vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int>> ci_bits;
vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int,int>> co_bits;
vector<SigBit> ff_bits;
+ dict<SigBit, float> arrival_times;
vector<pair<int, int>> aig_gates;
vector<int> aig_latchin, aig_latchinit, aig_outputs;
// box ordering, but not individual AIG cells
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
- dict<IdString, std::pair<IdString,IdString>> flop_data;
+ struct flop_data_t {
+ IdString d_port;
+ IdString q_port;
+ int q_arrival;
+ };
+ dict<IdString, flop_data_t> flop_data;
bool abc_box_seen = false;
for (auto cell : module->selected_cells()) {
toposort.node(cell->name);
- auto r = flop_data.insert(std::make_pair(cell->type, std::make_pair(IdString(), IdString())));
+ auto r = flop_data.insert(std::make_pair(cell->type, flop_data_t{IdString(), IdString(), 0}));
if (r.second && inst_module->attributes.count("\\abc_flop")) {
- IdString abc_flop_d, abc_flop_q;
+ IdString &abc_flop_d = r.first->second.d_port;
+ IdString &abc_flop_q = r.first->second.q_port;
for (auto port_name : inst_module->ports) {
auto wire = inst_module->wire(port_name);
log_assert(wire);
if (abc_flop_q != IdString())
log_error("More than one port has the 'abc_flop_q' attribute set on module '%s'.\n", log_id(cell->type));
abc_flop_q = port_name;
+
+ auto it = wire->attributes.find("\\abc_arrival");
+ if (it != wire->attributes.end()) {
+ if (it->second.flags != 0)
+ log_error("Attribute 'abc_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(wire), log_id(cell->type));
+ r.first->second.q_arrival = it->second.as_int();
+ }
}
}
if (abc_flop_d == IdString())
log_error("'abc_flop_d' attribute not found on any ports on module '%s'.\n", log_id(cell->type));
if (abc_flop_q == IdString())
log_error("'abc_flop_q' attribute not found on any ports on module '%s'.\n", log_id(cell->type));
- r.first->second = std::make_pair(abc_flop_d, abc_flop_q);
}
- auto abc_flop_d = r.first->second.first;
+ auto abc_flop_d = r.first->second.d_port;
if (abc_flop_d != IdString()) {
SigBit d = cell->getPort(abc_flop_d);
SigBit I = sigmap(d);
alias_map[I] = d;
unused_bits.erase(d);
- auto abc_flop_q = r.first->second.second;
+ auto abc_flop_q = r.first->second.q_port;
SigBit q = cell->getPort(abc_flop_q);
SigBit O = sigmap(q);
if (O != q)
alias_map[O] = q;
undriven_bits.erase(O);
ff_bits.emplace_back(q);
+
+ auto arrival = r.first->second.q_arrival;
+ if (arrival)
+ arrival_times[q] = arrival;
}
for (const auto &conn : cell->connections()) {
bool cell_known = cell->known();
for (const auto &c : cell->connections()) {
if (c.second.is_fully_const()) continue;
- auto is_input = !cell_known || cell->input(c.first);
- auto is_output = !cell_known || cell->output(c.first);
+ auto port_wire = inst_module->wire(c.first);
+ log_assert(port_wire);
+ auto is_input = !cell_known || port_wire->port_input;
+ auto is_output = !cell_known || port_wire->port_output;
if (!is_input && !is_output)
log_error("Connection '%s' on cell '%s' (type '%s') not recognised!\n", log_id(c.first), log_id(cell), log_id(cell->type));
if (is_input) {
+ int arrival = 0;
+ auto it = port_wire->attributes.find("\\abc_arrival");
+ if (it != port_wire->attributes.end()) {
+ if (it->second.flags != 0)
+ log_error("Attribute 'abc_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(port_wire), log_id(cell->type));
+ arrival = it->second.as_int();
+ }
+
for (auto b : c.second.bits()) {
Wire *w = b.wire;
if (!w) continue;
if (!cell_known)
keep_bits.insert(b);
}
+ if (arrival)
+ arrival_times[b] = arrival;
}
}
if (is_output) {
undriven_bits.erase(O);
}
}
+
+
}
}
int32_t i32_be = to_big_endian(i32);
buffer.write(reinterpret_cast<const char*>(&i32_be), sizeof(i32_be));
};
+ auto write_buffer_float = [](std::stringstream &buffer, float f32) {
+ buffer.write(reinterpret_cast<const char*>(&f32), sizeof(f32));
+ };
std::stringstream h_buffer;
auto write_h_buffer = std::bind(write_buffer, std::ref(h_buffer), std::placeholders::_1);
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
+ std::stringstream i_buffer;
+ auto write_i_buffer = std::bind(write_buffer_float, std::ref(i_buffer), std::placeholders::_1);
+ for (auto i : input_bits)
+ write_i_buffer(arrival_times.at(i, 0));
+ //std::stringstream o_buffer;
+ //auto write_o_buffer = std::bind(write_buffer_float, std::ref(o_buffer), std::placeholders::_1);
+ //for (auto o : output_bits)
+ // write_o_buffer(0);
+
std::stringstream r_buffer;
auto write_r_buffer = std::bind(write_buffer, std::ref(r_buffer), std::placeholders::_1);
log_debug("flopNum = %d\n", GetSize(ff_bits));
write_r_buffer(ff_bits.size());
int mergeability_class = 1;
- for (auto cell : ff_bits)
+ for (auto i : ff_bits) {
write_r_buffer(mergeability_class++);
+ write_i_buffer(arrival_times.at(i, 0));
+ //write_o_buffer(0);
+ }
f << "r";
buffer_str = r_buffer.str();
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
+ f << "i";
+ buffer_str = i_buffer.str();
+ buffer_size_be = to_big_endian(buffer_str.size());
+ f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
+ f.write(buffer_str.data(), buffer_str.size());
+ //f << "o";
+ //buffer_str = o_buffer.str();
+ //buffer_size_be = to_big_endian(buffer_str.size());
+ //f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
+ //f.write(buffer_str.data(), buffer_str.size());
+
std::stringstream s_buffer;
auto write_s_buffer = std::bind(write_buffer, std::ref(s_buffer), std::placeholders::_1);
write_s_buffer(ff_bits.size());