_t loc)
-{
- tree type = TREE_TYPE (arg);
-
- machine_mode mode = TYPE_MODE (type);
- const tree bool_type = boolean_type_node;
-
- if (!HONOR_NANS (mode))
- {
- return build_int_cst (bool_type, false);
- }
-
- const real_format *format = REAL_MODE_FORMAT (mode);
-
- /* If not using optimized route then exit early. */
- if (!use_ieee_int_mode (arg))
- {
- /* Perform IBM extended format fixups if required. */
- perform_ibm_extended_fixups (&arg, &mode, &type, loc);
-
- tree arg_p
- = emit_tree_and_return_var (seq, fold_build1_loc (loc, ABS_EXPR, type,
- arg));
- tree res
- = fold_build2_loc (loc, UNORDERED_EXPR, bool_type,arg_p, arg_p);
-
- return emit_tree_and_return_var (seq, res);
- }
-
- const HOST_WIDE_INT type_width = TYPE_PRECISION (type);
- tree int_arg_type = build_nonstandard_integer_type (type_width, true);
-
- /* This creates a mask to be used to check the exp value in the shifted
- integer representation of the fpnum. */
- const int exp_bits = (GET_MODE_SIZE (mode) * BITS_PER_UNIT) - format->p;
- tree significant_bit = build_int_cstu (int_arg_type, format->p);
- tree exp_mask
- = fold_build2_loc (loc, MINUS_EXPR, int_arg_type,
- fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- build_int_cstu (int_arg_type, 2),
- build_int_cstu (int_arg_type,
- exp_bits - 1)),
- build_int_cstu (int_arg_type, 1));
-
- /* Get the number reinterpreted as an integer.
- Shift left to remove the sign. */
- tree int_arg
- = fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- get_num_as_int (seq, arg, loc),
- build_int_cstu (int_arg_type, 1));
-
- /* This mask checks to see if the exp has all bits set and mantissa no
- bits set. */
- tree inf_mask
- = fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- exp_mask, significant_bit);
-
- /* Check if exponent has all bits set and mantissa is not 0. */
- tree nan_check
- = emit_tree_and_return_var(seq,
- fold_build2_loc (loc, GT_EXPR, bool_type,
- emit_tree_and_return_var(seq, int_arg),
- inf_mask));
-
- return emit_tree_and_return_var (seq, nan_check);
-}
-
-/* Validates a single argument from the arguments list CALL at position INDEX.
- The extracted parameter is compared against the expected type CODE.
-
- A boolean is returned indicating if the parameter exist and if of the
- expected type. */
-static bool
-gimple_validate_arg (gimple* call, int index, enum tree_code code)
-{
- const tree arg = gimple_call_arg (call, index);
- if (!arg)
- return false;
- else if (code == POINTER_TYPE)
- return POINTER_TYPE_P (TREE_TYPE (arg));
- else if (code == INTEGER_TYPE)
- return INTEGRAL_TYPE_P (TREE_TYPE (arg));
- return code == TREE_CODE (TREE_TYPE (arg));
-}
-
-/* Lowers calls to __builtin_fpclassify to
- fpclassify (x) ->
- isnormal(x) ? FP_NORMAL :
- iszero (x) ? FP_ZERO :
- isnan (x) ? FP_NAN :
- isinfinite (x) ? FP_INFINITE :
- FP_SUBNORMAL.
-
- The code may use integer arithmentic if it decides
- that the produced assembly would be faster. This can only be done
- for numbers that are similar to IEEE-754 in format.
-
- This builtin will generate code to return the appropriate floating
- point classification depending on the value of the floating point
- number passed in. The possible return values must be supplied as
- int arguments to the call in the following order: FP_NAN, FP_INFINITE,
- FP_NORMAL, FP_SUBNORMAL and FP_ZERO. The ellipses is for exactly
- one floating point argument which is "type generic".
-
- GSI is the gimple iterator containing the fpclassify call to lower.
- The call will be expanded and replaced inline in the given GSI. */
-static void
-lower_builtin_fpclassify (gimple_stmt_iterator *gsi)
-{
- gimple *call = gsi_stmt (*gsi);
- location_t loc = gimple_location (call);
-
- /* Verify the required arguments in the original call. */
- if (gimple_call_num_args (call) != 6
- || !gimple_validate_arg (call, 0, INTEGER_TYPE)
- || !gimple_validate_arg (call, 1, INTEGER_TYPE)
- || !gimple_validate_arg (call, 2, INTEGER_TYPE)
- || !gimple_validate_arg (call, 3, INTEGER_TYPE)
- || !gimple_validate_arg (call, 4, INTEGER_TYPE)
- || !gimple_validate_arg (call, 5, REAL_TYPE))
- return;
-
- /* Collect the arguments from the call. */
- tree fp_nan = gimple_call_arg (call, 0);
- tree fp_infinite = gimple_call_arg (call, 1);
- tree fp_normal = gimple_call_arg (call, 2);
- tree fp_subnormal = gimple_call_arg (call, 3);
- tree fp_zero = gimple_call_arg (call, 4);
- tree arg = gimple_call_arg (call, 5);
-
- gimple_seq body = NULL;
-
- /* Create label to jump to to exit. */
- tree done_label = create_artificial_label (UNKNOWN_LOCATION);
- tree dest;
- tree orig_dest = dest = gimple_call_lhs (call);
- if (orig_dest && TREE_CODE (orig_dest) == SSA_NAME)
- dest = create_tmp_reg (TREE_TYPE (orig_dest));
-
- emit_tree_cond (&body, dest, done_label,
- is_normal (&body, arg, loc), fp_normal);
- emit_tree_cond (&body, dest, done_label,
- is_zero (&body, arg, loc), fp_zero);
- emit_tree_cond (&body, dest, done_label,
- is_nan (&body, arg, loc), fp_nan);
- emit_tree_cond (&body, dest, done_label,
- is_infinity (&body, arg, loc), fp_infinite);
-
- /* And finally, emit the default case if nothing else matches.
- This replaces the call to is_subnormal. */
- gimple_seq_add_stmt (&body, gimple_build_assign (dest, fp_subnormal));
- gimple_seq_add_stmt (&body, gimple_build_label (done_label));
-
- /* Build orig_dest = dest if necessary. */
- if (dest != orig_dest)
- {
- gimple_seq_add_stmt (&body, gimple_build_assign (orig_dest, dest));
- }
-
- gsi_insert_seq_before (gsi, body, GSI_SAME_STMT);
-
-
- /* Remove the call to __builtin_fpclassify. */
- gsi_remove (gsi, false);
-}
-
-/* Generic wrapper for the is_nan, is_normal, is_subnormal, is_zero, etc.
- All these functions have the same setup. The wrapper validates the parameter
- and also creates the branches and labels required to properly invoke.
- This has been generalize and the function to call is passed as argument FNDECL.
-
- GSI is the gimple iterator containing the fpclassify call to lower.
- The call will be expanded and replaced inline in the given GSI. */
-static void
-gen_call_fp_builtin (gimple_stmt_iterator *gsi,
- tree (*fndecl)(gimple_seq *, tree, location_t))
-{
- gimple *call = gsi_stmt (*gsi);
- location_t loc = gimple_location (call);
-
- /* Verify the required arguments in the original call. */
- if (gimple_call_num_args (call) != 1
- || !gimple_validate_arg (call, 0, REAL_TYPE))
- return;
-
- tree arg = gimple_call_arg (call, 0);
- gimple_seq body = NULL;
-
- /* Create label to jump to to exit. */
- tree done_label = create_artificial_label (UNKNOWN_LOCATION);
- tree dest;
- tree orig_dest = dest = gimple_call_lhs (call);
- tree type = TREE_TYPE (orig_dest);
- if (orig_dest && TREE_CODE (orig_dest) == SSA_NAME)
- dest = create_tmp_reg (type);
-
- tree t_true = build_int_cst (type, true);
- tree t_false = build_int_cst (type, false);
-
- emit_tree_cond (&body, dest, done_label,
- fndecl (&body, arg, loc), t_true);
-
- /* And finally, emit the default case if nothing else matches.
- This replaces the call to false. */
- gimple_seq_add_stmt (&body, gimple_build_assign (dest, t_false));
- gimple_seq_add_stmt (&body, gimple_build_label (done_label));
-
- /* Build orig_dest = dest if necessary. */
- if (dest != orig_dest)
- {
- gimple_seq_add_stmt (&body, gimple_build_assign (orig_dest, dest));
- }
-
- gsi_insert_seq_before (gsi, body, GSI_SAME_STMT);
-
- /* Remove the call to the builtin. */
- gsi_remove (gsi, false);
-}
-
-/* Lower and expand calls to __builtin_isnan in GSI. */
-static void
-lower_builtin_isnan (gimple_stmt_iterator *gsi)
-{
- gen_call_fp_builtin (gsi, &is_nan);
-}
-
-/* Lower and expand calls to __builtin_isinfinite in GSI. */
-static void
-lower_builtin_isinfinite (gimple_stmt_iterator *gsi)
-{
- gen_call_fp_builtin (gsi, &is_infinity);
-}
-
-/* Lower and expand calls to __builtin_isnormal in GSI. */
-static void
-lower_builtin_isnormal (gimple_stmt_iterator *gsi)
-{
- gen_call_fp_builtin (gsi, &is_normal);
-}
-
-/* Lower and expand calls to __builtin_iszero in GSI. */
-static void
-lower_builtin_iszero (gimple_stmt_iterator *gsi)
-{
- gen_call_fp_builtin (gsi, &is_zero);
-}
-
-/* Lower and expand calls to __builtin_issubnormal in GSI. */
-static void
-lower_builtin_issubnormal (gimple_stmt_iterator *gsi)
-{
- gen_call_fp_builtin (gsi, &is_subnormal);
-}
-
-/* Lower and expand calls to __builtin_isfinite in GSI. */
-static void
-lower_builtin_isfinite (gimple_stmt_iterator *gsi)
-{
- gen_call_fp_builtin (gsi, &is_finite);
-}
-
/* Lower calls to posix_memalign to
res = posix_memalign (ptr, align, size);
if (res == 0)
true,
true,
false,
- true,
"ieee_single"
};
true,
false,
true,
- true,
"mips_single"
};
true,
true,
true,
- true,
"motorola_single"
};
true,
false,
false,
- false,
"spu_single"
};
\f
true,
true,
false,
- true,
"ieee_double"
};
true,
false,
true,
- true,
"mips_double"
};
true,
true,
true,
- true,
"motorola_double"
};
\f
true,
true,
true,
- false,
"ieee_extended_motorola"
};
true,
true,
false,
- false,
"ieee_extended_intel_96"
};
true,
true,
false,
- false,
"ieee_extended_intel_128"
};
true,
true,
false,
- false,
"ieee_extended_intel_96_round_53"
};
\f
true,
true,
false,
- false,
"ibm_extended"
};
true,
false,
true,
- false,
"mips_extended"
};
true,
true,
false,
- true,
"ieee_quad"
};
true,
false,
true,
- true,
"mips_quad"
};
\f
false,
false,
false,
- false,
"vax_f"
};
false,
false,
false,
- false,
"vax_d"
};
false,
false,
false,
- false,
"vax_g"
};
\f
true,
true,
false,
- false,
"decimal_single"
};
true,
true,
false,
- false,
"decimal_double"
};
true,
true,
false,
- false,
"decimal_quad"
};
\f
true,
true,
false,
- true,
"ieee_half"
};
true,
false,
false,
- false,
"arm_half"
};
\f
true,
true,
false,
- false,
"real_internal"
};
\f
gcc_assert (strlen (buf) < len);
}
-/* Write into BUF the minimum negative representable finite floating-point
- number, x, such that b**(x-1) is normalized.
- BUF must be large enough to contain the result. */
-void
-get_min_float (const struct real_format *fmt, char *buf, size_t len)
-{
- sprintf (buf, "0x1p%d", fmt->emin - 1);
- gcc_assert (strlen (buf) < len);
-}
-
/* True if mode M has a NaN representation and
the treatment of NaN operands is important. */
bool has_signed_zero;
bool qnan_msb_set;
bool canonical_nan_lsbs_set;
-
- /* This flag indicates whether the format is suitable for the optimized
- code paths for the __builtin_fpclassify function and friends. For
- this, the format must be a base 2 representation with the sign bit as
- the most-significant bit followed by (exp <= 32) exponent bits
- followed by the mantissa bits. It must be possible to interpret the
- bits of the floating-point representation as an integer. NaNs and
- INFs (if available) must be represented by the same schema used by
- IEEE 754. (NaNs must be represented by an exponent with all bits 1,
- any mantissa except all bits 0 and any sign bit. +INF and -INF must be
- represented by an exponent with all bits 1, a mantissa with all bits 0 and
- a sign bit of 0 and 1 respectively.) */
- bool is_binary_ieee_compatible;
const char *name;
};
float string. BUF must be large enough to contain the result. */
extern void get_max_float (const struct real_format *, char *, size_t);
-/* Write into BUF the smallest positive normalized number x,
- such that b**(x-1) is normalized. BUF must be large enough
- to contain the result. */
-extern void get_min_float (const struct real_format *, char *, size_t);
-
#ifndef GENERATOR_FILE
/* real related routines. */
extern wide_int real_to_integer (const REAL_VALUE_TYPE *, bool *, int);
PR target/73350,80862
* gcc.target/i386/pr73350.c: New test.
-2017-06-08 Tamar Christina <tamar.christina@arm.com>
-
- * gcc.target/aarch64/builtin-fpclassify.c: New codegen test.
- * gcc.dg/fold-notunord.c: Removed.
- * gcc.dg/torture/floatn-tg-4.h: Add tests for iszero and issubnormal.
- * gcc.dg/torture/float128-tg-4.c: Likewise.
- * gcc.dg/torture/float128x-tg-4: Likewise.
- * gcc.dg/torture/float16-tg-4.c: Likewise.
- * gcc.dg/torture/float32-tg-4.c: Likewise.
- * gcc.dg/torture/float32x-tg-4.c: Likewise.
- * gcc.dg/torture/float64-tg-4.c: Likewise.
- * gcc.dg/torture/float64x-tg-4.c: Likewise.
- * gcc.dg/pr28796-1.c: Add -O2.
- * gcc.dg/builtins-43.c: Check lower instead of gimple.
- * gcc.dg/tg-tests.h: Add iszero and issubnormal.
- * gcc.dg/pr77925.c: Add to test safe cases.
-
2017-06-08 Richard Biener <rguenther@suse.de>
PR tree-optimization/80928
/* { dg-do compile } */
-/* { dg-options "-O1 -fno-trapping-math -fno-finite-math-only -fdump-tree-lower -fdump-tree-optimized" } */
+/* { dg-options "-O1 -fno-trapping-math -fno-finite-math-only -fdump-tree-gimple -fdump-tree-optimized" } */
extern void f(int);
extern void link_error ();
/* Check that all instances of __builtin_isnan were folded. */
-/* { dg-final { scan-tree-dump-times "isnan" 0 "lower" } } */
+/* { dg-final { scan-tree-dump-times "isnan" 0 "gimple" } } */
/* Check that all instances of link_error were subject to DCE. */
/* { dg-final { scan-tree-dump-times "link_error" 0 "optimized" } } */
--- /dev/null
+/* { dg-do compile } */
+/* { dg-options "-O -ftrapping-math -fdump-tree-optimized" } */
+
+int f (double d)
+{
+ return !__builtin_isnan (d);
+}
+
+/* { dg-final { scan-tree-dump " ord " "optimized" } } */
/* { dg-do link } */
-/* { dg-options "-ffinite-math-only -O2" } */
+/* { dg-options "-ffinite-math-only" } */
extern void link_error(void);
+++ /dev/null
-/* { dg-do run } */
-/* { dg-options "-O2" } */
-/* { dg-add-options ieee } */
-/* { dg-skip-if "No Inf/NaN support" { spu-*-* } } */
-
-#include "tg-tests.h"
-
-int main(void)
-{
- return main_tests ();
-}
foo_1 (float f, double d, long double ld,
int res_unord, int res_isnan, int res_isinf,
int res_isinf_sign, int res_isfin, int res_isnorm,
- int res_iszero, int res_issubnorm,
int res_signbit, int classification)
{
if (__builtin_isunordered (f, 0) != res_unord)
if (__builtin_finitel (ld) != res_isfin)
__builtin_abort ();
-/* On CPUs which flush denormals to zero these tests can never work one
- denormals for the floating point version of the implementation. The integer
- versions would work fine but we can't detect which version we have here. */
-#ifdef UNSAFE
-if (!res_issubnorm) {
-#endif
- if (__builtin_iszero (f) != res_iszero)
- __builtin_abort ();
- if (__builtin_iszero (d) != res_iszero)
- __builtin_abort ();
- if (__builtin_iszero (ld) != res_iszero)
- __builtin_abort ();
-
- if (__builtin_issubnormal (f) != res_issubnorm)
- __builtin_abort ();
- if (__builtin_issubnormal (d) != res_issubnorm)
- __builtin_abort ();
- if (__builtin_issubnormal (ld) != res_issubnorm)
- __builtin_abort ();
-#ifdef UNSAFE
-}
-#endif
-
/* Sign bit of zeros and nans is not preserved in unsafe math mode. */
#ifdef UNSAFE
if (!res_isnan && f != 0 && d != 0 && ld != 0)
void __attribute__ ((__noinline__))
foo (float f, double d, long double ld,
int res_unord, int res_isnan, int res_isinf,
- int res_isfin, int res_isnorm, int res_iszero,
- int res_issubnorm, int classification)
+ int res_isfin, int res_isnorm, int classification)
{
- foo_1 (f, d, ld, res_unord, res_isnan, res_isinf, res_isinf, res_isfin, res_isnorm, res_iszero, res_issubnorm, 0, classification);
+ foo_1 (f, d, ld, res_unord, res_isnan, res_isinf, res_isinf, res_isfin, res_isnorm, 0, classification);
/* Try all the values negated as well. All will have the sign bit set,
except for the nan. */
- foo_1 (-f, -d, -ld, res_unord, res_isnan, res_isinf, -res_isinf, res_isfin, res_isnorm, res_iszero, res_issubnorm, 1, classification);
+ foo_1 (-f, -d, -ld, res_unord, res_isnan, res_isinf, -res_isinf, res_isfin, res_isnorm, 1, classification);
}
int __attribute__ ((__noinline__))
/* Test NaN. */
f = __builtin_nanf(""); d = __builtin_nan(""); ld = __builtin_nanl("");
- foo(f, d, ld, /*unord=*/ 1, /*isnan=*/ 1, /*isinf=*/ 0, /*isfin=*/ 0, /*isnorm=*/ 0, /*iszero=*/0, /*issubnorm=*/0, FP_NAN);
+ foo(f, d, ld, /*unord=*/ 1, /*isnan=*/ 1, /*isinf=*/ 0, /*isfin=*/ 0, /*isnorm=*/ 0, FP_NAN);
/* Test infinity. */
f = __builtin_inff(); d = __builtin_inf(); ld = __builtin_infl();
- foo(f, d, ld, /*unord=*/ 0, /*isnan=*/ 0, /*isinf=*/ 1, /*isfin=*/ 0, /*isnorm=*/ 0, /*iszero=*/0, /*issubnorm=*/0, FP_INFINITE);
+ foo(f, d, ld, /*unord=*/ 0, /*isnan=*/ 0, /*isinf=*/ 1, /*isfin=*/ 0, /*isnorm=*/ 0, FP_INFINITE);
/* Test zero. */
f = 0; d = 0; ld = 0;
- foo(f, d, ld, /*unord=*/ 0, /*isnan=*/ 0, /*isinf=*/ 0, /*isfin=*/ 1, /*isnorm=*/ 0, /*iszero=*/1, /*issubnorm=*/0, FP_ZERO);
+ foo(f, d, ld, /*unord=*/ 0, /*isnan=*/ 0, /*isinf=*/ 0, /*isfin=*/ 1, /*isnorm=*/ 0, FP_ZERO);
/* Test one. */
f = 1; d = 1; ld = 1;
- foo(f, d, ld, /*unord=*/ 0, /*isnan=*/ 0, /*isinf=*/ 0, /*isfin=*/ 1, /*isnorm=*/ 1, /*iszero=*/0, /*issubnorm=*/0, FP_NORMAL);
+ foo(f, d, ld, /*unord=*/ 0, /*isnan=*/ 0, /*isinf=*/ 0, /*isfin=*/ 1, /*isnorm=*/ 1, FP_NORMAL);
/* Test minimum values. */
f = __FLT_MIN__; d = __DBL_MIN__; ld = __LDBL_MIN__;
- foo(f, d, ld, /*unord=*/ 0, /*isnan=*/ 0, /*isinf=*/ 0, /*isfin=*/ 1, /*isnorm=*/ 1, /*iszero=*/0, /*issubnorm=*/0, FP_NORMAL);
+ foo(f, d, ld, /*unord=*/ 0, /*isnan=*/ 0, /*isinf=*/ 0, /*isfin=*/ 1, /*isnorm=*/ 1, FP_NORMAL);
/* Test subnormal values. */
f = __FLT_MIN__/2; d = __DBL_MIN__/2; ld = __LDBL_MIN__/2;
- foo(f, d, ld, /*unord=*/ 0, /*isnan=*/ 0, /*isinf=*/ 0, /*isfin=*/ 1, /*isnorm=*/ 0, /*iszero=*/0, /*issubnorm=*/1, FP_SUBNORMAL);
+ foo(f, d, ld, /*unord=*/ 0, /*isnan=*/ 0, /*isinf=*/ 0, /*isfin=*/ 1, /*isnorm=*/ 0, FP_SUBNORMAL);
/* Test maximum values. */
f = __FLT_MAX__; d = __DBL_MAX__; ld = __LDBL_MAX__;
- foo(f, d, ld, /*unord=*/ 0, /*isnan=*/ 0, /*isinf=*/ 0, /*isfin=*/ 1, /*isnorm=*/ 1, /*iszero=*/0, /*issubnorm=*/0, FP_NORMAL);
+ foo(f, d, ld, /*unord=*/ 0, /*isnan=*/ 0, /*isinf=*/ 0, /*isfin=*/ 1, /*isnorm=*/ 1, FP_NORMAL);
/* Test overflow values. */
f = __FLT_MAX__*2; d = __DBL_MAX__*2; ld = __LDBL_MAX__*2;
- foo(f, d, ld, /*unord=*/ 0, /*isnan=*/ 0, /*isinf=*/ 1, /*isfin=*/ 0, /*isnorm=*/ 0, /*iszero=*/0, /*issubnorm=*/0, FP_INFINITE);
+ foo(f, d, ld, /*unord=*/ 0, /*isnan=*/ 0, /*isinf=*/ 1, /*isfin=*/ 0, /*isnorm=*/ 0, FP_INFINITE);
return 0;
}
+++ /dev/null
-/* Test _Float128 type-generic built-in functions: __builtin_iszero,
- __builtin_issubnormal. */
-/* { dg-do run } */
-/* { dg-options "" } */
-/* { dg-add-options float128 } */
-/* { dg-add-options ieee } */
-/* { dg-require-effective-target float128_runtime } */
-
-#define WIDTH 128
-#define EXT 0
-#include "floatn-tg-4.h"
+++ /dev/null
-/* Test _Float128x type-generic built-in functions: __builtin_iszero,
- __builtin_issubnormal. */
-/* { dg-do run } */
-/* { dg-options "" } */
-/* { dg-add-options float128x } */
-/* { dg-add-options ieee } */
-/* { dg-require-effective-target float128x_runtime } */
-
-#define WIDTH 128
-#define EXT 1
-#include "floatn-tg-4.h"
+++ /dev/null
-/* Test _Float16 type-generic built-in functions: __builtin_iszero,
- __builtin_issubnormal. */
-/* { dg-do run } */
-/* { dg-options "" } */
-/* { dg-add-options float16 } */
-/* { dg-add-options ieee } */
-/* { dg-require-effective-target float16_runtime } */
-
-#define WIDTH 16
-#define EXT 0
-#include "floatn-tg-4.h"
+++ /dev/null
-/* Test _Float32 type-generic built-in functions: __builtin_f__builtin_iszero,
- __builtin_issubnormal. */
-/* { dg-do run } */
-/* { dg-options "" } */
-/* { dg-add-options float32 } */
-/* { dg-add-options ieee } */
-/* { dg-require-effective-target float32_runtime } */
-
-#define WIDTH 32
-#define EXT 0
-#include "floatn-tg-4.h"
+++ /dev/null
-/* Test _Float32x type-generic built-in functions: __builtin_iszero,
- __builtin_issubnormal. */
-/* { dg-do run } */
-/* { dg-options "" } */
-/* { dg-add-options float32x } */
-/* { dg-add-options ieee } */
-/* { dg-require-effective-target float32x_runtime } */
-
-#define WIDTH 32
-#define EXT 1
-#include "floatn-tg-4.h"
+++ /dev/null
-/* Test _Float64 type-generic built-in functions: __builtin_iszero,
- __builtin_issubnormal */
-/* { dg-do run } */
-/* { dg-options "" } */
-/* { dg-add-options float64 } */
-/* { dg-add-options ieee } */
-/* { dg-require-effective-target float64_runtime } */
-
-#define WIDTH 64
-#define EXT 0
-#include "floatn-tg-4.h"
+++ /dev/null
-/* Test _Float64x type-generic built-in functions: __builtin_iszero,
- __builtin_issubnormal. */
-/* { dg-do run } */
-/* { dg-options "" } */
-/* { dg-add-options float64x } */
-/* { dg-add-options ieee } */
-/* { dg-require-effective-target float64x_runtime } */
-
-#define WIDTH 64
-#define EXT 1
-#include "floatn-tg-4.h"
+++ /dev/null
-/* Tests for _FloatN / _FloatNx types: compile and execution tests for
- type-generic built-in functions: __builtin_iszero, __builtin_issubnormal.
- Before including this file, define WIDTH as the value N; define EXT to 1
- for _FloatNx and 0 for _FloatN. */
-
-#define __STDC_WANT_IEC_60559_TYPES_EXT__
-#include <float.h>
-
-#define CONCATX(X, Y) X ## Y
-#define CONCAT(X, Y) CONCATX (X, Y)
-#define CONCAT3(X, Y, Z) CONCAT (CONCAT (X, Y), Z)
-#define CONCAT4(W, X, Y, Z) CONCAT (CONCAT (CONCAT (W, X), Y), Z)
-
-#if EXT
-# define TYPE CONCAT3 (_Float, WIDTH, x)
-# define CST(C) CONCAT4 (C, f, WIDTH, x)
-# define MAX CONCAT3 (FLT, WIDTH, X_MAX)
-# define MIN CONCAT3 (FLT, WIDTH, X_MIN)
-# define TRUE_MIN CONCAT3 (FLT, WIDTH, X_TRUE_MIN)
-#else
-# define TYPE CONCAT (_Float, WIDTH)
-# define CST(C) CONCAT3 (C, f, WIDTH)
-# define MAX CONCAT3 (FLT, WIDTH, _MAX)
-# define MIN CONCAT3 (FLT, WIDTH, _MIN)
-# define TRUE_MIN CONCAT3 (FLT, WIDTH, _TRUE_MIN)
-#endif
-
-extern void exit (int);
-extern void abort (void);
-
-volatile TYPE inf = __builtin_inf (), nanval = __builtin_nan ("");
-volatile TYPE neginf = -__builtin_inf (), negnanval = -__builtin_nan ("");
-volatile TYPE zero = CST (0.0), negzero = -CST (0.0), one = CST (1.0);
-volatile TYPE max = MAX, negmax = -MAX, min = MIN, negmin = -MIN;
-volatile TYPE true_min = TRUE_MIN, negtrue_min = -TRUE_MIN;
-volatile TYPE sub_norm = MIN / 2.0;
-
-int
-main (void)
-{
- if (__builtin_iszero (inf) == 1)
- abort ();
- if (__builtin_iszero (nanval) == 1)
- abort ();
- if (__builtin_iszero (neginf) == 1)
- abort ();
- if (__builtin_iszero (negnanval) == 1)
- abort ();
- if (__builtin_iszero (zero) != 1)
- abort ();
- if (__builtin_iszero (negzero) != 1)
- abort ();
- if (__builtin_iszero (one) == 1)
- abort ();
- if (__builtin_iszero (max) == 1)
- abort ();
- if (__builtin_iszero (negmax) == 1)
- abort ();
- if (__builtin_iszero (min) == 1)
- abort ();
- if (__builtin_iszero (negmin) == 1)
- abort ();
- if (__builtin_iszero (true_min) == 1)
- abort ();
- if (__builtin_iszero (negtrue_min) == 1)
- abort ();
- if (__builtin_iszero (sub_norm) == 1)
- abort ();
-
- if (__builtin_issubnormal (inf) == 1)
- abort ();
- if (__builtin_issubnormal (nanval) == 1)
- abort ();
- if (__builtin_issubnormal (neginf) == 1)
- abort ();
- if (__builtin_issubnormal (negnanval) == 1)
- abort ();
- if (__builtin_issubnormal (zero) == 1)
- abort ();
- if (__builtin_issubnormal (negzero) == 1)
- abort ();
- if (__builtin_issubnormal (one) == 1)
- abort ();
- if (__builtin_issubnormal (max) == 1)
- abort ();
- if (__builtin_issubnormal (negmax) == 1)
- abort ();
- if (__builtin_issubnormal (min) == 1)
- abort ();
- if (__builtin_issubnormal (negmin) == 1)
- abort ();
- if (__builtin_issubnormal (true_min) != 1)
- abort ();
- if (__builtin_issubnormal (negtrue_min) != 1)
- abort ();
- if (__builtin_issubnormal (sub_norm) != 1)
- abort ();
- exit (0);
-}
+++ /dev/null
-/* This file checks the code generation for the new __builtin_fpclassify.
- because checking the exact assembly isn't very useful, we'll just be checking
- for the presence of certain instructions and the omition of others. */
-/* { dg-options "-O2" } */
-/* { dg-do compile } */
-/* { dg-final { scan-assembler-not "\[ \t\]?fabs\[ \t\]?" } } */
-/* { dg-final { scan-assembler-not "\[ \t\]?fcmp\[ \t\]?" } } */
-/* { dg-final { scan-assembler-not "\[ \t\]?fcmpe\[ \t\]?" } } */
-/* { dg-final { scan-assembler "\[ \t\]?ubfx\[ \t\]?" } } */
-
-#include <stdio.h>
-#include <math.h>
-
-/*
- fp_nan = args[0];
- fp_infinite = args[1];
- fp_normal = args[2];
- fp_subnormal = args[3];
- fp_zero = args[4];
-*/
-
-int f(double x) { return __builtin_fpclassify(0, 1, 4, 3, 2, x); }